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PRESERVATION OF CLOSURE IN A LOCALLY CONVEX SPACE. I

BY

I. BRODSKY1

Abstract. This paper is concerned with the lifting of the closures of sets. If H is a

topological vector space, G a subspace and A closed in G for the induced topology,

under what conditions on A in G is it true that the closure of A is preserved in H,

i.e., A is closed in HI In this paper a fundamental lifting proposition is proved.

'Preservation of closure' will prove to be a fruitful technique in obtaining some

interesting results in the theory of locally convex spaces. Using this technique, we

will first show when closure is equivalent to completeness. Then we will prove a

generalization to locally convex spaces of the classical Heine-Borel Theorem for

Euclidean n-space. Generalizing a result of Petunin, we will also give some

necessary and sufficient conditions on semireflexivity. Finally, we will give a

necessary and sufficient condition for the sum of two closed subspaces to be

closed.

Introduction. An interesting but not well-known result of Y. I. Petunin [2, pp.

1160-1162] is the following: Let £ be a Banach space and S its unit ball. Then E is

reflexive if and only if 5 is closed in every Hausdorff locally convex topology on E

that is weaker than the initial topology of E. The proof Petunin has given of his

original theorem relies heavily on the concept of a characteristic of a subspace.

However, we have found that the essence of Petunin's theorem does not depend

upon the concept of a characteristic nor on boundedness nor on convexity. It will

be seen that linearity is what makes Petunin's theorem work.

The form which Petunin's theorem now assumes gives little insight. Let us view

Petunin's theorem from a different perspective. Reflexivity of E is equivalent to

having 5 weakly compact. Also, 5 is weakly compact if and only if S is a(E", £")-

closed in E". Therefore, Petunin's theorem can be restated as follows: The unit ball

S is a(E", £")-closed in E" if and only if S is closed in every Hausdorff locally

convex topology on E that is weaker than the initial topology of E. It is this

perspective that will prove to be very fruitful, in particular, in generalizing

Petunin's theorem to arbitrary locally convex spaces.

We wish now to abstract the above situation. Let H be a topological vector space

and G a subspace. Let A be a proper subset of G. We wish to investigate under

what conditions A closed in G implies A closed in H. The reformulation of

Petunin's theorem suggests that we look for a certain class of linear topologies on G
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in which A is closed. In Proposition 1, we isolate this class of linear topologies to

insure the preservation of closure of A. We also obtain much more. This paper, in

general, is an application of Proposition 1 and similar results to characterizations of

various notions in topological vector space theory, e.g., completeness, compactness,

semireflexivity.

In this paper, we will pursue the previously-stated problem in the following

framework.

Definition 1. Let X and H be linear spaces with (X, H > a dual system. Let G

be a subspace of H with (G, Xs) a paired (dual) system for the bilinear form from

(X, H >. If this is the case, we say that <G, X, H ) is a triple (in duality).

Notation. If (G,X,H} is a triple and A, B, C are subsets of G, X, H

respectively, we will write

(a) A ° for the polar of A in X,

(b) C° for the polar of C in X,

(c) B° for the polar of B in G,

(d) B° for the polar of B in H.

A similar notation applies to the perpendicular, _L, and subspaces.

Since every weakly dense subspace of the dual of a locally convex space gives a

distinct Hausdorff locally convex topology on the base space, the following

definition isolates two important classes of Hausdorff locally convex topologies.

Notation. If G is a topological vector space with linear topology t, written G[t]

or (G, t), and A Q D Q G then the closure of A in D for r will be denoted by

r\D - Cl(A).

Definition 2. Let <G, A\//> be a triple. Define §>(G, X, H) = {F: F is a

subspace of X, X = o(X, G) - C1(F) and F = a(X, H) - C\(F)}. We also define

'»(G, X, H) = {F: F G S (G, X, H) and F1- is finite dimensional in H). We will

write simply S, respectively 'S, if the triple is clear from the context.

The following elementary lemma does not seem to be in any of the literature. In

what follows, sp(x, . . . , x„) denotes the linear span of x,, . . ., xn.

Lemma 1. Let <G, X) be a paired system. Let A be an absolutely convex

a(G, X)-closed subset and H a finite-dimensional subspace of G. Then A + H is an

absolutely convex a(G, X)-closed set.

Proof. It is sufficient to prove this lemma for H = sp(x), x G G. We may

assume there exists ay G A0 such that <x,j>> ¥= 0. Let (ax + dxx) G A + sp(x) be

a net, where dx are scalars, and z G G such that ax + dxx —» z for a(G, X). Since

(ax) G A = (A\, there is a subnet of scalars «a^,_y» such that (a ,y) -* r, some

scalar. Since (x,y) =£ 0, it is easy to show there exists a scalar c such that

a^ —>■ z — cx for a(G, X). This implies z G A + sp(x).

Before we state and prove Proposition 1, we must make the following important

observation. Let <G, X, H} be a triple. Let B be a subset of G, F a subspace of X

and D a subset of H containing B. Choose g G B and h e D such that </, g) =

</, h} for ail/ G F. If A is a subset of B, then g G a(B, F) - C\(A) if and only if

h G a(D, F) - C\(A), where, if W Ç G, a(W, F) = a(G, F)\ W.
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Proposition 1. Let <G, X, H) be a triple and A c G. // U{a(G, F) - C\(A):

F e®} c G, then for all F G <S, a(H, F) - Cl(A) = a(G, F) - Cl(A) + F±. In

particular, a(G, X) — Cl(A) — a(H, X) — Cl(A). Conversely, if A is an absolutely

convex a(H, X)-closed subset of G, then for all f ËÎ, a(G, F) - C\(A) = A.

Proof. Let F G 'S, h G a(H, F) - C\(A) and B = U {a(G, F) - C\(A): F G

'S). Choose ge G — B. Consider NF(h — g), the null space of h — g restricted to

F. If h\F = g\F, by the prior observation, g G a(G, F) - CA(A) if and only if

h e a(H, F) - C\(A). Therefore, h G a(H, F) - C\(A) implies g G a(G, F) -

C\(A) ç B. Hence g e B. This is a contradiction. Therefore, N,j(h — g) is a

hyperplane in F.

Case I. NF(g — h) is a(F, G)-closed. Then (h - g)\F is a(F, G)-continuous.

Since (h — g)\F = h\F - g\F and g\F are a(F, G)-continuous, this h\F is a(F, G)-

continuous. Since F is a(X, G)-dense, there exists a unique h e G such that

h\F = h\F. Therefore, h G G, h G a(H, F) - C\(A) and h\F= h\F imply h G

a(G, F) — C\(A). Since h\F = h\F implies h — h G Fx, we finally obtain h e h +

Fx Q a(G, F) - Cl(A) + F±.

Case II. NF(h — g) is a(F, G)-dense. Therefore, Np(h — g) e 'S. Since h G

a(H, F) - Cl(A) Q a(H, NF(h - g)) - C\(A), g G a(G, NF(h - g)) - C\(A) Ç B.

Hence g e B. This is a contradiction.

We have shown that Case I must always hold. Therefore a(H, F) - Q\(A) C

a(G, F) - Cl(A) + F±, for all F e<S. Clearly, a(G, F) - C\(A) + Fx Q a(H, F)

- C\(A) for all F G 'S. Hence, for all F G 'S, a(H, F) - Cl(^) = a(G, F) -
Cl(A) + Fx.

That the first part of the proposition implies a(G, X) — C\(A) = a(H, X) —

C\(A) follows from the fact that X e 'S.

Conversely, fix F G 'S. To show A is a(G, /r)-closed, first let <?> be the canonical

map H -> H/ Fx. Since F=(/r"L)x, we have by Schaefer [3, Corollary 1 of

Theorem 1, p. 135] that the quotient topology on H/Fr derived from a(H, X) is

o(H/F±,F). By Lemma 1, A + F1- is a(H, X)-closed. Therefore <¡>(A) is

a(H/F±, F)-closed. Since G is algebraically embedded in H/'F1-, we have that A

is a(G, F)-closed.

Remark. In the first part of Proposition 1, the only place we used the fact that

Fx is of finite dimension in H for F G 'S (G, X, H) was in claiming that

Nf{h — g) e <S(G, X, H). Therefore, we can obtain a result similar to the first part

of Proposition 1 by replacing ff(G, X, H) with S (G, X, H).

Remark. Using the same technique as in Proposition 1, we can prove the

following similar result: Let <G, X, H} be triple with B, D subsets of G such that

B c D and D is a(G, A>closed. If B is a(D, F)-closed for every F G 'S, then B is

a(H, *)-closed.

We will now apply Proposition 1 to obtain an interesting equivalence between

closure and completeness. However, before we state Theorem 1, we need the

following well-known results. We simply state them.

(A) Let A' be a linear space. If F is a subspace of X, then F is a(X, A'*)-closed.

(B) Let G be a locally convex space with topology t. Let A be a subset of G and
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X = G'. If A is a(G, Ar)-complete, then A is T-complete.

In the following theorem H.L.C.T. will stand for Hausdorff Locally Convex

Topology.

Theorem 1. Let G be a locally convex space with topology r. Let A be a properly

contained in G. Then the following are equivalent.

(a) For every H.L.C. T. ti on G such that it <t,A is m-closed.

(b) For every H.L.C.T. -n on G such that ti < r, A is tr-complete.

Proof. Let X = G'. By (B) it is sufficient to prove that the following are

equivalent.

(a') For every H.L.C.T. m on G such that rr < a(G, X), A is 7r-closed.

(b') For every H.L.C.T. w on G such that -n < a(G, X), A is 7r-complete.

(a') => (b'). Let it be a H.L.C.T. on G such that m < a(G, X) and T = G[w]' Ç X.

Let S Q T be such that a(G, S) is an H.L.C.T. on G weaker than a(G, T).

Therefore a(G, S) < a(G, X) and thus A is a(G, 5)-closed. Using (A), we have

shown that for every F G 'S (G, T, T*), A is a(G, F)-closed. Therefore, since

<G, T, T*} is a triple (in duality), we have by Proposition 1 that A is a(T*, T)-

closed. The completion of (G, a(G, T)) is (T*, a(T*, T)). Therefore, A is a(G, T--

complete and by (B) A is ir-complete.

(b') => (a'). This is obvious.

The classical Heine-Borel Theorem for Euclidean n-space states that every closed

and bounded subset is (weakly) compact. The Heine-Borel Theorem does not hold

in general locally convex spaces. The following theorem is an interesting general-

ization of this result.

Notation. Let G be a locally convex space with topology t. We will write

9H(G[t]) for a fundamental system of closed bounded absolutely convex subsets of

G[t] and 6li(G[r]) for a fundamental system of O-neighborhoods, consisting of

closed convex sets.

Before we can state Theorem 2, we need the following setting. Let E be a locally

convex space with topology r and K(E) = {/: / is continuous from E into K, the

scalars, and bounded on M, Me "D1L}. Since E is completely regular as a

topological space, K(E) contains a sufficient number of functions to recover the

original topology of E, that is, the inductive topology on E generated by the family

K(E) is t.

Let L be a linear subspace of K(E) such that £'ÇLÇ K(E). Consider E as

linear forms on L, i.e., E^-* L*. From the dual system (sp^), L), where sp(Zs)

denotes the linear span of E in L*, we can form the locally convex space

T(L) = (sp(£), a(sp(2s ), L)).

If L = E', then T(L) = (E, a(E, £"))• If L = K(E), we have in general altered

the linear structure of E, i.e., E is not necessarily a linear subspace of K(E)*.

However, if L = K(E), E[t] is topologically embedded in T(L). For arbitrary L, if

M C E then M is bounded in T(L) if and only if M is bounded in E[t].

We will write T instead of T(L) if L is clear from the context.
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Theorem 2. Let E be a locally convex space with topology t and M a bounded

subset of E. Let L be a linear subspace of K(E) such that E' Q L and 'S =

^(T, T', T"). Then the following are equivalent.

(a) For all F G 'S, M is a(T, F)-closed.

(b) M is a(T, T')-compact. In particular, if L = E', M is a(E, E')-compact and if

L = K(E), M is r-compact.

Proof, (a) => (b). Since (T, T', T"} is a triple in duality, we have by Proposition

1 that M is a a(T", 7")-closed subset of T. By the Bourbaki-Alaoglu Theorem M00

is a(T", 7")-compact. Since M C M°°, M is a a(T", 7")-compact subset of T and

hence a(T, 7")-compact. In particular, if L = £", M is a(E, £")-compact and if

L = K(E), by the complete regularity of E, M is T-compact.

(b) =t> (a). Fix F G 'S. Since M is a(T, T')-compact, M is a(T, F)-compact and

hence a(T, F)-closed.

Remark. If A1 is a completely regular topological space, we can employ the

previous technique in the following setting to obtain a necessary and sufficient

condition for the compactness of X: Let B(X) = {/: / is a bounded real-valued

continuous function on A"}. As before, we consider X as linear forms on B(X) and

obtain the locally convex space (sp(A"), a(sp(X), B(X)*)), where sp(Ä") is the linear

span of X in B(X)*.

We are now prepared to give a generalization of Petunin's Theorem [2] on

Banach spaces to arbitrary locally convex spaces. Our generalization will be in two

directions; in one, the unit ball will be replaced by 91t and, in the other, by a

proper bornivorous set.

Theorem 3. Let E be a locally convex space with topology t. If 'S =

^(E, E', E"), then the following are equivalent.

(a) E is semireflexive.

(b) For every M G 91t and H.L.C.T. p on E such that p < t, M is p-closed.

(c) For every M G 911 and F G 'S, M is a(E, F)-closed.

(d) There exists a proper bornivorous subset B of E such that for every F G 'S, B is

a(E, F)-closed.

(e) For every M G 91t and F G 'S, a(M, F) = a(M, E').

(f) There exists a bornivorous barrel B of E[t] such that for every F e 'S,

a(B, F) = a(B, E').

(g) n {F: F E <$} + (0).

Proof. In the course of the proof we will make free use of the following

well-known criteria for semireflexivity. The locally convex space E is semireflexive

if and only if every M G 911 is a(E, £')-compact. By the Bourbaki-Alaoglu

theorem, for every M G 911, a(E", E')-C\(M) = M00 is a(E", £')-compact.

Therefore, to show E is semireflexive it is necessary and sufficient to have every

M6?H,ff(£", £')-closed.

(a)=>(b). Since E = E", it is clear every M G 911 is a(E, £")-compact. If

S = E[p\ Ç E', every M G 911 is a(E, 5)-closed and thus, by convexity, p-closed.

(b) => (c). This is obvious.
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(c)=>(a). By Theorem 2, every M G 91t is a(E, £")-compact and thus E is

semireflexive.

If E is semireflexive, the a(E', £)-closure equals the a(E', £")-closure. Clearly,

this implies 'S = {£"}. In this case, i.e., if E is semireflexive, conditions (d)-(g) are

all trivial. Therefore, to finish the proof it is sufficient to show conditions (d)-(g) in

turn imply that E is semireflexive.

(d) =* (a). By Proposition 1, we have that B is a(E", £")-closed. Since B absorbs

a(E, £")-bounded subsets, we obtain every M G 91t is a(E", £")-closed.

(e) => (a). Clearly M/2 c M and M/2 is a(M, £")-closed. Therefore, M/2 is

a(M, F)-c\osed, for every F G 'S. By the remark following Proposition 1, this

implies M/2 is a(E", is')-closed and thus M is a(E", £')-closed.

(f)=>(a). If B = E, a(E, £") = a(E, F), for every F G 'S and thus D {F:

F G 'S} = E', which will be shown to imply (a) in the next part. Therefore, we

may assume B c E. Clearly we then have B/2 c B. The remainder is a repitition

of parts of (e) => (a) and (d) => (a).

(g) => (a). If 0 ¥=y G H [F: F G 'S), the proper bornivorous subset {Y}0 of E

is a(E, F)-closed for every F G 'S. By (d), we obtain E is semireflexive.

Corollary 1. Let E be a locally convex space. Then E is reflexive if and only if E

is infrabarrelled and satisfies any of the conditions (b)-(g).

Corollary 2 (Petunin). Let E be a normed linear space with topology r. Then E

is reflexive if and only if its unit ball is closed in E for every H.L.C.T. on E weaker

than t.

Notation. Let G be a linear space, A a subset of G, F a subspace of G and

x e G. We will sometimes write A/F for </>(/4) and x for <i>(x), where <i> is the

canonical map from G onto G/ F.

We will now give a necessary and sufficient condition for the sum of two closed

subspaces to be closed. We will need the following lemma.

Lemma 2. Let <G, X} be a dual system and Fx, F2 two a(G, X)-closed subspaces

such that Fx + F2 is properly contained in G. Let <b be the canonical map from G onto

G/Fx n F2and x G G ~ (Fx + F2). Then

(a) (<b(Fx ® sp(x)), (Fx n F^, <i>(G)> is a triple and from this we obtain the

triple

<<t>(Fx © sp(x))/<t>(F2), $(F2)±, <i>(G)/<t>(F2)).

(h) The dual space (Fx n F-^1- does not identify <J>(x) with any element of <b(Fx),

i.e., <j>(Fx) is a proper subspace of (§(FX © sp(x)), a(<J>(F, © sp(x)), (Fx n F^)).

(c) The dual space ¡f>(F2)± does not identify â, a = <¡>(x), with any element of

<KFx)/<t>(F2), i.e., <t>(Fx)/<i>(F2) is a proper subspace of (<¡>(FX © spíx))/^^,

a(<?(Fx © sp(x))/<KF2), <KF2)L)).

Proof, (a) It is sufficient to show that <(F, n F2)x, <p(G)} and

(<t>(F2)±, <p(G)/<p(F2)') are dual systems. For the first, since Fx n F2 is a(G, X)-

closed, it is clear that <(F, n F^, <|>(G)> is the dual system. It also follows that
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the a(G, Ar)-quotient topology on <¡>(G) is o(<p(G), (Fx n F2)x). Therefore, since

F2 + Fx n F2 = F2 is a(G, A>closed, <i>(F2) is a(<b(G), (Fx n F2)-^-closed. There-

fore, from the dual system <(F, n F^, <KG)}, we obtain the dual system

<<KF2)X, <i>(G)/<f>(F2)>
(b) Suppose there exists an / G Fx such that <<#>(/) — <Kx), y > = 0, for all

y e (Fx n Fj)-1. Since (Fx n Fj)1- separates points of <b(G), this implies <i>(/) =

<p(x) and thus x - / G Fx n F2. Therefore x G F, + F2. This is a contradiction.

(c) Apply the same proof as in (b) to â, (f>(F,)/(í>(F2) and <<XF2)X, (#>(G)/<i>(F2)>.

Theorem 4. 7/i/ze setting is as in Lemma 2 then Fx + F2 is a(G, X)-closed if and

only if for every S G 'S = ^(F, © sp(x)), <Í>(F2)±, <¡>(G)/<Í>(F2)), </>(F,) «

0(^>(F, ® sp(x)), S)-closed.

Proof. Let us first observe that since <i>(F2)± separates points of <>(F, © sp(x)),

we   can   identify   <¡>(FX © sp(x))   with   its   image   in   <¡>(G)/<l>(F2),   i.e.,   with

</>(F, © sp(x))/<¡>(F2).   Therefore   <S(<¡>(FX © sp(x))/<KF2), <i»(F2)±, <KG)/<KF2)) =

<S(Ï(FX © sp(x)), <KF2)±, <KG)/<KF2)).
Necessity. Fix S G 'S. We have the following sequence of locally convex spaces,

a(G, X)    o(<J>(G), (F, n F2)x)    (<i>( G )/<í>( F2), ^>(F2)±)

G-^<KG) -><í»(G)/<í,(F2),

where each topology above its respective space is the quotient of the preceding

topology. Therefore, F, + F2 a(G, A")-closed

=$ Fx + F2+ Fx C\ F2 is a(G, A")-closed,

=* <j>(Fx) + <¡>(F2) is a(<p(G), (F, n F2) ̂ -closed,

=* <KF,) is a(<j>(G)/<b(F2), <i>(F2) J-closed,

by our identification.

By Proposition 1 applied to 'S, this implies <t>(Fx) is o(<j>(Fx ffi sp(x)), 5)-closed.

Sufficiency. By Proposition 1, <t>(Fx) is a(<i>(G)/<¡>(F2), <£(F2)x)-closed and by the

continuity of the quotient map we further obtain that <í>(F,) + <i>(F2) is

o(<j>(G), /(F, n F2)±)-closed. Again, by the continuity of the quotient map <j>, we

have that <¡>~l(<j¡(Fx) + <1>(F2)) = F, + F2 + F, n F2 is a(G, A>closed. Thus F, +

F2 is a(G, A')-closed.

Remark. If in Theorem 2, F, n F2 = (0), then 'S becomes

*F(F,©sp(x),(F2)±,G/(F2)).
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