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DEFORMATION THEORY AND THE TAME

FUNDAMENTAL GROUP

BY

DAVID HARBATER1

Abstract. Let U be a curve of genus g with n + 1 points deleted, defined over an

algebraically closed field of characteristic p > 0. Then there exists a bijection

between the Galois finite étale covers of U having degree prime top, and the finite

/»'-groups on n + 2g generators. This fact has been proven using analytic consider-

ations; here we construct such a bijection algebraically. We do this by algebraizing

an analytic construction of covers which uses Hurwitz families. The process of

algebraization relies on a deformation theorem, which we prove using Artin's

Algebraization Theorem, and which allows the patching of local families into

global families. That our construction provides the desired bijection is afterwards

verified analytically.

1. Introduction. The fundamental group ttx(U) of an algebraic curve U over an

algebraically closed field k has been studied by Grothendieck, by means of

specialization to curves over C His results [7, XIII, 2.12] can be viewed as a

classification of the Galois finite étale covers of the curve U, in the case of

characteristic 0, and of the //-Galois covers, in the case of characteristic p.

Inasmuch as the proof relies on a reduction to the analytic category, where

covering spaces are classified with the aid of paths, the proof does not give

(i) an algebraic description of the finite étale covers of U, or

(ii) information about the étale covers of U whose corresponding ramified covers

of X have wild ramification.

In this paper the first of these two points will be addressed, by constructing tame

covers using algebraic deformation theory (perhaps an obvious tool when dealing

with homotopy!). In a subsequent paper a parallel approach to wild covers will be

used to address the second point.

§2 describes a cut-and-paste construction which yields arbitrary Galois covers of

a Riemann surface. §3 begins the process of algebraizing this construction, using

the notion of mock cover, an object arising in §2. §4 proves a deformation theorem,

allowing the patching of local families of covers into global families. §5 applies this

theorem to the ideas of §3, completing the algebraization process over C, and then

generalizing it to other algebraically closed fields. A possible application to moduli
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spaces of curves is also described. §6 gives an example of the construction of

covers.

This paper was largely adapted from part of the author's M.I.T. doctoral thesis

[8]. The author wishes to thank his thesis advisor, Michael Artin, for his advice and

encouragement. He also wishes to thank Michael Fried for his careful reading of

and comments upon the thesis.

2. A topological construction. Let A' be a Riemann surface of genus g, L =

{x0, . . . , x„} a set of points in X, and U = X — L. If u is a point of U, then it is

well known that there is a set of loops B = {a0, . . . , an+2g} at u in U whose

homotopy classes a, generate ttx(U, u) and satisfy the single relation

Í  II   a, 11  II   an+jan+g+Jan\ja;x+g+j\ =1. (2.1)

Indeed B may be chosen so that a- (j < n) winds once around x-, counterclockwise

(relative to the orientation given by the complex structure) and around no other x,;

and so that an+J and an+g+J (1 < j < g) wind once around the "y'th hole". We call

such a choice of loops a standard homotopy basis for ( U, u). Relative to B, there

are one-to-one correspondences between

2.2 (i) Isomorphism classes of pointed Galois covers of ((7, u), with a fixed action

of G as Galois group;

(ii) epimorphisms <p: irx(U, u) —* G;

(iii) elements d = (d0, . . . , dn+2g) e Gn + 2g+x whose entries generate G and

satisfy (2.1).

The bijection (i) <-> (ii) is given by the Galois theory of covers, as every cover is a

quotient of the universal cover; (ii) <-» (iii) follows from the description above of

ttx(U), via generators a- and the single relation (2.1).

Given a cover (V, «)—»([/, u) as in (i), the corresponding element d in (iii) can

be described without reference to the universal cover. Namely, each loop ay in B

lifts to a unique path af in V having initial point v, and there is a unique element d¡

in G sending v to the final point of af. The element d is then (d0, . . . , dn+2g).

The goal of this section is to describe similarly the inverse correspondence

(iii) -» (i); that is, to construct, without reference to the universal cover, the G-cover

corresponding to d = (d0, . . . , dn+2g). Actually, we phrase this instead in terms of

(iv) Elements (dx, . . . , dn + 2g) of Gn+2g whose entries generate G.

This is equivalent to 2.2(iii), provided that L ¥= 0. Since an unramified cover of

U is also such a cover of U — {x0}, for x0 arbitrary, we shall assume that L ¥= 0.

Henceforth the corresponding element of (iv) will be called the data of the cover.

2.3. Our construction of covers relies on work of Hurwitz [9]; cf. also [5]. Fix an

integer r, and let A c XT be the weak diagonal, consisting of r-tuples with two

equal entries. Define the Hurwitz space Hr to be the set of isomorphism classes of

pairs (Z —» X, x), where x = (x,, . . . , xr) G Xr — A and Z^>X is a ramified

cover with branch locus {x,, . . . , xr). The projection /L—»A" — A becomes a

covering map under a natural topology for Hr. The Hurwitz space may be

completed to a ramified cover Hr^>Xr, and for some (ramified) cover H —> Hr,
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there is a Hurwitz family W—> X X H whose fibre over each h G H = f~x(Hr) is a

ramified cover of X lying in the isomorphism class fih). The fibres of W over

H — H arise as a result of branch points coalescing.

While Hurwitz's original construction relied on the analytic topology of X,

Fulton [5] has shown how it can be made algebraic. His Theorem 6.3 algebraically

constructs the components of W corresponding to "simple covers", i.e. N-sheeted

covers with at least N — 1 points in each fibre. A modification yields the compo-

nent having any given cover as a fibre.

For a more detailed study of Hurwitz families, with an eye toward arithmetic

questions, see M. Fried's papers [3] and [4].

2.4. Let G be a group of order N, and d = (</,, . . . , dr) G Gr. Choose points

x,, . . . , xr in X, and disjoint open discs Bx, . . . ,Br containing them. For each y let

Oj be an arc (i.e. non-self-intersecting path) in B} from Xj to another point y}. A

ramified cover Z -+ X may be defined by taking N copies of X, indexed by the

elements of G, "cutting" along the copies of the o/s, and "pasting" the right side of

Oj on Xg (relative to the parametrization of a, and the orientation of A') to the left

side of Oj on Xgd. Call Z -» X the slit cover of (X; x; v) with data d; it is

independent of the choice of the a. This cover is provided with a G-action, such

that h e G sends Xg to Xhg. It thus becomes a principal (ramified) G-cover, i.e. G

acts simply transitively on the generic fibre. It is Galois with group G if and only if

the d's generate G.

In particular, let d G G"+2g be as in 2.2(iv), under the hypotheses given there.

Let xn+x, . . . , xn + 2 be distinct points of U — {u}, write x = (xx, . . . , xn+2g), and

let Z—» X be the slit cover of (X; x; v) with data d (for some choice of v G

Xn+2g). The isomorphism class of Z^>X is a point in the fibre of H2n+4g^>

X2n+4g over (x,, . . . , x„) X Xn+4g; let H be its connected component in this fibre.

By a variant on the terminology of §2.3, we shall call H -» X"+4g the Hurwitz space

for (A'; x) with data d; it is independent of y. As in §2.3, H gives rise to a family of

covers W —> X X H, which we shall call a Hurwitz family for (A"; x) with data d.

The correspondence 2.2(iv) —> (i) can now be given:

Proposition 2.5. Let W —> X X H be a Hurwitz family for (X; x) with data d.

There is a point h G H over (x0, . . . , x0) G Xn+4g such that the fibre of W over

U X {h} is the cover of U with data d.

Proof. If X = P1, then choose disjoint arcs (or "slits") ax, . . . , an from

x,, . . . , xn to x0. These may be taken so that a- intersects no member of the

standard homotopy basis B except for a0 and a-, each of which it meets once.

Choose e so that for all j,yj = o,(e) is inside the loop a- (i.e. is in the component of

Xj in the complement of the loop). Thus rj = (a,, ...,<•„) is a path in X" from

y = (yx, . . . ,yn) to (x0, . . . , x0), where a, = a,|[e, 1]. Let a* be the unique lifting

of ä to H whose initial point corresponds to the slit cover of (A; x; y) with data d.

Its final point corresponds to the cover obtained by making a slit cover construc-

tion using a,, . . . , a„. This cover has branch locus L = (x0, . . . , x„}, and it is

easily verified that it has data d relative to B.
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For a more general Riemann surface X of genus g, augment a,, . . . , an by loops

an+x, . . . , an+2 at x0. Choose these so that a, (fory > n) intersects no members of

B except for a0, which it crosses twice, and a-, which it crosses once from left to

right. (Cf. Figure 2.6, for the case g = 1, n = 2.) For each/ > n choose distinct

points Xj = Oj(t) and v, = Oj(t + e') outside the loop a0 and off aj. Let rL be as

before for y < n; for y > n let o^ = o,|[< + e', 1] and let oj = (a,|[0, ;])"'. Reasoning

as for P1, these paths in X define a path in H whose initial point corresponds to the

slit cover of (A"; x; y) with data d, and whose final point has branch locus

{x0, . . . , x„} and data d relative to B.   □

a4

Figure 2.6

2.7. If a slit cover with given data could be constructed algebraically, then so

could a corresponding Hurwitz family (cf. §2.3), and hence a cover having given

data—thus algebraizing 2.2(iv) —» (i). But as the notion of slit is not an algebraic

one, we rely instead on another, simpler fibre of the Hurwitz family. Namely, in the

above Hurwitz family, there is a fibre which is a mock cover of A"; i.e. it is a union

of "sheets", each homeomorphic to A", and meeting over the branch points. (The

mock cover corresponds to the point h0 of H which lies over s0 =

(xn+1, . . . , xn + 2g, x,, . . . , xn + 2g) and is "near" the point corresponding to the slit

cover.)

Observe that the sheets of the mock cover Z0 -* X can be labelled by the

elements of G such that two sheets meet over x} if and only if their labels are in the

same right coset of dj. Such a mock cover we call a mock cover of (A; x) with data

d.

Mock covers form the key to the problem of algebraizing Hurwitz families with

given data, and we begin with them in §3.

3. Construction of mock covers. Let k be a field or a complete discrete valuation

ring of characteristics p > 0, containing wth roots of unity fm for all m prime to p.

The fm's may be taken to be compatible, i.e. $„„ = fm. Consider a connected
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smooth curve X over k, and let L be a finite subset of X. By a cover of X with

branch locus L is meant a finite morphism Z -» A" which is étale over U = A" — L.

Following §2.7, we say that such a cover is a mock cover if the restriction of -n to

each irreducible component (or sheet) is an isomorphism.

Example 3.1. Take X = A1 = Spec &[x] and L = {0}. Let

Em = k[x,z]/(zm-xm)

and let Z = Spec Fm. Then Z —»■ A1 is an w-sheeted mock cover with branch locus

L. It is acted upon by Z/m, whose generator g operates by

z ~* ÇmZ-

This action permutes the sheets cyclically, sending the ith sheet

Zg,: z = S'x

to the (i + l)st sheet, i G Z/m. In particular, if k = C, then in the terminology of

§2.7, Z^>A' is a mock cover of (A1; 0) with data g G Z/m, under the analytic

topology.

More generally, let X he any curve, and x0 G X. There is an open neighborhood

U0 of x0 and an étale morphism <p: U0 —> A1 such that x0 = <p_1(0). Call such a <p a

local coordinate at x0. Let Z0 —» U0 be the pullback under cp of the above mock

cover Z —» A1. This is a Z/m-mock cover of U0 with branch locus {x0}. Over any

k, call such a cover a standard mock cover of (i/0, x0) with data g: z ~* Çz.

Proposition 3.2. Standard mock covers are Galois with cyclic Galois group, and

are independent of the choice of local coordinate.

Proof. Letting Fm be as in Example 3.1, there is an inclusion

a:Em^k[x,u]/(um-l)

defined by z ~» ux, x ~* x. There is also an isomorphism

/: k[x, u]/(um - l)^Â:[x]m = k[x] X • • •  Xk[x]

defined by

fix, u)~>(f(x, I), fix, $),... ,/(x, r-%

with inverse J given by the Fourier inversion formula:

m-\

(/o(4---./m-,W)- 2
¿ = 0

Thus

£„«/-' °«(FJ
C m-1

-    i/o. • - • >/«-i) e M*]m: *'l 2   r^ for 1< / < m
{ 7=0

Under this isomorphism, z e Em corresponds to the w-tuple (x, fx, . . . , f m~xx).

Now if Z0 = Spec S —* U0 = Spec R is an arbitrary standard mock cover of

degree m, and if the branch point x0 corresponds to the maximal ideal m c R, then

~ 2 r%(x)
m
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we may identify

S = {(/o, ..•»/„_,) G Rm: 2 tig S m' for 1 < i < m).

This proves the second assertion.

For the first assertion, observe that

GalZ0<^GalA0u",^Sm,

the symmetric group on {0, 1, . . ., m — 1}. Here the action of 9 G Sm is given on

the ring level by

(/o> • • • >/m-l) ~*(/é>(0)> • • • >/#(m-l))-

The generator of Z/m c Gal Z0 corresponds to the cyclic permutation

(0, 1, . . . , m — l) G Sm, and we are reduced to showing that every element of

Gal Z0 corresponds to a power of this cycle.

The element x G k[x] c R lies in m — m2, and the w-tuple (x, fx, . . . , fm_1x)

is in the ring S. If a permutation 9 G Sm belongs to the Galois group, then

({'\f^.^-^)es.

Thus S^To' $~ij+9(J)x lies in m', hence equals 0 for / > 1. The result now follows

from the

Claim. If 9 e Sm and ^J~x $m+9(J) = 0 for all I < i < m, then 9 is a power of

the cycle (0, 1, . . . , m - I).

Proof of Claim. The group G generated by f is cyclic of order m, and its

characters are

x,:r~»r,      / = 0, ...,m~ 1.

The function T: G —> k defined by T(ÇJ) = f *w is a class function, as G is abelian.

Now T is orthogonal to Xo since 9 is a permutation, and T is orthogonal to

X2> • • • > Xm-i by hypothesis. Thus T = Xxx for some X. So X = F(l) = fy° for some

fixedy'0, or in other words

0(J) =j + Jo   (mod "»)•

This proves the claim, and the proposition.    □

As a consequence of Proposition 3.2, the data g G Galj, Z0 is well defined on

the isomorphism class of a standard mock cover Z0 —> U0.

3.3. Let A" be a curve over k, L = {*,, . . . , xr}, and £/ = A" - L. Let Z -> X be

a principal G-mock cover with branch locus L. Its sheets may be labelled by the

elements of G so that h G G sends Zg to ZAg; here the "identity sheet" may be

chosen arbitrarily. Let x* be the point on Ze over x,, and for each y choose an open

neighborhood L, of x, which contains no other x,. The fibre of Z over Uj is a

G-mock cover branched only at xy; consider its connected component containing

xj*. This is an L-mock cover, where 7, c G is the inertial subgroup of x*. Suppose

that it is in fact a standard mock cover (so that, in particular, I. is cyclic), say with

data dj e Ij. If this is true for all y, call Z —> X a locally standard mock cover of

(A"; x) with data d = (dx, . . . , dr) G Gr. If k = C, then under the analytic topol-

ogy, Z —» X is an analytic mock cover of (A; x) with data d (cf. §2.7).
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Proposition 3.4. Let X be a curve over k, x = (x,, . . . , xr) an r-tuple of points of

X, G a group of order N, and dx, . . . , dr elements of G of orders prime to p. Then

there is a locally standard G-mock cover of (X; x) with data d = (dx, . . . , dr), and it

is connected if and only if the djs generate G.

Proof. Let Em he as in Example 3.1. There is an inclusion of /c[x]-algebras

given by the composition of the inclusion

Fm -* k[x, «]/ (um — 1);        z ~* ux,

with the isomorphism

k[x,u]/(um - l)-*k[x]m;

fix, «)-(/(x, i),/(x, o,. •. ,/(*, r-%

The image is acted upon by Z/m via cyclic permutations of the coordinates.

Now for 0 < y < r, let w, be the order of d-. For each g G G, the inclusion

Z/mj "H> G;        i ~» gdj,

induces, via extension by 0, an inclusion of &[x]-algebras

/,: *[*]"» -, k[x]G

where k[x]G m k[x]N is the algebra of maps G -» k[x]. Let Ed he the subalgebra of

k[x]G generated by the images of ¡pm(Em) under the Igs, as g ranges over a set of

left coset representatives of the subgroup generated by d-. Then Spec Ed is a

(disconnected) G-mock cover of (A1, 0) with data dj. The action of any g G G on

the cover is given by permutation of the coordinates according to left multiplica-

tion by g.

Next, for each y, choose a Zariski open neighborhood t/- = Spec Rj of xy in X

and a local coordinate <jp,: t/7-—»A1, as in 3.1. Write U — X — L, where L =

(x,, . . . , xr}. Let & be the unique coherent sheaf of ©¿--algebras on X satisfying

(i)&(Uj) = <P*(E¡i)c:(Rj)G;

(ii) &(V) = RG for V = Spec R c U;

(iii) the restriction map from &(Uj) to &(Uj — {x,}) is given by the natural

inclusion.

Let Z =Spece &. Since 6E is a subsheaf of 0£, Z is dominated by Xuc, and

thus is a mock cover. Since g G G acts over every patch by permuting the sheets

according to left multiplication by g, this action is also defined globally. The data

for the Spec Eds show that Z—>A" has the correct data. Finally, Z—»A" is

connected if and only if the d/s generate G, since sheet g intersects precisely the

sheets of the form gdj.    □

For examples of locally standard mock covers see §6 of this paper, and §3.5 of

[8].
3.5. We wish to deform a mock cover having prescribed data into an algebraic

family of covers which, in the case k = C, is an analytic Hurwitz family with that

data. Let A be a curve of genus g, x = (x,, . . . , x„+2g) G X"+2g — A, and write
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s = (xn+x, . . . , xn + 2g, x,, . . . , xn+2g). Let G be a group of order N, and suppose

d e Gn+2g is tame—i.e. its entries dj are of orders m- prime to the characteristic.

The problem is then to find a quasi-finite generically étale morphism of pointed

schemes (H, h0) ̂ > (Xn+4g, s) and a G-cover W^> X X H such that

3.6. (i) the fibre of W over h0 is a mock cover of (A"; x) with data d, and

(ii) the fibre of W over any point h G H is a cover of X branched at x,,..., x„

and at the coordinates of Tr(h).

Example 3.7. (a) Z-»A' be the standard w-cyclic mock cover of Example 3.1.

This may be completed to a standard mock cover Z of (P1, x = 0) with the same

data, by taking the normalization of P1 in Z. Now define a family W of covers of

P1, parametrized by the r-line, given (over A1) by

zm = x(x - t)m~x

with group action g: z ~* fmz. This family satisfies conditions (i) and (ii), with

H = X = P1. If k = C, then its normalization is, under the analytic topology, a

Z/w-Hurwitz family for (P1, x = 0) with data g. To see this it suffices to show that

the fibre Z, over / = t0 is a slit cover with data g. This follows from the fact that a

counterclockwise loop around x = 0 of radius r < t0 (resp. r > t0) lifts to a path

from (x,, zx) to (x„ fz,) (resp. to (xx, z,)).

(b) Slightly more generally, let G be a group of order N and g G G of order m.

Relative to the local coordinate x, the locally standard G-mock cover Z' of

(P1, x = 0) with data g is a disjoint union of N/m copies of the Z/w-mock cover

Z —» P1 in part (a). The disjoint union W of N/m copies of the Z/m-family W (of

part (a)) contains Z' as the fibre over r = 0, and inherits its G-action. Reasoning as

in (a), the normalization of W is, in the case k = C, an analytic Hurwitz family

with group G and data g.

For a more general X, take a system of local coordinates <p,: U-—*Al at

x,, . . . , xn + 2g, as in the proof of 3.4. Let

S « UH+l x • • • X Un+2g x Ux x • • • x Un+2g c Xn+4g

and let

$:9„+1 X • • ■  X<p„+2g X <p, X • • •  x<pn + 2g:S^A"+4g,

where we regard A"+4g = Spec A,

A = k[rn + x, . . . , Tn+2g, tx, . . . , r„+2gJ.

We then make the following

Definition 3.8.  Let   W-> X X H he a G-cover and (H, h0)->(Xn+4g, s) a

morphism satisfying (i) and (ii) of 3.6. Let W} ̂> U} X S be the pullback, under

<Pj X <I>: Uj X S -» A1 X \"+4g, of

[Spec^[x,z]/(z^-x(x-^1)r/m/

fory < n, and of

[Sped[x, z]/ (z-» - (x - r,)(x - «/*-')]"/B*
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for/ > n. Suppose W and Wj agree over an étale neighborhood of (xy, s). Then

W —* X X H is an (algebraic) Hurwitz family for (A"; x) with data d.

That such a family exists, and is essentially unique, will follow from Theorem

4.2.

4. A deformation theorem. In this section we prove a deformation theorem for

covers of smooth proper A>schemes. Namely, suppose given a cover Z —» X, a

Zariski open covering {Uj} whose pairwise intersections avoid the branch locus,

and a collection of covers Wj, —» U] X S which locally deform Z -^ X. Then there

exists an essentially unique cover W ^> X X H which deforms Z —» X and agrees

with each Wj locally in the étale topology.

The main ingredient in the proof is Artin's Algebraization Theorem [1]. Let k he

a field or an excellent Dedekind domain (e.g. a complete discrete valuation ring).

Let S he a scheme which is locally of finite type over k, and F a contravariant

functor from S-schemes to sets. If T = Spec B is an affine S-scheme, write F(B)

for F( T). Assume that F is limit preserving, i.e. F commutes with direct limits on

the ring level. Let B be a complete noetherian local 0S-algebra.

Theorem 4.1 (Artin's Algebraization Theorem). Let £0 G F(k) and let | G

F(B) be a deformation of £0. Suppose that the formal deformation \ corresponding to £

is versal.

(i) i is algebraizable; i.e. there is a deformation £ G F(T) of \, for some S-scheme

T of finite type (with £0 corresponding to a point t of T);

(ii) If£ determines \ uniquely, then £ extends £, and £ is unique up to pullback by an

étale neighborhood of (T, t);

(iii) If B is of the form 6Yo,,for Y an S-scheme of finite type, then (T, t) in (i) may

be taken to be an étale neighborhood of ( Y, y).

Proof. Parts (i) and (ii) are Theorems 1.6 and 1.7 of [1], and part (iii) follows

from the remark after the statement of Theorem 1.7.    □

Let k be as above, and Z -h> X a cover of a smooth noetherian proper A>scheme.

Let {Uj} he an open covering of X, such that Z is unramified over U¡ n Up for

i =£j. Let (S, s) be a pointed A>scheme of finite type, and Wj,—* Uj: X S be covers

with branch locus Dj. Let D be the closure in X X S of the union of the DJs.

Suppose that the fibre of Wj over Uj X {s} is isomorphic, as a cover, to Zu —> IL.

We then have the following deformation theorem:

Theorem 4.2. Under the above hypotheses, there is an étale neighborhood (H, h) of

(S, s) and a cover W -* X X H branched only over the pullback of D, such that

(i) the fibre of W over h is isomorphic to Z —» A; and

(ii) Wj and W agree in an étale neighborhood of (X X S, (x, s)),for any x G IL.

Moreover, any two such W —» X X H agree over some common étale neighborhood

of the (H, h)'s.

Proof. We will first prove the theorem with (ii) replaced by the weaker

(ii)' The pullback of Wj to a cover Wj -> Í7, X H agrees with Wa -> U, X H

over the formal completion at Uj X {h}.
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The proof divides into several steps:

Step 1. W exists infinitesimally, near A X {s}.

We may assume that S is affine; say 5 = Spec A. For Y c X, let Yr = Y x

Spec^^/irQ and let Y be the formal completion of Y X S at Y X {s}. Similarly

denote fibres over Yr and Y. Write & = w„0z, &Jt, = TrtQWjr, (% = w*0^. We

claim that there is a unique sheaf &r of 0^ -algebras such that &r <S> 6X = & and

í£r| £¿,, = &j:r. To see this, observe first that the affine open subsets of the U/s form

a basis for the topology of A. Thus defining âr is equivalent to defining compatible

isomorphisms &ir(Vr)^> 8j,r(Vr) for V c Ut■ n c/, whose pullbacks to the closed

fibre are the transition functions for <£. Now the spectra of (£,.,.( K,.) and S>ir(K,) are

étale over Vr and thus are pullbacks of étale covers of V ( Vr -> V being radicial).

Hence the compatible isomorphisms can and must be defined by

&,r(Vr)^&(V)®6K=*&j,r(Vr).

This proves the claim and defines a covering Zr —» Xr satisfying (i) and (ii)'

infinitesimally.

The above reasoning also applies to an arbitrary Artin local fc-algebra B.

Namely, suppose that <QS s —> B is an algebra homomorphism, defining a morphism

of pointed schemes (T, t)-+(S, s), factoring through some Spec(0Sj/mr). Then

there is a unique cover ZT —> X X T satisfying (i) and (ii)', namely the pullback

Step 2. W exists over a complete local neighborhood of j in S, satisfying (i) and

(ii)'.
Let & = proj lim âr, which makes sense because the &/s are unique and hence

compatible. This is the unique sheaf of ©¿-algebras such that ¡3, <8> 6X = & and

(&\Uj = &j. Since X is proper, Grothendieck's Existence Theorem [6, 5.4.5] shows

that there is a unique coherent 0^.-algebra &' extending ¿E, where A" = X X

Spec 6Sj. This defines a scheme Z' =Spece   &' which is finite over A".

We next show that Z' -» X' is unramified away from D n A'. Any irreducible

component C of the branch locus must meet the fibre X X {s} since X is proper

over k. So C intersects some Ùj = Spec &x(Û/), and C n Ú c D}r n 1^. This

implies that C c D. Thus the branch locus is as claimed, and Z' -> A" is generi-

cally étale, hence a cover.

Step 3. W exists satisfying the theorem, with (ii)' replacing (ii).

Define the following functor F from 5-schemes to sets: F(T) is the set of

isomorphism classes of pairs ( W —> X X T,t), for which W -» X X T is a con-

nected cover, / G T lies over the base point s G S, the branch locus is the pullback

of D, and conditions (i) and (ii)' are met. The cover Z' —> X' in Step 2 defines an

element of F(0S f) which is an effective deformation of Z —> A", and every infinitesi-

mal deformation has been shown to factor through it. On the other hand, a

morphism (T, t) —> (S, s) factors at most one way through Spec 0Sj <LJ> S. Thus this

effective deformation is universal (as a formal deformation).

To check that F is limit preserving, let {5,},e/ be a filtered direct system of

A -algebras, and B = ind lim B¡. We want to show that F(B) = ind lim F(B¡). So let
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F= Spec B, and (W^> X X T, t) be an element of F(B). Since irm^w is a

coherent 0^- x r-module, we may write

© 6*xr(-«') -» ®®xxÂ-n) -* "*<V -*0.

If t/ = Spec Ä c X is a member of a finite affine Zariski open covering of X, then

the left-hand arrow above is given locally over U X T by a matrix over R ® B.

Since only finitely many elements are involved, it follows that the sheaf w,©^ is

actually defined over some B¡, i.e. W is the pullback of an element of some F(Bj).

Thus the hypotheses of Artin's theorem are satisfied. Let ( W —* X X H, h) be

the advertised algebraization, with (H, h) an étale neighborhood of (S, s) which

may be assumed connected. By construction W ^> X X H has the correct branch

locus, and satisfies (i) and (ii)' of the theorem. That it is essentially unique follows

from 4.1(h), whose hypothesis is satisfied because of Grothendieck's Existence

Theorem.

Step 4. W satisfies (ii).

Let W -» A X H be as in Step 3, and x a point of Uj C X. We have alreadyseen

that W and Wj agree over Up soüiey agree over the formal completion A" X S of

X X S at (x, s). That is, if A* X S is identified with the formal completion of

X X H at (x, Althen there is a (unique) isomorphism <p between the fibres of W

and Wj over Ujx S which extends the isomorphism between the fibres over

Uj X {s}. Moreover, the same is true if A" X S is replaced by any infinitesimal

neighborhood N —» X X S of (x, s), in which case the isomorphism for N is the

pullback of that for X x S.

So let S¡ = t/, X . S, and define the contravariant functor / from 5,-schemes to
J J K J

sets, sending T to the set of isomorphisms of covers WT^>(Wj)T. The previous

paragraph shows that the isomorphism <p above is a universal effective deforma-

tion. Reasoning as in Step 3, the functor I is limit preserving. The algebraization

theorem then yields an étale neighborhood of (x, i) in I X S over which W and

Wj agree.   □

Remark 4.3. Theorem 4.2 carries over from the category of covers to that of

principal G-covers. Namely, the functor F in Step 3 of the proof is altered by

demanding that W be equipped with a G-action which extends that of Z —» X and

is compatible with those of the W/s in an étale neighborhood of each (x, s). It then

yields an algebraic family W —> X X H with these properties.

Remark 4.4. Under the hypotheses of the theorem, suppose that each Wj is

ramified precisely over Z)-. Let DJ be the pullback of Dj to X X H, and let Dj be

the union of the connected components of DJ meeting Uj X {h}. Then the above

proof shows that W is branched precisely over the closure of the union of the Dj's.

In particular, assume that A" is a curve and Z> meets X X {s} transversally. Since

DJ-* H is proper, it has a well-defined degree, namely 1. Thus each fibre

Z, —> X X {/¡,} of W is branched over the same number of points, counting

multiplicity.

5. Algebraic Hurwitz families and the construction of covers. The existence of

algebraic Hurwitz families with prescribed tame data can now be shown. Let k be a
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field (resp. a complete discrete valuation ring), and let X and d G Gn+2g be as in

3.5.

Proposition 5.1. There is an algebraic Hurwitz family for (X, x) with data d. This

family may be taken to be proper over k if the characteristic (resp. the residue field

characteristic) does not divide the order of G.

Proof. By Proposition 3.4 there is a locally standard mock cover Z0 —» X of

(A", x) with data d. Let Wj—> U¡ X S be as in 3.8. Theorem 4.2 provides a

corresponding cover W ^> X X H, where (H, h) is an étale neighborhood of (S, s).

The conclusions of the deformation theorem show that W —> X X H is a Hurwitz

family with the desired data (under the G-action following from Remark 4.3).

If the order of G is prime to the relevant characteristic, then let H be the

normalization of Xn+4g in H, and let W be the normalization of A X H in W.

Both H and W are proper over k, since X is, and W satisfies 3.6(i). As the

ramification index over any component of A" X (H — H) must divide the order of

G, all such ramification is tame. Abhyankar's Lemma implies that there is a cover

H' -> H whose pullback V -> X X H' has the correct branch locus, and thus is a

complete Hurwitz family with data d.    □

In the case that k = C, this is indeed the algebraization of the construction of §2,

by the following analog of [5, Proposition 7.3]:

Proposition 5.2. If k = C, then the normalization of any complete algebraic

Hurwitz family for (X, x) with data d is, under the complex topology, an analytic

Hurwitz family for (X, x) with data d.

Proof. Let W' -* X X H' be the normalization of the given algebraic Hurwitz

family, and H the analytic Hurwitz space. Let H¿, H0 be their respective fibres over

Xn+4g — A. As every algebraic cover is also an analytic one, a function /0:

Hq ~» H0 is defined, with the property that for h G Hq, the fibre W'h is the cover

corresponding to f0(h) G H0. This function is continuous, by the obvious generali-

zation of [5, Lemma 1.7], and is in fact analytic, because of the diagram:

Hi * HQ

X«+4s - A

This map between covers extends to an/: H' —» H, over Xn+4g. Thus W' —» X X

//' is a component of an analytic Hurwitz family.

For 1 < y < n + 2g, let A, be the curve in xn+4g passing through the base point

í such that all coordinates but the y'th are held fixed. Let //, be the connected

component of the base point h e H in. the fibre over Xj, and let Wj be the fibre

over Hj. Apply the uniqueness part of Theorem 4.2 to Wj—> X X Hj and to

W' xAi Hj• -» X X Hj, where W' is as in Example 3.7(b). This shows that Wj is an

analytic Hurwitz family of (A; xj) with data dp its fibres over tj = yj being the slit

covers of (A; xy, yj) with data dy Hence for y = (yx, . . . ,yn+2g) sufficiently close

to  x = (x,, . . . , xn+2g),   the   normalized   fibre   of   If at   a  point   of  H  over
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(x„+1, . . . , xn + 2g,yx, . . . ,yn + 2g) is a slit cover of (A"; x; y) with data d. This

implies the result.    □

Corollary 5.3. Let Z —» X be a Galois G-cover of a Riemann surface X of genus

g, branched at L = {x0, . . . , x„}. Let d G Gn+2g be the corresponding data, relative

to a standard homotopy basis for X — L, and xn + x, . . . , xn + 2g any points in X — L.

Then any complete algebraic Hurwitz family for (X; xx, . . . , x„+2 ) with data d

contains Z —» X as the normalization of a fibre over (x0, . . . , x0).

Proof. By 5.2 and 2.5.   □

Suppose now that k is an algebraically closed field of characteristic p > 0, and

that A is a curve over k of genus g. We preserve the notation of §3.5. Corollary 5.3

then generalizes, providing the promised construction of covers:

Theorem 5.4. Let dx, . . . , d„ be elements of G, a group of order prime to p. There

is a bijection between

(i) Galois G-covers of X, branched at L = {x0, . . . , x„}, whose inertia! subgroups

over Xj are the conjugates of dj (for allj); and

(ii) G-covers of X which occur as the normalization of irreducible fibres over

(xQ, . . . , x0) G   xn + 4g    in    Hurwitz    families    with    tame    data    d =

(dx, . . . , dn, . . . , dn + 2g) e G"+2g such that the inertia! subgroups over x0 are the

conjugates of (dx ■ ■ ■ dn[dn+x, dn+g+x] ■ ■ ■ [dn+g, dn+2g])~x.

Proof. Let W —> X X H be a Hurwitz family as in (ii), with projection map

H^> X"+4g. Let Hj c H be the open subset m-\(X - {x,})"+4g). Then 3.8 implies

that for h G H,, the inertial subgroups in Wh over x, are the conjugates of dp Thus

the G-covers occurring in (ii) have the correct inertial subgroups over x,, . . . , x„

and hence occur in (i) (being connected and hence Galois).

The converse, in the case k = C, follows from Corollary 5.3. For general k, we

proceed in a manner similar to the proof of [7, XIII, Corollaire 2.12]:

Case I. Char k = 0. Let Z —> A be a cover as in (i). There is a subfield k0 of k, of

finite transcendence degree over Q, over which the cover and the x/s are defined.

Because of this finiteness, k0 can be embedded in C. Let k' be an algebraically

closed extension of k0 for which there are fc0-morphisms of k and of C into k'. By

[7, XIII, 1.14 and 2.9], the specialization morphisms from k to k', and from C to k',

are isomorphisms. Hence we may consider Z -^ X as a cover over C. As such it has

data, say d — (dx, . . . , dn + 2g), relative to some standard homotopy basis of X — L

over C. Let W —> A X H be a complete Hurwitz family for (A", x) over k with this

data. Again, there is an algebraically closed subfield k" of k over which the cover,

the Hurwitz family, and their branch loci are defined, and which includes into C.

By the same reasoning as before, W -» A X 77 may be regarded as a cover over C.

As such, it is a Hurwitz family with data d, and so contains Z -» X as a normalized

fibre at a point h G H over (x0, . . . , x0), by Corollary 5.3. by the assumptions on

k", his a A:"-valued point of 77. By the specialization isomorphisms, the fibre over

the corresponding k-vahxed point is the original k-valued cover Z —» X.

Case II. Char k = p ¥= 0. There is a complete discrete valuation ring R with
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residue field k and fraction field K of characteristic 0. The ring R contains

elements l/n and f„ forp {n, by Hensel's Lemma [10, p. 230]. By [7, III, 7.4], the

curve X is the reduction of a complete smooth curve XR over R. Let K be the

algebraic closure of K, and X% the fibre over K.

Let Z -» A be a cover as in (i). The appropriate specialization morphism from k

to K is an isomorphism [7, XIII, 1.14 and 2.9] because p { # G, so that Z—»A"

corresponds to a cover Z^ —» A"jf over AT. By Case I, the latter cover occurs as a

normalized fibre over (x0, . . . , x0) in a Hurwitz family for (A*, x) over K, with

some data d. Let WR -h> Xr X HR he a complete Hurwitz family over R with data

d; this exists by Proposition 5.1. The fibre over A: is a Hurwitz family over k with

data d, and similarly for K. Since the specialization map is an isomorphism, the

result follows.    □

Let X and L be as in 5.4. The set of isomorphism classes of pairs (G, d), where

d G Gn + 2g and/?} # G, form an inverse system S of groups which is isomorphic to

the inverse system C of Galois groups of pointed /»'-Galois covers of U = X — L.

The Hurwitz family construction allows us to state such an isomorphism algebrai-

cally:

Corollary 5.5. Complete Hurwitz families Wd —> X X Hd for (X, x) may be

picked, one for each choice of p'-data (G, d), so that they form an inverse system,

indexed by S. This done, there exist inverse systems of points hd G Hd over

(x0, . . . , x0) satisfying (ii) of 5.4. Any such inverse system defines an isomorphism

between S and C, and thus an isomorphism between wf (A — L) and the free profinite

p'-group on n + 2g generators.

Proof. Linearly order the elements of S so that (G',d') precedes (G, d)

whenever (G', d') is a quotient of (G, d). Similarly order a set of choices of

Hurwitz families, and pull back each Hd in turn so that it dominates each Hd. with

lesser index. This produces a compatible set of Hurwitz families, giving an inverse

system, rigidified by the base point (on the identity sheet) of the mock fibre.

Inverse systems of points hd exist for k = C by Proposition 5.2 and the proof of

Proposition 2.5—at the very least, there is one for each standard homotopy basis of

(U, u). The specialization morphisms invoked in the proof of 5.4 show that these

also exist for arbitrary k. Finally, any such inverse system defines, for each d, an

isomorphism between the finite systems Sd = {(G', d')\d' < d] and Cd = {the

Galois group of (Wd)h —> X\d' < d). This increasing set of isomorphisms defines

an inclusion of inverse systems 5 —» C. This inclusion is actually a bijection, and

hence an isomorphism, because for each G, the number of pairs (G, d) in S equals

the number of G-Galois covers of U.    □

Remark 5.6. If G is an arbitrary finite group, and d G Gn+2g is tame, then the

Hurwitz family H/_> x X H of 5.1 may still be completed to a proper morphism

W -h> X X H. If this has only separable ramification, then [2, Theorem 1.9] may

replace Abhyankar's Lemma in the proof of 5.1, yielding a complete Hurwitz

family. The specialization morphism arising in Case II of the proof of 5.4 is still an

inclusion, though not an isomorphism (by the results in [7] cited in the proof). The
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Hurwitz family would therefore contain, as a normalized fibre over (x0, . . . , x0), a

cover as in (i) of 5.4. Unfortunately the completion of the original Hurwitz family

will sometimes be inseparable over H - H, and indeed not all characteristic 0

covers withp'-ramification descend to characteristic p.

5.7. Another possible application of the above algebraic Hurwitz family con-

struction is to the moduli problem for curves. Mumford suggests [11] that one

approach to studying the moduli spaces Mg for curves of genus g might be to

describe explicitly the Hurwitz family W-^ HNr of A/-sheeted simple covers of P1

branched at r points (cf. §2.3). This is because every curve of genus g arises as a

(g + l)-sheeted simple cover of P1 branched at 4g points. Indeed, Fulton [5] uses

this fact to show that Mg is irreducible, knowing that HNr is (provided p \ N\). In

our context, W ^> HNr is an A/-sheeted, non-Galois quotient of a Hurwitz family

with group SN (the symmetric group) and data

((12), (13), . . . , (UV), . . . , (UV)). (5.8)

Such a family exists by 5.1. Alternatively, Theorem 4.2 may be applied directly to

the iV-sheeted simple mock cover whose sheets intersect in pairs over the various

branch points, as indicated by (5.8). Either way, the resulting cover may be

completed, as in 5.1, provided that/» (A/!. This gives Fulton's Hurwitz family of

simple covers (or possibly a cover of it), whose parameter space is a cover of the

completion of M„.

6. An example. In this section a simple example is given to illustrate the algebraic

construction of Hurwitz families and covers given above. Let k be an algebraically

closed field of characteristic ¥= 2, 3, let f = f6 be a primitive sixth root of unity,

and consider the points x0 = 1, x, = 0, x2 = oo in P}. Let G be the cyclic group of

order 6, with generator g. We will construct the Hurwitz family for (P1 ; 0, oo) with

data (g, g3), and use it to construct the cover of P1, branched over the x,'s, with

this data.

First, we construct the G-mock cover Z0—>P' branched at {0, oo}, with data

(g, g3), as in Proposition 3.4. Write P1 = Ux u U2, where Ux = Spec k[x], U2 =

Spec k[x], and xx = 1 in Ux n U2. Over Ux, Z0 is given by z6 = x and over U2 by

w2 = x2, v3 = I. Choosing the set {l,g2, g4} of coset representatives of the

subgroup generated by g3, and {1} for that generated by g, we find that on sheet

g',

z = r'x;    w = (-l)'x,    u = f2i.

Thus

z = xWj;    w = x4z3,    v = x2z2. (6.1)

Let Zr he the standard infinitesimal deformation of Z0 over

Spec k[tx, t2]/(tx, t2)r. Over (Ux)r, Zr is given by

z6 = x(x - tx)5 (6.2)

and over ( U2)r by

w2 = x(x-?2),       o3-l. (6.3)
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The patching is uniquely determined by the condition that it extend that given in

(6.1). Thus

w(l - xtxf/2 = x4z3(l - xt2)x/2;        v(l - xtx)X/Z = x2z2, (6.4)

where (1 — x/2)l/2 = 1 — x/2/2 + • • • denotes the unique square root of 1 — x?2

in k[tx, t2, x]/(tr) which is congruent to 1 modulo (/,, t2), and similarly for the

other radicals.

Expressions (6.2)-(6.4) defines a compatible system of infinitesimal deforma-

tions, and hence a formal deformation. But they do not directly define a deforma-

tion parametrized by Spec k[[tx, t2]], because the radicals in (6.4) do not exist in

k[[tx, t2]][x]. Alternatively, the problem is that the local sections z, w, v do not

define global sections over P1 X Spf k[[tx, t2]], even after arbitrarily high twisting.

The proof of Grothendieck's Existence Theorem, though, shows that there are

enough global sections to span the formal module, after some fixed amount of

twisting. In this case these can be taken to be

z, = z(l - xi2)1/2,       z2 = z2 (6.5)

on Ux, and

zx = wv2(l - xtx)5/6,        z2 = v(l - x/,)V3 (6-6)

on U2. These local sections exist in the formal module, because the radicals exist in

M-xHI'i* '2]] an0, ^PHIl'i» '2]]- Over Ux, z, and z2 generate the formal module

because (1 - xt2)x/2 is a unit; similarly z, and z2 generate over U2, observing that

zxz2 = w(l - xtx)5/2. These sections satisfy

z\ = x(x - tx)5(l - xt2)3,        z¡ = x(x - fj)5 (6.7)

and

¿t = x3(l - xtxf(x -12)\       z\ = (1 - x/,)5 (6.8)

with patching given by

¿"j = x2z,,       z2 = x2z2. (6.9)

Expressions (6.7)-(6.9) also define an (effective) deformation over k[[tx, t2]], and

indeed an algebraic deformation over k[tx, t2]. (Observe that the original sections

z, v, w no longer exist.) A given fibre is branched at x = 0, 00, i,, l//2, and the

fibre over (tx = 1, t2 = 1) is given over Í7, by

z\ = -x(x - l)8,        z\ = x(x - l)5.

Its normalization, which is the normalization of

z6 = x(x - l)2,

is the desired cover.

M. Fried suggests that the algebraic construction of Hurwitz families may yield

an algorithm providing calculations as above for arbitrary tame group data. Such

an algorithm would give explicit equations for all tamely ramified covers of curves,

and presumably also for moduli spaces for curves (cf. §5.7). This possibility seems

to rest upon whether Grothendieck's Existence Theorem and Artin's Algebraiza-

tion Theorem are "algorithmic" in nature.
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