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THE CATEGORY OF £>-COMPLETELY REGULAR SPACES

IS SIMPLE

BY

N. C. HELDERMANN

Abstract. In a recent paper H. Brandenburg characterized the objects of the

epireflective hull of all developable spaces-that are those spaces which are homeo-

morphic to a subspace of a product of developable spaces-by intrinsic properties.

It is shown here that these spaces, called ^-completely regular, can be generated

from a single second countable developable space D which has the same cardinal-

ity as the reals. As an application of this result we obtain a new characterization of

Z>-normal spaces analogous to Urysohn's lemma and a new (external) characteriza-

tion of perfect spaces (meaning every closed set is a Gs).

1. Introduction. Completely regular spaces are generated by the class ^P of

pseudometrizable spaces in the sense that every completely regular topology is

initial with respect to all continuous mappings into objects of 9. In fact, as is

obvious from the definition of a completely regular space, there is a single object in

■iP, namely the unit interval with its natural topology, that generates CompReg, the

category of completely regular spaces.

In [2], [3] and [4] Brandenburg enlarged this framework by substituting for 91 the

class ^ of developable spaces and characterized those spaces, here called D-com-

pletely regular spaces, which are generated by <>¡). In further papers [2], [5], [6], [7]

he showed that a number of theorems valid in the old framework, e.g. Urysohn's

and Nagata's metrization theorems, have nice counterparts in the new one. How-

ever, the question whether the analogy between these two settings would go so far

as that there exists a single developable space generating all ^-completely regular

spaces remained open (see Problem 5.3 in [4]). We give here an affirmative answer

by showing that it is even the unit interval that can be equipped with a developable

and second countable topology that generates all Z>-completely regular spaces. As

an application of this result we derive new characterizations for Z>-normal spaces,

which were introduced in [2] and [5].

2. Notations and preliminaries. Topological spaces will simply be called spaces

throughout this paper. Together with the continuous mappings they constitute the

category Top. A subcategory % of Top is called epireflective, if it is closed with

respect to the formation of products and subobjects. Here, all subcategories are

assumed to be nonempty, full and isomorphism-closed. Every subcategory % is
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438 N. C. HELDERMANN

contained in a smallest epireflective subcategory, its epireflective hull, which we

denote by EH(3C). In accordance with many authors (see e.g. [9], [14], [15]) objects

of EH(5C) are called %-completely regular. They are precisely those spaces that are

homeomorphic to a subspace of a product of % -objects.

A subcategory % of Top is called bireflective if it is closed with respect to the

formation of initial sources, i.e. whenever X carries the initial topology with respect

to a family (f¡: X -^ K¡)ieI of maps into % -objects, then X belongs to %. Every

subcategory % of Top is contained in a smallest bireflective subcategory, its

bireflective hull, which we denote by BH(9C). A space X belongs to BH(9C) iff X is

initial with respect to the family of all continuous maps into % -objects, i.e.

whenever a subset A of X is closed in X and * G X \ A, then there exist finitely

many % -objects Kx, . . . , Kn, open subsets B¡ c K¡ for each / and continuous

functions/: X —> K¡ such that

xefxx[Bx]n ■■■ nf-x[Bn] cX\A.

A subcategory % of Top is called simple, if there exists a space E such that

EH^}) = %.

The reader will find more details on these categorical aspects in [11]. A space X

is called developable [1] if there is a countable family (<$,),eN of open covers of X

such that {St(*, &¡)\i G N} is a neighborhood base for every * G X. We denote the

subcategory of all developable spaces by ^. A base £ for the closed sets of a space

X is called Gs-base, if for every B G £ there exists a countable family (Ä,),eN C £

with X \ B = U ,eN B¡. In [3] Brandenburg characterized ^-completely regular

spaces by means of Gs-bases: A space X is Z)-completely regular iff X has a

G5-base. The subcategory of all D-completely regular spaces (resp. T^-spaces) is

denoted by ^D-CompReg (resp. 'î-CompReg-l).

3. The class of £>-completely regular spaces is simple.

3.1. We denote by N the positive integers, by N0 the nonnegative integers, and by

AT the set {-1} U N0 u (N0 X N) U (N0 X N X N) u .... Since K is countable

there exists a bijection <¡>: K^>N. Define D := NN u {a, b), where NN = {/:

N —> N), a ¥= b and a,eí NN. For every n G N the nth projection pn: NN -» N is

defined by p„(f) = /(«). We consider p„_1 in a natural way as a correspondence

from N too. This allows us to define the following countable family of subsets of

D:

A(-l) := {a},       A(0) := {b},

A(nx) := {b} U P*-i)[{h • • •, «i}]    for every ai, G N.

Assume now that A(nx, . . . , nk) has been defined for (nx, . . . , nk) G K \ {-1}. We

then proceed inductively by setting

A(nx, ...,nk, nk+x) := ({a} u />*„„.-..^U1' • • • • "*+i}]) x A(*i> •••-"*)

if k is odd and nk+x G N, and

A(nx, ..., nk, nk+ï ):-({*} U P^„„ ...,„k)[{h ■ ■ ■ > nk+x}])\ A(nx, . . . , nk)

if k is even and nk + x G N.
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Let 6D' denote the family of all A(nx, ... , nk) obtained in this way and ^ all

finite unions of elements of 6D'. Clearly, ^ is a base for the closed sets of a

topology on D. The space thus obtained is denoted D.

3.2. Theorem. D is a second countable developable space.

Proof. It is well known from [5] that every incompletely regular second

countable space is developable. Since ^ is countable it suffices to show that every

element of 9) is a Gs-set. But this follows easily from the fact that every

A(nx, . . . , nk) is a GÄ-set and finite unions of Gs-sets are again Gs-sets.

We will henceforth make no notational difference between the space D and the

underlying set of D.

3.3. Remarks. (1) To provide more insight into the structure of D we give here

an explicit construction for a development of D:

For n e N0 define &(n) := {D \ A(n), D \ ^(-1)} and for (nx, . . . , nk) e K,

k > 1, we set

&(nx, .. ., nk) :- {D\ A(nx, ...,»*), D\ A(nx, ..., nk_x)}.

Let *: N-> K \ {-1} be a bijection. We then define £(1) := &(*(l)), and if, for

n e N, £(«) is given, we set

£(« + 1) := £(«) A &(*(n + 1))

where A denotes elementwise intersection. It is easily verified that the countable

family ß = {ñ(n)\n G N} is a development for D.

(2) D is an Ä0-space' since it is developable. However, D is not T0: Define /:

N -> N and g: N -> N by

f,     , .,   u [2    ifn = <b(-l),
m :=   2   un = «H-D,   and  g{n) := L   i{n=  (2);

( 1     otherwise,
1     otherwise.

Then the only difference between / and g is their value in the <#>(2)th component.

Let us assume that there exists an open set B such that f & B and g G B. We may

assume that

B = D \ U {A(k)\k e K', K' c K finite).

This implies/ G A(k) and g $ A(k) for some k e K. But the only A(k.ys cutting

into the $(2)th component are of the form A (2, n) for n G N. Hence, there is n G N

with f e A(2, n) and g <î A(2, n). Since D \ A(2) = (J nSN A(2, n) this implies

/ £ A(2)-a contradiction because/ e p^_X)(2) c A(2). The same argumentation is

still valid if the roles of / and g are interchanged.

3.4. Lemma. Let X be a space, and A, B two disjoint closed sets with the property

that there is a countable family £ of closed sets satisfying the following conditions:

(\){A,B) c£,

(2) for every 5 G £ there is a family (B(n))nfEN C £ with

'A topological space (X, cl) is called R^-space or symmetric if x G cl{y) implies .y G cl{*} for all x,

y ex.
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X\B=  IJ {B(n)\n G N),

(3) £ is closed with respect to finite unions.

Then there exists a continuous mapping f: X —»D such that f~x(a) = A andf~x(b) =

B.

Proof. For every («„ . . . , nk) e K = {-1} U N0 u (N0 X N) u (N0 X N X N)

U • ■ • we define a set C(nx, . . ., nk) G £ by induction. Define C(-l) := A and

C(0) := B. According to condition (2) there exists a family (B(n))nfEN c £ with

X \ A = U {B(n)\n G N}. Define for n G N C(«) := B u U {5(/)|/ < n}. We

assume that C(«„ . . . , nk) G £ is given for («,, . . ., nk) G AT \ {-1}. Then there

exists a family (D(n))nlEN c £ such that

X \ C(nx, ...,nk)= U {D(n)\n G N}.

Define, in case k is odd,

C(«„ ...,nk, nk + x) :=AUU {D(l)\l < nk+x],

and, if A: is even,

C(nx, ...,nk, nk+x) := B U U {L>(/)|/ < /i*+1}-

For * G X let AY*) := {(nx, . . . , nk) G A"|* G C(/i„ . . . , nk)}. Recall that for

every k G A a set A(k) c D was defined in 3.1. We assert now, that for every

* G X the set

S(x) :=  n {A(k)\k e K(x)}

is nonempty.

Let x e X be arbitrarily given. If * G A, then we clearly obtain S(x) = {a}, and

similarly S(x) = {b} if * G B. We assume * G X \ (A u B). Define

*m,nW := {(".. • • • >nk) e ay*)K = 1 or* £ C(«„ . . . , nk_x)}.

Note that C(«,, . .., nk) C C(nx, . . . , ñk) whenever nk < ñk. If («,, . . . , n<:_1, nk)

e Kmia(x) and (/i„ . . .,nk_x, ñk) G AT^Í*), this implies nk = h~k. Therefore, the

mapping g: N —» N, defined below, is well defined:

nx,     if / = <i>(-l), where nx denotes the unique element ofATmin(*)

, .v ._ having just one component,

nk,    if i = <í>(«„ . . . , nk_x) and (nx, . . . , nk) G Ä^*) and A: > 1,

. 1,      otherwise.

We prove by induction

g G A(nx, . . . , nk) «=> («„ . . . , nk) G ÄT(*).

Assume k = 1. Then (n,) G ÄT(*) implies * G C(nx); hence g(<K-l)) < Mi and

we obtain g e A(nx). Conversely, g G A(nx) implies g(<K~l)) < "i> and we con-

clude (n,) G K(x).

Assume k > 1 and the assertion to be true for all I < k. If («,, . . . , nk) e

AY*),    then   * G  C(nx, . . . , nk) c X \ C(nx, . . . , nk_x).    Hence,   * S

C(nx, . . . , nk_x) which implies («,, . . . , «/t.,) ^ K(x).  Using the assertion for

k - 1 we obtain g £ /í(«i, • • • , «*_i). Since g(<p(nx, . . . , nk_x)) < nk this implies
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g G A(nx, . . . , nk). Conversely, we assume g G A(nx, . . . , nk) which yields

g(<K«i, • • ■ , «*-i)) < nk and g G A(nx, . . . , nk_x). Therefore, («„ . . . ,nk_x) &

K(x) which implies * G C(nx, . . . , nk_x). Since X \ C(nx, . . . , nk_x) =

U/eN C(nx, . . ., nk_x, I) there exists / G N with * G C(nx, . . ., nk_x, I). Hence

g(<K/i„ • • ., nk_x)) = min{/ G N|* G C(n„ . . . , nk_x, I)}

which yields * G C(nx, . . . , nk), i.e. («,, ..., nk) G AY*). It is now obvious that

S(x) ¥= 0 since g G S(*).

We are now prepared to define a mapping/: X -^ D by assigning to every * G X

an arbitrary element /(*) from S(x). To show that / is continuous it is evidently

sufficient to show that for every («„ . . . , nk) G K, f~x[A(nx, . . . , nk)] is closed in

X. Therefore, let (//„..., nk) G Abe given. We show that

f-x[A(nx, . . . , nk)] = C(nx, . . . , nk),

which implies immediately that / is continous since all C's are closed. Let

* G C(nx, . . ., nk) be given. Then

/(*) G S(x) = D {A(ñx, ..., ñ,)\x e C{ñx, ...,«,)} c A(nx, ..., nk);

henee * G f~x[A(nx, . . . , nk)]. Conversely assume * G f'x[A(nx, . . . , nk)], i.e. /(*)

G A(nx, . . . , nk), and, moreover, * £ C(nx, . . . , nk). Then there exists / G N such

that * G C(nx, . . . , nk, i) in case nx > 0, or * G C(i) in case nx = -1. This implies,

as shown above, /(*) G A(nx, . . ., nk, i) in case nx > 0 and /(*) G A(i) in case

n, = -1, but in any case a contradiction to /(*) G A(nx, . . . , nk) since

A(nx, . . . ,nk) n A(nx, . . . , nk, i) = 0 (^(-1) n A(i) = 0, respectively). The last

argumentation yields, in particular, f~x(a) = f~x[A(-l)] = C(-l) = A, and simi-

larly f-\b) = 5.

3.5. Theorem. The class of D-completely regular spaces is simply generated by D,

i.e. EH({D}) = öD-CompReg.

Proof. Since D is not T0, the epireflective hull and the bireflective hull of D

coincide [12], [13]. We show that, for an arbitrary L>-completely regular space X

and for * G X \ D, where D is closed in X, there exists a continuous mapping /:

X -+ D and an open set V in D such that * G /"'[ V] c X \ D.

Choose a Gs-base £' for the closed sets of X. Then E := AV^' 's a Gi-base

which is closed with respect to finite unions, where /\\/£' denotes the family of

all finite intersections of finite unions of elements of £' [2, 3.1.17]. There exists

A e £ such that x e X \A e X \ D, and, since there is a family (B(n))nSN c £

with U {B(n)\n G N} = X \ A, B G £, such that * G B and A n B = 0. Clearly,

the conditions of Lemma 3.4 are fulfilled for A, B and £. We conclude therefore,

that a continuous map/: X -» D exists, fulfilling/"'(a) = A and f~x(b) = 2?. Since

K := D \ {a} is open, we obtain * G fx[ V] = X\A<zX\D.

To show the converse assume that X is initial with respect to the family of all

continuous maps to D. We constructed in 3.1 a family ^ of subsets of D and we

remarked in 3.2 that ^ is a Gs-base for the closed sets of D. Define

$' := {f~x[A]\A e 6D,/: X^D continuous} and $ := AV$'- We show that
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S is a Gibase for X: Clearly, S is a base. Let B G % be given. Then B =

fi ?_, C,. and C, = öJeM, Du for ail / G {1, ... , h), where M, - {1,..., w,} c

N and Z),-, = fy\Ay] for some continuous functions/.,: X-*D and ^„ G <>D. An

easy computation yields

b = U {/>„, n • • ■ nArt.It/i, ...,/„) g m, x •• • xm„).

This implies

* \ B =  fi {(* \ DXj) u • • • U (X\ Dnjn)\(jx, . . . ,jn) G Mx X • • • XM„}.

Since there exists for every /' G {1, . . . , n) and every j G M¡ a countable family

(E(i,j, k))k<EN c ty such that D \ Atj = U *eN E(i,j, k) we can write

X\B- H i(U^[^OJi.*)])u--- u(U f¿[E(n,j„,k)])\

(/„... ,y„) G M, X • • •  XM„J.

Now define L := Mx X ■ ■ ■ X M„ and for / = (/'„ . . . ,jn) G L

*"(',*) := f¿[E(hJv V] U • • • UJ5|[£(ii,y.,.*)].

Note that F(l, k) G V ® '• The above expression can now be reformulated as

x \ b = n { u f(i, m e l) = u n m, g(i)\
UeN J       |6N¿   leL

Since L is finite we obtain D /ez. i"(/, g(0) G 'S for every g G NL. Hence, A' \ B is

expressed above as a countable union of elements of %. This proves that % is a

G5-base and that X is incompletely regular.

4. The class of Z>-completely regular T,-spaces is simple. For an Ä0-space X and

*, y G X we define * ~ v iff cl{*) = cl{y). Then ~ is an equivalence relation

and the set uX of equivalence classes equipped with the final topology with respect

to the natural mapping co: X -^ uX is usually called the Tx-reflection of X. Since D

is developable, coD, which we denote henceforth by D„ is a developable second

countable 7\-space [16].

4.1. Theorem. The class of D-completely regular Tx-spaces is simply generated by

D,.

Proof. Since D is initial with respect to co and D„ we have BH({D[)) = 6D-

CompReg. From [12, 3.4.2(1)] and [13, Theorem 3] it can easily be derived that for

every class % of r,-spaces EH(3C) = BH(3C) n {Tpspaces} always holds. This

implies the assertion.

4.2. Proposition. D, has cardinality c.

Proof. D, has obviously cardinality less than or equal to c. We prove the

assertion by mapping {1, 2}N into D by a map * such that co ° x is an injection.

Let/ G {1, 2}N be given. Then L := [s¡\i G N0}, where s0 = -1, sx = /(l), . . . ,

s¡ = (/(!),...,/(/)),   is   a   subset   of  A,   which   was   defined   in   §3.   Define
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x(f) := (nx, n2,...)e NN, where

Í /(/ + 1) + 1,    if k = s¡ for some i e N0,

I 1, otherwise.

Then *(/) G A(f(l) + 1) \ A(f(\)) holds and one shows by induction for all

n e N, n > 1,

*(/) G A(f(l),f(2), . . . ,f(n - l),f(n) + 1)\^1(/(1), . . . ,/(«)).

Let/, g G {1, 2}N be given with/ i= g. Define

n := min{< GN|/(/)^g(0}-

We assume for simplicity that f(n) = 1 and g(n) = 2. From the argumentation

above we obtain *(/) G A(f(l), . . . ,f(n — 1), 2) and

*(g) G A(f(l), . . . ,/(« - 1), 3) \ A(f(\), ...,/(«- 1), 2).

Since A(f(l), ...,/(« - 1), 2) is closed, this implies cl{*(/)) ¥= cl{*(g)}  and

hence co ° * is an injection.

In consequence of Proposition 4.2 the unit interval [0, 1] can be equipped with a

topology such that the resulting space I is homeomorphic to D,, and that a

corresponds to 0 and b corresponds to 1. Hence I is a developable and second

countable Tx -space.

4.3. Corollary. A topological space X is D-completely regular iff for all x G X

and closed sets A O X with x G X \ A there exists a continuous function f: X —* I

such that /(*) = 0 and f(y) = I for all y G A.

Lemma 3.4 and the construction of D, above have an immediate consequence

for perfect spaces. Recall that a space is called perfect if every closed set is a Gs.

Clearly, every developable space is perfect.

4.4. Theorem. The following conditions are equivalent for a space X.

(1) X is perfect,

(2) for every pair of disjoint closed subsets A and B of X there exists a continuous

function f: X —> D, and distinct points a and b in D, such that f~x(a) = A and

f-\b) = B,
(3) for every closed subset A of X there exists a continuous function f: X —* D, and

a e D, such that fx(a) = A.

In [7] a class S of spaces was called adequate for functional separation, if for

every space X and every pair of disjoint S -closed subsets A and B of X there exists

an S -object E, two distinct points a and b in E, and a continuous function /:

X -» E such that cl f[A] c {a} and cl/[5] c {b}. It remained open in the

above-mentioned paper, whether the class of developable spaces is adequate for

functional separation.

4.5. Proposition. The class ^ of developable spaces is adequate for functional

separation.

Proof. Let ^ -closed disjoint subsets A and B of a space X he given. Then there

exist developable spaces 7, and Y2, closed subsets C, of Yx and C2 of Y2, and
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continuous functions/,: X^> Yx and/2: X^ Y2 withfxx[Cx] = A and/2_1[C2] =

B. The initial topology % on X with respect to /, and f2 is developable, and it is

easily verified that cl^A n cl^Ä = 0. The assertion follows now immediately from

Theorem 4.4.

5. Z>-normal spaces. Normal space can be viewed as those spaces X with the

property that for every pair of disjoint closed sets A and B in X there exists a

pseudometrizable space Y and a continuous mapping/: X —> Y such that cl/L4] n

cl/[i?] = 0. In analogy Brandenburg [2, 3.1.24], defined a space X to be D-normal,

if for every pair of disjoint closed sets A and B there exists a developable space Y

and a continuous mapping/: X -» Y such that cl/[/l] n cl f[B] = 0.

The following result provides characterizations of Z)-normal spaces analogous to

the separation of disjoint closed sets by disjoint open sets and Urysohn's lemma for

normal spaces.

5.1. Theorem. For a space X the following conditions are equivalent.

(1) X is D-normal,

(2) for every pair of disjoint closed sets A and B there exist disjoint closed Gs-sets C

and D such that A c C and B c D,

(3) whenever A is closed and contained in an open set U, there exists an open Fa-set

F with A c F c U,

(4) whenever A is closed and contained in an open set U, there exists a closed Gs-set

G with A c G c U,

(5) for every pair of disjoint closed sets A and B there exists a continuous mapping

h: X —> I such that h(x) = 0 whenever x G A and h(x) = 1 whenever x G B.

Proof. (1) => (2). Let disjoint closed sets A and B be given. Then there exists a

developable space Y and a continuous map/: X —> Y such that cl/[/l] n clf[B] =

0. Since developable spaces are perfect, cl/[/l] and clf[B] are closed G5-sets in Y.

This implies that C := f~x[clf[A]] and D := f'l[clf[B]] are Gs-sets in X with the

desired properties.

(2) => (3) => (4) is clear. (4) => (5). Let disjoint closed sets A and B be given. We

define for every

(«„ . . . , nk) e K' = N0 U (N X N) U (N X N X N) u ...

a closed Gs-set G(nx, . . . , nk). From (4) we obtain a closed Ga-set A(0) with

A c A0 c X \ B. Since A(0) is Gs there is a family (F(n))„eN of closed sets such

that A(0) = fi {X \ F(n)\n G N}, and for each n G N there exists a closed Ga-set

A(n) with F(n) c A(n) c X \ A(0). Now let the closed Gs-set A(nx, . . . , nk) be

defined. Then there exists a family (H(n))nfEXS of closed sets such that

A(nx, ...,nk) = n {X \ H(n)\n G N),

and for every n G N there exists a closed Gs-set v4(«,, . . . , nk, n) such that

//(«) G A(nx, . . . , nk, n) G X \ A(nx, . . . , nk).

We define

£04):= {A(nx,...,nk)\(nx,...,nk)eK'},
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and by proceeding analogously for B we obtain

ñ(B) = {B(nx,...,nk)\(nx,...,nk)eK'},

starting with a closed GÄ-set B(0) which satisfies B c B(0) c X \ A(0) c X \ A.

Let £ denote the set of all finite intersections of finite unions of elements of

£(/i) u t(B). The property of t(A) u £(B) that for every D G S,(A) u £(5)

there exists a family (D(i°)),.eN C £(/!) U £(#) such that

X\D- U {Z)(i)|«eN}

is still valid for £. The proof is identical to that of 3.1.17 in [2]. Thus £ fulfills all

conditions of Lemma 3.4 which yields a continuous function /: X -» D with

f'x(a) = A(0) and f~x(b) = B(0). Combining the natural mapping co: D—»D, with

the homeomorphism between D, and I we obtain a continuous function g: D -* I

with g(a) = 0 and g(b) = 1. Hence h := g ° /: X ^> I has the desired properties

/¡M] G {0} and /t{5) g {1}. (5) =* (1) is trivial. Thus, the proof is complete.

The following statement is obvious from Theorem 5.1.

5.2. Corollary. Every perfect space is D-normal.

The results obtained here and in [2], [3], [5] and [6] encourage further research on

the relationships between developable, D-normal and Z)-completely regular spaces

viewed as being "symmetric" to pseudometrizable, normal and completely regular

spaces. A promising extension of this new framework is motivated by condition (3)

of Theorem 5.1 : Call a space X D-regular if every point * G X has a neighborhood

base consisting of open Fa-sets. In addition to the obvious implications it is already

known from [5] that every D-regular Lindelöf space is D-normal. Further results on

D-regular spaces are contained in a forthcoming paper of the author [10].

6. Acknowledgements and remarks. During the preparation of this paper the

author was informed that A. Mysior from Gdansk University, Poland, proved

independently the simplicity of ^-CompReg and ^-CompReg-1. His universal

space, however, has very high cardinality and is of weight 2C. We would like to

express our thanks to H. Brandenburg who carefully read the first draft of this

paper. Further results on D-normal spaces will appear in a paper of his, which is in

preparation [8].

Added in proof. The results of A. Mysior mentioned above have been pub-

lished in the meantime (Two remarks on D-regular spaces, Glasnik Mat. 15 (35)

(1980), 153-156).
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