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THE CATEGORY OF D-COMPLETELY REGULAR SPACES
IS SIMPLE
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N. C. HELDERMANN

ABSTRACT. In a recent paper H. Brandenburg characterized the objects of the
epireflective hull of all developable spaces—that are those spaces which are homeo-
morphic to a subspace of a product of developable spaces—by intrinsic properties.
It is shown here that these spaces, called D-completely regular, can be generated
from a single second countable developable space D which has the same cardinal-
ity as the reals. As an application of this result we obtain a new characterization of
D-normal spaces analogous to Urysohn’s lemma and a new (external) characteriza-
tion of perfect spaces (meaning every closed set is a Gg).

1. Introduction. Completely regular spaces are generated by the class & of
pseudometrizable spaces in the sense that every completely regular topology is
initial with respect to all continuous mappings into objects of <. In fact, as is
obvious from the definition of a completely regular space, there is a single object in
%, namely the unit interval with its natural topology, that generates CompReg, the
category of completely regular spaces.

In [2], [3] and [4] Brandenburg enlarged this framework by substituting for & the
class 9 of developable spaces and characterized those spaces, here called D-com-
pletely regular spaces, which are generated by ). In further papers [2], [5], [6], [7]
he showed that a number of theorems valid in the old framework, e.g. Urysohn’s
and Nagata’s metrization theorems, have nice counterparts in the new one. How-
ever, the question whether the analogy between these two settings would go so far
as that there exists a single developable space generating all D-completely regular
spaces remained open (see Problem 5.3 in [4]). We give here an affirmative answer
by showing that it is even the unit interval that can be equipped with a developable
and second countable topology that generates all D-completely regular spaces. As
an application of this result we derive new characterizations for D-normal spaces,
which were introduced in [2] and [5].

2. Notations and preliminaries. Topological spaces will simply be called spaces
throughout this paper. Together with the continuous mappings they constitute the
category Top. A subcategory K of Top is called epireflective, if it is closed with
respect to the formation of products and subobjects. Here, all subcategories are
assumed to be nonempty, full and isomorphism-closed. Every subcategory X is
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contained in a smallest epireflective subcategory, its epireflective hull, which we
denote by EH(K). In accordance with many authors (see e.g. [9], [14], [15]) objects
of EH(X) are called K -completely regular. They are precisely those spaces that are
homeomorphic to a subspace of a product of K -objects.

A subcategory K of Top is called bireflective if it is closed with respect to the
formation of initial sources, i.e. whenever X carries the initial topology with respect
to a family (f: X — K;),c, of maps into H-objects, then X belongs to K. Every
subcategory K of Top is contained in a smallest bireflective subcategory, its
bireflective hull, which we denote by BH(Y). A space X belongs to BH(H) iff X is
initial with respect to the family of all continuous maps into J -objects, i.e.
whenever a subset 4 of X is closed in X and x € X \ A, then there exist finitely
many K-objects K, ..., K,, open subsets B; C K; for each i and continuous
functions f;: X — K, such that

x€f'[B]Nn- - nf'[B]CX\4.

A subcategory K of Top is called simple, if there exists a space E such that
EH({E)) = K.

The reader will find more details on these categorical aspects in [11]. A space X
is called developable [1] if there is a countable family (&;);cn of open covers of X
such that {St(x, @)|i € N} is a neighborhood base for every x € X. We denote the
subcategory of all developable spaces by °D. A base £ for the closed sets of a space
X is called Gs-base, if for every B € £ there exists a countable family (B,);en C £
with X \ B = U ;cn B;- In [3] Brandenburg characterized D-completely regular
spaces by means of Gs-bases: A4 space X is D-completely regular iff X has a
Gs-base. The subcategory of all D-completely regular spaces (resp. T'-spaces) is
denoted by ) -CompReg (resp. D-CompReg-1).

3. The class of D-completely regular spaces is simple.

3.1. We denote by N the positive integers, by N, the nonnegative integers, and by
K the set {-1} UNyU (Ng X N) U (Ng X NX N)U . ... Since K is countable
there exists a bijection ¢: K — N. Define D := NN U {a, b}, where NN = {f:
N >N}, a # b and a, b & N™. For every n € N the nth projection p,: NN — N is
defined by p,(f) = f(n). We consider p,;' in a natural way as a correspondence
from N to D. This allows us to define the following countable family of subsets of
D:

A(=1) = {a},  A(0) = {b},

A(n) = {b} U pyp[{1,...,n}] foreveryn, €N.
Assume now that A(n,, . . ., n;) has been defined for (n;,...,n) € K\ {-1}. We
then proceed inductively by setting
A(ny, oo my) = ({a) U g, {L s ”k+|}]) \A(ny, ..., n)
if k is odd and n, . ;| € N, and
A(ny, oo my gy y) = ({b} U P;(ln, ..... ol {1 ”k+1}]) \A(ny, ..., n)

if kisevenand n, , € N.
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Let %’ denote the family of all A(n,, ..., n,) obtained in this way and 9 all
finite unions of elements of %’. Clearly, % is a base for the closed sets of a
topology on D. The space thus obtained is denoted D.

3.2. THEOREM. D is a second countable developable space.

Proor. It is well known from [S] that every D-completely regular second
countable space is developable. Since ) is countable it suffices to show that every
element of % is a Gg-set. But this follows easily from the fact that every
A(ny, ..., n)is a Gg-set and finite unions of G;-sets are again Gj-sets.

We will henceforth make no notational difference between the space D and the
underlying set of D.

3.3. REMARKS. (1) To provide more insight into the structure of D we give here
an explicit construction for a development of D:

For n € N, define @(n) := {D\ A(n), D\ A(~1)} and for (n,,...,n) €K,
k > 1, we set

@(ny, .. .,m) = {D\NA(ny,...,n),D\A(n,, ..., n_))}.

Let ¥: N— K \ {1} be a bijection. We then define £(1) = @(¥(1)), and if, for
n € N, £(n) is given, we set
B(n+ 1) = L(n) A\ &(¥(n + 1))
where A denotes elementwise intersection. It is easily verified that the countable
family 8 = {£(n)|n € N} is a development for D.
(2) D is an Ry-space' since it is developable. However, D is not T,: Define f:
N —->Nandg: N— N by

2 ifn=9¢(-1),
and g(n) =12 ifn=¢(2),

1 otherwise.
Then the only difference between f and g is their value in the ¢(2)th component.
Let us assume that there exists an open set B such that f &€ B and g € B. We may
assume that

2 ifn=¢(-1),

1 otherwise,

fny = |

B =D\ U{A(k)|k € K', K’ C K finite}.
This implies f € A(k) and g & A(k) for some k € K. But the only A(k)’s cutting
into the ¢(2)th component are of the form A(2, n) for n € N. Hence, thereisn € N
with f € A2, n) and g & A(2, n). Since D\ A(2) = U ,en A4(2, n) this implies
f & A(2)-a contradiction because f € p;('_,)(2) C A(2). The same argumentation is
still valid if the roles of f and g are interchanged.

3.4. LEMMA. Let X be a space, and A, B two disjoint closed sets with the property
that there is a countable family £ of closed sets satisfying the following conditions:

(1) {A4,B)ycCE,

(2) for every B € £ there is a family (B(n)),cn C £ with

'A topological space (X, cl) is called Ry-space or symmetric if x € cl{y} implies y € cl{x} for all x,
y EX.
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X\B= U (B(n)|n € N},

(3) £ is closed with respect to finite unions.
Then there exists a continuous mapping f: X — D such that f'(a) = A and f7(b) =
B.

ProoF. For every (n;,...,n) € K= {-1} UNyU (Ny, X N) U (N, X N X N)
U - - - we define a set C(n,, ..., n) € £ by induction. Define C(-1) :== 4 and
C(0) :== B. According to condition (2) there exists a family (B(n)),cn C £ with
X\A4 = U {B(n)|n € N}. Define for n €N C(n) := BuU U {B(l)|l < n}. We
assume that C(n,, ..., m) € £ is given for (n,, ..., n) € K\ {-1}. Then there
exists a family (D(n)),cn C £ such that

X\C(ny,...,n)= U{D(n)|n € N}.
Define, in case k is odd,
C(ny, ... omymey ) =AU U{D| < neyy)s
and, if k is even,
C(np, .oy my meyy) = B U U{DU < myy}.
For x € X let K(x) = {(n,...,n) € K|x € C(ny, ..., n)}. Recall that for

every k € K a set A(k) C D was defined in 3.1. We assert now, that for every
X € X the set

S(x) = N {A(K)lk € K(x))

is nonempty.

Let x € X be arbitrarily given. If x € 4, then we clearly obtain S(x) = {a}, and
similarly S(x) = {b} if x € B. We assume x € X \ (4 U B). Define

Kpin(x) = {(ny, ..., m) € K(x)|me, = lorx & C(n,,...,m_,)}.

Note that C(n,,...,n) C C(n,, ..., n) whenever n, < .. If (ny,...,n._,, n)
€ Kpin(x) and (n,, ..., n,_,, m) € K;(x), this implies n, = n,. Therefore, the
mapping g: N — N, defined below, is well defined:

n,, if i = ¢(-1), where n, denotes the unique element of K, (x)
having just one component,
n, ifi=¢(n,...,n_)and(n,...,n) € K (x)and k > 1,
1, otherwise.
We prove by induction
g€ A(n,,...,n)e(n, ..., n) € K(x).

Assume k = 1. Then (n,) € K(x) implies x € C(n,); hence g(¢(-1)) < n, and
we obtain g € A(n,). Conversely, g € A(n,) implies g(¢(-1)) < n;, and we con-
clude (n,) € K(x).

Assume k > 1 and the assertion to be true for all / <k. If (n,...,n)€E
K(x), then x € C(n, ...,n)C X \C(ny, ..., n._,). Hence, x &
C(ny, ..., n._,) which implies (n,, ..., n._,) &€ K(x). Using the assertion for
k — 1 we obtain g & A(n,, ..., nm._,). Since g(¢(n,, . . ., n,_;)) < n, this implies

g(i) =
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g € A(ny, ..., n). Conversely, we assume g € A(n,, ..., n) which yields

glo(ny, ...,m_y) <nm and g & A(ny, ..., n._,). Therefore, (n,,...,n_,) &

K(x) which implies x & C(ny, ..., n._;). Since X \C(ny, ..., m_) =

Ujen C(ny, ..., m_y, [) there exists / € N withx € C(ny, . .., n,_;, /). Hence
g(e(ny, ...,n_))=min{/ EN|x € C(ny, ..., m_,, 1)}

which yields x € C(n,, . .., n), ie. (n,, ..., n) € K(x). It is now obvious that

S(x) # I since g € S(x).

We are now prepared to define a mapping f: X — D by assigning to every x € X
an arbitrary element f(x) from S(x). To show that f is continuous it is evidently
sufficient to show that for every (n,,...,n) € K, f"[A(nl, ..., m)] is closed in
X. Therefore, let (n, . . ., n,) € K be given. We show that

Ay, . ...n)] = C(ny, ..., my),

which implies immediately that f is continous since all C’s are closed. Let
x € C(ny, ..., n)be given. Then

fx) € S(x) = N{A(a,,...,n)lx € C(nAy,...,n)} cA(ny, ..., n);
hence x € f'[A(n,, ..., n)]. Conversely assume x € f'[A(n,, ..., n)], i.e. f(x)
€ A(ny, ..., n), and, moreover, x & C(n,, . .., n,). Then there exists i € N such
that x € C(ny, ..., n, i) in case n; > 0, or x € C(i) in case n, = —1. This implies,
as shown above, f(x) € A(n,, ..., m, i) in case n, > 0 and f(x) € A(i) in case
n; = -1, but in any case a contradiction to f(x) € A(n,, ..., n,) since
A(ny, . ..,m) N A(ny, ..., n, i) =D (A(-1) N A@) = O, respectively). The last

argumentation yields, in particular, f™'(a) = f'[4(-1)] = C(-1) = 4, and simi-
larly f~(b) = B.

3.5. THEOREM. The class of D-completely regular spaces is simply generated by D,
i.e. EH({D}) = % -CompReg.

Proor. Since D is not T, the epireflective hull and the bireflective hull of D
coincide [12], [13]. We show that, for an arbitrary D-completely regular space X
and for x € X \ D, where D is closed in X, there exists a continuous mapping f:
X — D and an open set ¥ in D such that x € f~'[V] c X \ D.

Choose a Gs-base £’ for the closed sets of X. Then £ := A \/£’ is a G;-base
which is closed with respect to finite unions, where /\\/£’ denotes the family of
all finite intersections of finite unions of elements of £’ [2, 3.1.17]. There exists
A € £ such that x € X \ 4 C X \ D, and, since there is a family (B(n)),cn C £
with U {B(n)Jn € N} = X \ 4, B € £, such that x € Band 4 N B = . Clearly,
the conditions of Lemma 3.4 are fulfilled for 4, B and £. We conclude therefore,
that a continuous map f: X — D exists, fulfilling f~'(a) = 4 and f~'(b) = B. Since
V := D\ {a} is open, we obtain x € f'[V]=X\4 c X \ D.

To show the converse assume that X is initial with respect to the family of all
continuous maps to D. We constructed in 3.1 a family ) of subsets of D and we
remarked in 3.2 that % is a Gg-base for the closed sets of D. Define
B’ = {f'[4]|4 € D, f: X > D continuous} and B = A \/B’. We show that
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B is a Gy-base for X: Clearly, B is a base. Let B € B be given. Then B =
N'",CandC = U enm Dy foralli € {1,...,n}, where M; = (1,...,m} C
N and D; = f,.j“[A,.j] for some continuous functions f;: X - D and 4; € . An
easy computation yields

B=U (D, n--0Dy|Uy---»Ja) EM X -+ XM,}.
This implies
X\B=(V{(X\D,)uU--- UX\DNUp---»Jp) EM; X -+ XM,}.

Since there exists for every i € {1,...,n} and every j € M, a countable family
(E(i, j, K))yen C D such that D\ 4; = U ,en E(i, J, k) we can write

X\B= {(kLé)Nfl;:[E(l,j,, k)]) Y (kLeJNf,,;:[E(n,j,., k)])l

Up o sd)) EMy X - - xM,,}.
Now define L = M, X - - - XM, andfor!/=(j,...,j,) EL
F(l, k) = fE(Lji, k)] U - - - S [E(n, ), k)]
Note that F(/, k) € \/ B’. The above expression can now be reformulated as

X\B= () { U F(, k)|l e L} = U M FUegW)).
keN gent €L
Since L is finite we obtain N, F(/, g(/)) € B for every g € N-. Hence, X \ B is
expressed above as a countable union of elements of % . This proves that % is a
Gj-base and that X is D-completely regular.

4. The class of D-completely regular T',-spaces is simple. For an R,-space X and
x, y € X we define x ~ y iff cl{x} = cl{y}. Then ~ is an equivalence relation
and the set wX of equivalence classes equipped with the final topology with respect
to the natural mapping w: X — wX is usually called the T-reflection of X. Since D
is developable, wD, which we denote henceforth by D,, is a developable second
countable T,-space [16].

4.1. THEOREM. The class of D-completely regular T-spaces is simply generated by
D,.

PROOF. Since D is initial with respect to w and D,, we have BH({D,}) = %-
CompReg. From [12, 3.4.2(1)] and [13, Theorem 3] it can easily be derived that for
every class H of T,-spaces EH(X) = BH(¥) N {T,-spaces} always holds. This
implies the assertion.

4.2. PROPOSITION. D, has cardinality c.

ProOF. D, has obviously cardinality less than or equal to c. We prove the
assertion by mapping {1, 2}~ into D by a map x such that w ° x is an injection.

Let f € {1, 2}N be given. Then L := {s,|i € Ny}, where s, = -1, s, = f(1), ...,
s; = (f(D), ..., f(), is a subset of K, which was defined in §3. Define
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x(f) = (n;, n,, ...) € NN, where

fli+ 1)+ 1, ifk=s forsomei €N,,
Potky = ;
1, otherwise.

Then x(f) € A(f(1) + 1)\ A(f(1)) holds and one shows by induction for all
neN,n>l1,

x(f) € A(f(l),f(Z), . 9f(n - 1)’f(n) + 1) \A(f(l)’ e 7f(n))’
Let f, g € {1, 2}" be given with f # g. Define
n = min{i € N|f(i) # g(i)}.
We assume for simplicity that f(n) =1 and g(n) = 2. From the argumentation
above we obtain x(f) € A(f(1), ..., f(n — 1),2) and

x(g) € A(f(1), ..., f(n — 1), 3)\A(f(1), ..., f(n—1),2).
Since A(f(1),...,f(n — 1),2) is closed, this implies cl{x(f)} # cl{x(g)} and
hence w ° x is an injection.

In consequence of Proposition 4.2 the unit interval [0, 1] can be equipped with a
topology such that the resulting space I is homeomorphic to D,, and that a
corresponds to 0 and b corresponds to 1. Hence I is a developable and second
countable T'-space.

4.3. COROLLARY. A topological space X is D-completely regular iff for all x € X
and closed sets A C X with x € X \ A there exists a continuous function f: X — I
such that f(x) =0and f(y) =1 forally € A.

Lemma 3.4 and the construction of D, above have an immediate consequence
for perfect spaces. Recall that a space is called perfect if every closed set is a Gj.
Clearly, every developable space is perfect.

4.4, THEOREM. The following conditions are equivalent for a space X.

(1) X is perfect,

(2) for every pair of disjoint closed subsets A and B of X there exists a continuous
function f: X — D, and distinct points a and b in D, such that fYa)=A4 and
f7'(®) = B,

(3) for every closed subset A of X there exists a continuous function f: X — D, and
a € D, such that f™'(a) = A.

In [7] a class & of spaces was called adequate for functional separation, if for
every space X and every pair of disjoint & -closed subsets 4 and B of X there exists
an &-object E, two distinct points @ and b in E, and a continuous function f:
X > E such that cl f[4] C {a} and cl f[B] C {b}. It remained open in the
above-mentioned paper, whether the class of developable spaces is adequate for
functional separation.

4.5. PROPOSITION. The class D of developable spaces is adequate for functional
separation.

PROOF. Let ) -closed disjoint subsets 4 and B of a space X be given. Then there
exist developable spaces Y, and Y,, closed subsets C, of Y, and C, of Y,, and
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continuous functions f;: X — Y, and f,: X - Y, with f{'[C,] = 4 and £, '[C,] =
B. The initial topology X on X with respect to f; and f, is developable, and it is
easily verified that clod N clqB = . The assertion follows now immediately from
Theorem 4.4.

5. D-normal spaces. Normal space can be viewed as those spaces X with the
property that for every pair of disjoint closed sets 4 and B in X there exists a
pseudometrizable space Y and a continuous mapping f: X — Y such that cl f[4] N
cl f[B] = . In analogy Brandenburg [2, 3.1.24], defined a space X to be D-normal,
if for every pair of disjoint closed sets A and B there exists a developable space Y
and a continuous mapping f: X — Y such that cl f[4] N ¢l f[B] = <.

The following result provides characterizations of D-normal spaces analogous to
the separation of disjoint closed sets by disjoint open sets and Urysohn’s lemma for
normal spaces.

5.1. THEOREM. For a space X the following conditions are equivalent.

(1) X is D-normal,

(2) for every pair of disjoint closed sets A and B there exist disjoint closed Gg-sets C
and D such that A c Cand B C D,

(3) whenever A is closed and contained in an open set U, there exists an open F,-set
FwithAC FcU,

(4) whenever A is closed and contained in an open set U, there exists a closed Gg-set
GwithAcCGCU,

(5) for every pair of disjoint closed sets A and B there exists a continuous mapping
h: X — I such that h(x) = 0 whenever x € A and h(x) = 1 whenever x € B.

PRrROOF. (1) = (2). Let disjoint closed sets 4 and B be given. Then there exists a
developable space Y and a continuous map f: X — Y such that cl fJ4] N cl f[B] =
. Since developable spaces are perfect, cl f[4] and cl f[ B] are closed G-sets in Y.
This implies that C := f~'[c] f[4]] and D := f'[cl f B]] are Gj-sets in X with the
desired properties.

(2) = (3) = (4) is clear. (4) = (5). Let disjoint closed sets 4 and B be given. We
define for every

(n,....n,) EK'=NUINXN)UNXNXN)uU...
a closed Gs-set G(n,, ..., n). From (4) we obtain a closed Gj-set A(0) with
A C Ay C X \ B. Since A(0) is G, there is a family (F(n)),cn of closed sets such
that 4(0) = N {X \ F(n)|n € N}, and for each n € N there exists a closed G;-set
A(n) with F(n) C A(n) C X \ A(0). Now let the closed Gs-set A(n,, ..., n,) be
defined. Then there exists a family (H(n)),<n of closed sets such that
A(ny, ..., m) = N{X\ H(n)|n €N},
and for every n € N there exists a closed Gs-set A(n,, . . ., n,, n) such that
H(n)c A(ny, ...,n,n) C X\ A(n,, ..., n).
We define

£(4) = {A(ny, ..., n)|(ny,...,n) €K'},
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and by proceeding analogously for B we obtain
L(B) = {B(ny,...,n)|(ny,...,n) €K'},

starting with a closed Gs-set B(0) which satisfies B ¢ B(0) c X\ 4(0) C X \ 4.

Let £ denote the set of all finite intersections of finite unions of elements of
£(4) U £(B). The property of £(4) U £(B) that for every D € £(4) U £(B)
there exists a family (D(¥));,en C £(4) U £(B) such that

X\ D= U {D(i)|i €N}

is still valid for £. The proof is identical to that of 3.1.17 in [2]. Thus £ fulfills all
conditions of Lemma 3.4 which yields a continuous function f: X — D with
f7'(a) = A(0) and f~!(b) = B(0). Combining the natural mapping w: D — D, with
the homeomorphism between D, and I we obtain a continuous function g: D — I
with g(a) = 0 and g(b) = 1. Hence h = g o f: X — I has the desired properties
h[A] C {0} and A{ B} C {1}. (5) = (1) is trivial. Thus, the proof is complete.

The following statement is obvious from Theorem 5.1.

5.2. COROLLARY. FEvery perfect space is D-normal.

The results obtained here and in [2], [3], [5] and [6] encourage further research on
the relationships between developable, D-normal and D-completely regular spaces
viewed as being “symmetric” to pseudometrizable, normal and completely regular
spaces. A promising extension of this new framework is motivated by condition (3)
of Theorem 5.1: Call a space X D-regular if every point x € X has a neighborhood
base consisting of open F,-sets. In addition to the obvious implications it is already
known from [5] that every D-regular Lindelof space is D-normal. Further results on
D-regular spaces are contained in a forthcoming paper of the author [10].

6. Acknowledgements and remarks. During the preparation of this paper the
author was informed that A. Mysior from Gdansk University, Poland, proved
independently the simplicity of %) -CompReg and %)-CompReg-1. His universal
space, however, has very high cardinality and is of weight 2°. We would like to
express our thanks to H. Brandenburg who carefully read the first draft of this
paper. Further results on D-normal spaces will appear in a paper of his, which is in
preparation [8].

ADDED IN PROOF. The results of A. Mysior mentioned above have been pub-
lished in the meantime (7Two remarks on D-regular spaces, Glasnik Mat. 15 (35)
(1980), 153-156).
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