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COMPOSITION FACTORS OF THE PRINCIPAL SERIES

REPRESENTATIONS OF THE GROUP Sp(n, 1)

BY

M. W. BALDONI SILVA AND H. KRAUEVIÓ1

Abstract. Using Vogan's algorithm the composition factors of any principal series

representation of the group Sp(n, 1) are determined.

0. Introduction. D. Vogan has discovered in [14] a certain algorithm for ex-

pressing the character of any (generalized) principal series representation of a

semisimple Lie group G as the linear combination of irreducible characters. It is

conjectured that this algorithm gives the final result for any G and any such

representation, or, in other words, that it enables one to find all composition

factors (together with the multiplicity) of any generalized principal series represen-

tation.

In this paper we use this algorithm to determine the composition factors of any

principal series of the group Sp(n, 1). In the same way (but much simpler) one can

also proceed for the groups Spin(n, 1) and SU(n, 1), but in these cases the results

were already obtained by other methods (see e.g. [5], [8], [9], [13]). In the subse-

quent paper we will treat the remaining real rank one group-a real form of F4.

These results may be used to prove the existence of some complementary series as

in [17].

1. Notation and preliminaries. Throughout the paper G will denote the group

Sp(n, 1), n > 2, defined as the group of matrices in Sp(n + 1, C) which leave

invariant the hermitian form 'ZKnXZ where Z = (z„ . . . , z2n+2) G C2n+1 and

Kn,i -
0
0

0

0

1
0

0

0

0
/„ the unit matrix of order n.

Let g be the Lie algebra of G. It will be identified with the Lie algebra Sp(n, 1) of
matrices:

Sp(n. 1) -

'ZI2

-Z,3

Z,2

Z,4

■z«

Z,3

'Z,4

z„
'Z„

Z¡j complex matrix; Zn and Z]3 of

order n, Zl2 and Zl4 n x 1 matrices,

Zu and Z22 are skew hermitian, Zl3

and Z24 are symmetric.
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Let 9: g^>g be the Cartan involution defined by 9(X) = KnXXKnX and let

g = f © p be the corresponding Cartan decomposition. Let K be the maximal

compact subgroup of G with Lie algebra f and let t be the set of all diagonal

matrices in g. t is a Cartan subalgebra of g corresponding to a compact Cartan

subgroup of G.

Denote by A the root system of the pair (gc, tc) (the subscript C denotes the

complexification). Then A = (±e, ± e, 1 </</<»+l; ±2e¡, 1 < i < n + 1),

where

e,.(diag(a„ . . . ,an+x, -ax, . . . , -an+1)) = a¡.

Let A*, and A„ be the sets of compact and noncompact roots, respectively. Then

Ak = {± e,; ± e,., 1 < i < j < «; ±2e,., 1 < i < n + 1). Let W and Wk be the Weyl

groups of A and A^, respectively.

Let bar denote the conjugation of gc with respect to g and B the killing form of

gc. Denote by (, ) the dual of the Killing form restricted to it.

We shall need to make computations with root vectors and we fix a normaliza-

tion of them. Namely [4, pp. 155-156] for each a G A we can select a root vector

Xa in such a way that B(Xa, X_a) = 2/(a, a) and 9Xa = -Xa. Then it follows that

Ha defined by Ha = [Xa, X^J satisfies a(Ha) = 2 and that

Xa — X_a, i(Xa + X_a) are in g if a is compact and

Xa + X_a, i(Xa — X_a) are in g if a is noncompact.

Let/8 = e, - en+x and a = R^ + X _ß).

a is a maximal abelian subalgebra of p. Let M be the centralizer of a in A and m

its Lie algebra. Let b~ be the subalgebra of t spanned over R by iHa, a G A and

(a, ß) = 0. Let i) = b_ © a. Then b" and b are Cartan subalgebras of m and g,

respectively. Let ( , ) denote also the dual of the Killing form restricted to ib~ © a.

Denote by $ (respectively <f>m) the root system of (gc, bc) (respectively (mc, b¿"))

and by W the Weyl group of $. If y G A„ set uy - exp(w/4) (Xy - X_y). Then

Ad uy is the Cayley transform corresponding to y. In particular Ad uß carries tc

onto f)c and $ = A ° Ad(wx)_1.

The roots of $m may be identified with the roots y G <I> of the form y =

a ° Ad uß ', where a G A and (a, ß) = 0. Set

e, = e, ° Ad ußx,    e2 = -e„ + 1 ° Ad ußx,

e¡ = e,_, ° Ad ußx,       3 </'<«+ 1.

Then $ = {± e, ± <?,; 1 < i <j < n + 1} U {±2e,\ 1 < i < n + 1). The compact

roots in 0 are

$m = {± (e, - e2)} u {±e, ± ey, 3 < / <j < n + 1} u { ±2e¡; 3 < i < n + 1}.

The real roots in $ are ß = ß ° Ad w^" ' = et + e2 and — /?. The remaining roots

in í> are complex.

We now define systems of positive roots A+, At+, <í+ and i>^ in A, Af, $ and 3>m,

respectively, which will be fixed throughout the paper. They are defined so that the
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corresponding sets of simple roots are the following:

A   : [ex — e2, e2 — e3, . . . , en — e„+1, 2en+1),

Af+: {e, - e2, e2 - e3, . . . , e„_x - e„, 2e„, 2e„+1),

í>+: {<?, - e2, e2 - e3, . . . , e„ - e„+x, 2en + x),

$m: ie\ - ei> e3 - e4> e4- e5,...,en- en+x, 2en+x).

Let A be the system of restricted roots (i.e. the root system of the pair (g, a) and

A+ = {a\a; a E$+, a\a=£ 0). Let n be the sum of the positive restricted root

space. Let A (resp. TV) be the analytic subgroup of G with Lie algebra a (resp. n).

Denote by p half the sum of the positive restricted roots, counted with multiplici-

ties. We also set 8m =^2ae<t+ a. W(a) will denote the Weyl group of the root

system ("the little Weyl group").

Let U he the universal enveloping algebra of gc and 3 its center. Let b be a

Cartan subalgebra of gc, Q the system of roots of the pair (gc, b), Wh the Weyl

group of Q, Q + a system of positive roots in Q, 8Q+ = |2yee+ y. For X G b* let \\

denote the infinitesimal character of the Verma module for gc (with respect to Q +)

with the highest weight X — 8Q + . As is well known, we have that Xa = X^ if anc*

only if X = ofi for some a e Wb; furthermore, any homomorphism } —» C is of the

form Xa for some X G b*.

Let now M be the set of all equivalence classes of irreducible finite dimensional

representations of M. It is well known [15] that M is in bijective correspondence

with

í n+1

Dm =    b0(ex - e2) +  2 *W h > • • ■  > bn + x > 0,

2b0 e Z, b,■ e Z, 3 < / < n + 1

This correspondence is obtained by attaching to each element £ of M its highest

weight Af with respect to «P^.

For each feMwe fix an element (£, H*) in the class £; it will be supposed that

Hi carries an inner product such that i is unitary.

For I G M and v G ac we define the principal series representation (w{„, //''")

as follows:

(1) H(" is the space of all (classes of) measurable functions/: G —» //í such that

/(gma«) = e-<'+*1C«"')i(g) (i)

for every g£C, m e M, a e A, n e N (here lg: ^4 -» a denotes the inverse of

exp: a -^ A);

fj\f(k)\\2 dk < 00. (ii)

HÍP is a Hubert space if we introduce the inner product

(/,*)= f(f(k),g(k))dk.
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(2) (■n(^(g)f)(x) = f(g~Xx), g, x e G, f e H*". miv is an admissible representa-

tion of G of finite length called principal series representation. According to [6], for

example, the infinitesimal character of trlt, is Xa«,») w^ere A(|, v)b.%. is defined by

A(fc w)\K = A£ + 8m,  A({, ,)|Q = v.

Set D = {A(i v);£e M,v e a*}. Then

( n + \

0=2 a,et; ax - a2e Z, ax - a2 > 0, a, G Z,

3 < » < n + 1, ̂ . > aJ+l, 3 < y < n \.

Obviously, the set D parametrizes the principal series representations. If y G D,

y = A(£, y), we shall write tr(y) instead of w» r. Let D + denote the set of all y G D

such that if y = Z?»/ a¡e¡ then either Re(a, + a2) > 0 or Re(a, + a^ = 0 and

Im(a, + a2) > 0. D + is the intersection of D with a fundamental domain of W(a);

therefore, D + parametrizes the principal series representations up to the action of

W(a). Note that the character of a principal series representation is invariant under

the action of W(a), i.e. this action only changes the order of the composition

factors.

According to Theorem II.3.1 in [11] if y G D is such that Re(a, + a^ > 0, then

7r(y) contains the unique irreducible quotient. It is usually called the Langlands

quotient and will be denoted by -n(y).

Let L denote the set of integral forms on tc, i.e. those that lift to characters of T

(the Cartan subgroup of G with Lie algebra t). Then

I n+\

L =    A G t*.; X = 2 a¡En a, G Z, 1 </<« + 1

We say that À G tc (resp. y G bc) is nonsingular if (X, a) ¥= 0 (resp. (y, a) ^ 0)

for each a G A (resp. $). Otherwise, X is called singular. Let L' be the set of

nonsingular elements of L. To each X G L' Harish-Chandra has attached certain

invariant eigendistributions 0X on G [2]. Two of these coincide precisely when their

parameters are related by an element of Wt [3]. Each ®x is the character of a

discrete series representation and in this way all such representations are exhausted

(up to equivalence). The discrete series representation with character ®x will be

denoted by ir(X). Its infinitesimal character is Xa-

2. Sufficient condition for irreducibility of a principal series representation. Recall

our choice of the real positive root ß = ex + e2 and let y = S"^1 a¡e¡ G D. Let <}>

be a homomorphism of SL(2, R) into G such that (denoting by <i>„ the tangential

map)

♦.([i -.])-"* <[l ¿])-* <[1 1})-X-0-

Set m = <i>,„([ö _,]). Then m is in the center of M; hence it is represented by a scalar

in any irreducible finite dimensional representation of M. Let y(m) be this scalar

for the irreducible representation of M with the highest weight y|&- — 5m. Fix a
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positive system P in A such that ß is simple (ß = ex — e„ + i). Let

8 = 2    2   a~2    2   "' * = 27Tß)'  /(y) = 27T^T-
¿«Efni, zaePn4» \P>P) (ß,ß)

We need the following technical lemma.

Lemma 2.1. Let y = S"Í,' a¡e¡ G Z). Then the following two conditions are mutually

equivalent :

(i) l(y) G Z andy(m) = (-l)* + /w.

(ii) a,, a2 G Z.

Proof. By [12] (i) is independent of the choice of P. Choose P so that the

corresponding simple roots are tx — e„+x, en+x — e2, e2 - e3, . . . , e„_, - e„, 2e„.

Then 8 = - (n - l)ex - VJ=2(n -j+ l)e, + (n - 2)e„+x and k = - 2n + 3.

Furthermore, l(y) = ax + a2.

Let us compute y(m). We have

and X_ß — Xß = — iHß; hence «i = exp( — itrHß). Now,

H, = diag(l, 0, . . . , 0, -1, -1, 0, ... , 0, 1)

and, for a = ex - e2, Ha = diag(l, 0, . . . , 0, 1, -1, 0, . . . , 0, -1). Therefore, m =

exp( - i-nHa). In this way we obtain

y(m)=exp(-iV(y-r3m)(/fa)).

a is simple for $^; hence 8m(Ha) = 1. Furthermore, y(Ha) = ax — a2. Therefore,

(i) takes the form

ax + a2 G Z    and   exp(-/V(a, — a2)) = (-l)a' + a2.

As ax — a2 e Z, this is obviously equivalent to (ii).    Q.E.D.

Theorem 2.2. Let y — "Z"=l OjCj G D and suppose that the principal series repre-

sentation ir(y) is reducible. Then ay G Z, 1 < j < n + 1.

Proof. As y G D, we have only to prove that the reducibility of ir(y) implies

that ax and a2 are integers.

Suppose first that y is nonsingular. By Proposition 6.1 in [12] the reducibility of

ir(y) implies that one of the following two possibilities holds true.

(1) There exists a complex root u€$ such that 2(a, y)/(a, a) G Z.

The complex roots in 4> are ± e, ± e„ ± e2 ± e¡, 3 < ; < n + 1, ±2ex, ±2e2. An

easy computation shows that for any of these roots a, 2(a, y)/(a, a) G Z implies

ax, a2 G Z.

(2) l(y) and y(m) = (-1)*+/(y) (notation as before). By Lemma 2.1 this is satisfied

if and only if ax, a2 G Z.

In this way we have proved that if y is nonsingular and if 7r(y) is reducible, then

Oj e Zfor 1 <y < n + 1.

Suppose now that y is singular. Let P be a positive system in 4> such that y is

-1      0

0      -1
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dominant with respect to P. Let p = 2"^/ b¡e¡ be the highest weight (with respect

to P) of a finite dimensional irreducible representation of G, such that y + p is

dominant with respect to P and nonsingular.

Let i/'YY+M be the Zuckerman's functor as defined in [16]. Then 4/y+>l(tT(y + p)) =

ir(y) by Corollary 5.9 in [12]. \py+,i is an exact functor by [16]. Therefore, the

reducibility of tr(y) implies the reducibility of 7r(y + p). By the first part of the

proof, Oj + bj e Z for 1 < j < n + 1. p being a weight of a finite dimensional

representation of G, we have bj,6 Z for 1 < j < n + 1. Therefore, a, G Z for

1 < y < n + 1.    Q.E.D.

3. Composition factors for nonsingular infinitesimal characters. Let y be in tc

(resp. bc„+,)- We shall say that y is integral if y = 2"*,1 a¡ei (resp. y = S"!,1 a,e,)

with a, G Z, 1 </'<« + 1. An infinitesimal character x will be called integral if

X = xY f°r some integral y.

If y is a nonsingular integral element of tc (resp. be) we denote by A* (resp. ®y)

the unique system of positive roots in A (resp. 4>) with respect to which y is

dominant.

By Theorem 2.2 if y G D is not integral then 7r(y) is irreducible. Therefore, in the

rest of the paper we can restrict ourselves to the representations with integral

infinitesimal characters.

Throughout this section x will denote a fixed nonsingular integral infinitesimal

character. We need to parametrize all the discrete series and the principal series

representations with infinitesimal character x-

If C is a system of positive roots in A (resp. 4>) we shall denote by C the

corresponding closed Weyl chamber in ¿t* (resp. (i'b~ + a)*).

For 0 < j < n let C, be the system of positive roots in A defined by

Cj =      2 <W ax> ■ ■ ■   > a}> an+x > aJ+x > ■ ■ ■ an > 0   .

Let Oj e W he defined by OjCn = C'-. Then an is the identity and for 0 < j < n —

1:

o,e, = e„        1 < / < j,

°jej+i " £n+i>

0,6, =  £,_!, j + 2 </'<« +  1.

Fory G {0, 1, . . . , n) let A, denote the unique element in C, such that x = X\- By

[3] every discrete series representation with infinitesimal character x is equivalent

to tt(Xj) for exactly one j G {0, 1, . . . , n}. We shall also use the notation wy(x) =

Up to the action of W(a) all the principal series representations with infinitesimal

character x are w(y), y G D +(x), where D+(x) = {y G D+; xy = X}- ^e are

going to parametrize the set {<by; y G D +(x)}-
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For 0 < /' <j < n let P¡, he the system of positive roots in <I> defined by

{n+l

2 okek; a3> ■ ■ ■  > ai+2 > ax> ai+3 >
k-\

> aJ+x > a2> aj+2 > ■ ■     > an + x > 0).

For 0 < i < n — 1, n + 1 < j < 2» — i, let PtJ be the system of positive roots in í>

defined by

C n+l

'u =     S a*^; <z3 > •• • > a,+2 > ax > a,+3 >    ■ ■
{ k = \

> <h*+2~j > -a2> a2n + i_j > ■ ■■  >a„+x> 0\.

Then {Oy+; y G D +(x)} = {Pu; 0 < / < n - 1, i + 1 < / < 2» - ij.
Let w/: . e Wbe defined by w¡jP0X = PtJ. Then we have for 0 < / <j < n:

wijek = ek + 2> I < k < i,

"i,j*i+l = ev

wijek = ek+v        i + 2 <k <j,

WtjeJ+i   =  e2'

^/.y** = e*'       / + 2 < /c < « + 1,

and for 0 < i < n — 1, n + 1 < j < 2n — i:

W<,;*A = e*+2.        1 < * < i,

wiVe<+l = ei>

"Vj** = e*+i.        i + 2 < * < 2« + 1 -y,

wUe2«+2-y = _e2>

W/,.A = ek>       2n + 3-j<k<n + l.

For 0 < / < « — 1, i + 1 < y < 2n — i, let yt, be the unique element in Pt, such

that x = Xij- We set wj/x) = w(y,v) and w,.y(x) = viy¡J.

By [10] every admissible irreducible representation of G with infinitesimal

character x is infinitesimally equivalent either to a discrete series representation or

to 7r,y(x) for exactly one pair (/,/), 0 < / < n — 1, / + 1 < j < 2n — i.

If it (resp. X) is an admissible representation of G of finite length (resp. a

Harish-Chandra module of finite length [16]) we shall denote by @(ir) (resp. <d(X))

its global character. For each (i,j), tr¡j(x) is an admissible representation of G of

finite length and has infinitesimal character x- Therefore, every composition factor

of vt ,(x) is infinitesimally equivalent to some irk(x), 0 < k < n, or to some ñk¡l(x),

0 < k <, n — 1, A: + 1 < í < 2« — k. Hence there exist unique nonnegative in-

tegers m(i,j; k), m(i,j; k, t) such that

©K,,(x)) = Í »»('.7; *)©K(x)) +2    2  w(U; *, 0©(^,,(x)).
* = 0 * = 0    / = /t+l
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Our goal in this section is to determine all these numbers m(i,j; k), m(i,j; k, t). To

do this we shall use Vogan's results [14]. For the convenience of the reader we shall

state these results in our situation.

Let IT denote the set of simple roots in C„, i.e. II = {e, — e2, . . . , e„ —

e„+„ 2en+x). For a G II let $a and i|/a be the Zuckerman's functors as defined in

[15] (after Lemma 3.1) with respect to X„. If it (resp. X) is an admissible representa-

tion (resp. a Harish-Chandra module) of finite length with infinitesimal character

X, let t(w) (resp. t(x)) be the Borho-Jantzen-Duflo r-invariant of it (resp. A').

It is defined in [14] as the set of all a G n such that \pa(ir) = 0 (resp. $a(X) = 0),

or, equivalent^, ^a(ir) = 0 (resp. <t>a4*a(x) = 0).

Let X be an irreducible Harish-Chandra module with infinitesimal character x-

For each a G n\T(.X), <t>a^a(X) contains X as the unique irreducible quotient and

as its unique irreducible subrepresentation [14]. The remaining subquotient of

<>Mx) wil1 be denoted by Ua(X) as in [14]. Therefore, @(Ua(X)) = &(<i>a^a(X))

— 2<d(X). If it is an irreducible admissible representation of G and X is the

corresponding Harish-Chandra module of A-finite vectors, we shall sometimes

write Ua(n) instead of Ua(X).

Let 0 be a virtual character (i.e. an integral linear combination of irreducible

characters) with infinitesimal character x- If p G tc is a weight of a finite dimen-

sional representation of G, let 5^(6) denote the coherent continuation of © as

defined in [12] or [14].

Proposition 3.1 [14, Proposition 3.2]. Let X be an irreducible Harish-Chandra

module with infinitesimal character x-

(i) Ifae t(X) and k = 2(a, A„)/(a, a), then S_ka(@(X)) = - O(X).

(ii) // a e n - t(A-) and k = 2(a, \,)/(a, a), then S_ka(®(X)) = &(X) +

®(Ua(X)).

Using Corollary 4.13 in [14] we easily find

Proposition 3.2.

0)

tO,-(*)) =
n\{e, - e2},        ¡=0,

n\{e,. - ei+1, e,+ 1 - e,+2},

nx{e„ - e„ + i}>        ' = "•

1 < i < ft — 1,

(ii)

T(w.j(x)) =

n,       /' = 0,y = 1,

n\{e,. - eJ+l),        i = 0,2 <j<n,

n\{2e„+1},     / = o,y = « + i,

nx{£2„ + 2-7 - e2«+3-y}>        I - 0, ft + 2 <y < 2fl,

n\{e, - e¡ + x},        i > l,y = Í+ 1,

n\{e, - e, + 1, tj - £,+ ,}, i > I, i + 2 <y < f»,

n\{e,. - E/+1, 2e„+1},        / > l,y = « + 1,

n\{e, - e1 + i, e2„ + 2^ - e2„ + 3_,.},        i > 1, n + 2 < j < 2«
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Theorem 4.12 in [14] in our situation reads

Theorem 3.3. Let 0 < i < n — 1, i + 1 < y < 2« — i. Let a^> ä be the dual of

the Cay ley transform of tc onto tc such that Cn = Pt¡. Let a G n\r(wj (x)) and let

k = 2(o,X„)/(a, a).

(i) //a is complex then @( t/a(7r, y(x))) = ©(^(y,,, - k5)) + ©0.

(ii) If âis real then 6( Ua(w,j(x)ï) = ©o-

/« each case 0O is fAe character of a representation, every irreducible constituent of

@0 is the character of a subquotient of TTij(x) which contains a in its r-invariant.

Following  [14]   we  shall   call   0( Ua(nt j(x))) ~ ©o  the   special   constituent  of

®(^(^y(x)))-
Theorem 4.12 in [14] implies also an analogous asssertion for the discrete series

representations. To describe it we have to attach to each a G n\T(i7,(x)) the

parameter of a principal series representation.

Let 0 < / < n and let a, G W be defined as before (a¡Cn = C,). Let a G

n\T(7r,(x)) and set â = a¡a, a5 = R(X5 + X_s) and 65 = {H G t; a(H) = 0}.

Then b5 = b¿" + aa is a Cartan subalgebra of g and the corresponding roots are

^ = A ° Ad(ua)~x. Let xfr+ = C, ° Ad(w5)_1. Denote by m- the centralizer of a- in

f. Then the roots ^m_ of the pair ((m-)c, (b¿ )c) may °e identified with the roots of

(gc, tc) which are orthogonal to ä. Set *+_ = ^+ n *mj¡. Let à G ¥+ be the real

root (yff+ contains exactly one real root). Define À," G (b¿¡)c by

% = \fc-       (*<"' ") = <A" «)•

Finally, let <|> be the dual of the restriction to be °f an inner automorphism of gc

which carries bc to (b5)c and such that <}>(<f'+) = Pox. Set A," = <f>(\a).

Theorem 3.4. Let 0 < i < n, a G n\T(7r,(x)). Wï/A f/ie notation introduced above

we have

@(^>,(x))) = @0?(\")).

As we shall see, the proof of the main theorem in this section will be immediately

reduced to the case when x is the trivial infinitesimal character (i.e. the infinitesi-

mal character of the trivial one-dimensional representation). In this case

\ -\ 2 « = 2 (« + 2-jpzj +  2 (« +1 -j)*,
L  aeC, y=l 7 = 1+1

+ (« + 1 - i)en+x,   0</<«, (1)

1 ,+2
Y,7 = Ö   2   « - (ft + 1 - i)ex + (n + 1 - j)e2 + 2 (« + 4 - *K

7 + 1 « + 1

+    2    (n + 3- k)ek+    2    (n + 2 - *)et,       0 < i <j < n,   (2)
k = i + 3 k=j + 2
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1+2 n+2-7

yUJ = (n + \- i)ex - je2 +  2 (« + 4 - k)ek +    2    (« + 3 - k)ek
k-3 k=i+3

n + 1

+      2     (« + 2 - *)et,       0 < i < ft - 1, n + 1 < y < 2ft - i.   (3)
/t = n + 3 -7

Direct computation gives

Proposition 3.5. Let 0 < i < n and let x be the trivial infinitesimal character. Let

a, = e, — e, + 1 if \ < i < n and ¿8, = e, + 1 — e,+2> 0 < / < « — 1. Then

Xa-■ = v XÄ = v
Aí ii-1,2/1+ l-i» '\ r/,2«-/'

("//,* a/"e g»u«i ¿v (2) and (3)).

Theorem 3.6. Let x be an integral nonsingular infinitesimal character.

(i) For 0 < i < n - 1

©K2„-,(x)) = ©fe„-,(x)) + e>U,(x)) + 0K+,(x)).
(ii) For 0 < / < n - 2

®K2„-,-.(x)) = ©K2„_,- ,(x)) + ©(^,2n-,(x))

+ Ö(^+i>2n-,-.(x)) + ©K + ,(x)).

(iii)©K-,,n(x)) = ©("„-.„(x)) + @(^-,,„+,(x))-
(iv) ©K_2>n(x)) = Kb=o 0(^-2+a,n+*(x)) + öK(x)).

(v) 0(^_2,„_,(x)) = 0(^-2,n-,(x)) + @(^-2,„(x)) + ©K(x))-
Let 0 < i < n — 1, i + 1 < y < 2n — i — 2 and set k = i + j.

(vi) If k is odd and 0 < i < [(k — l)/2] — 1 or if k is even and 0 < / < (k/2) —

2,

®("ij(x))=    2   ®(ñi+aJ+b(x)).
a,6 = 0

(vii) If k is odd and i = (k — l)/2, then

®("„AX)) = ®(ñij(x)) + @(^,7+. (x)) + 0(^,+2,+2(x)).

(viii) .//A: « eue« a«i/ /' = (k/2)— 1, i/iew

0(t,7(x))=   2 0(^+a,+Ä(x)) + 0(^+2,+,(x)).
a,fc = 0

Proof. Using the results on the Zuckerman's functor (Theorem 1.2 in [16],

Theorem 6.18 and Corollary 5.12 in [12]) it is easy to see that it suffices to prove

the theorem in the case that x is the trivial infinitesimal character. Then X,, yt, are

given by (1), (2), (3). For convenience we shall write ir¡, w,j, w¡j instead of w,(x),

*ijx), "¡¿(xi respectively.

(i) follows by an application of Schmid's identities ([12]; see also [1]). The

method of the proof of the rest is based on the following algorithm. Suppose we

know all the computation factors of irt, for every i,j such that i + j = k.

Let /" + y" = k — 1. Then we find a pair i, j such that i + j = k and a simple

root ct in P¡j such that yrj, = yt¡ - à~. Let <>,, . be the dual of the restriction of an
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inner automorphism of gc transforming bc into tc and such that </>,,/C„) = PtJ. Set

a = <f>,~'(ä). By Theorem 4.3 in [14] we have 0(ir,v) = S_a0(irii7-). Using Proposi-

tion 3.1 and 3.5 and Theorems 3.3 and 3.4 together with Theorem 4.14 in [14]

(which will be called the multiplicity theorem) we compute 5_„0(ir) for each

composition factor it of n¡, and we get the desired result.

We shall need fyjs explicitly. If 0 < i <y < n, we have

<ME*) =

c<fc + 2>

«1.

ek + V

e2>

1 < k < i,

k - i* + 1,

i + 2 < fV < y,

k =j + 1,

y' + 2</E<f» + l.

If 0 < / < « — 1, « + 1 < y < 2/j - /', we have

<Me*) =

cfc + 2>

«I.

c*.

■7>

(ii) We have y,-2n_,_, = y,+ 12»-

1 < k < /,

rC  =   /   +   1,

/' + 2 < k < 2« + 1

k = 2« + 2 - j,

2n + 3-j<k<n + l.

! — a, where ä = ei+3 — ex  is simple for

Pi+ ,,2„_,_,. By (i) it follows

oí*«,-/-.) = 5_a0(^+1>2n_,_,) + S_a©K+1) + S_a©(7r,.+2), (4)

with« = (^, + 1,2n-,-i)"1(«) - e, + i - «,+2-

By Proposition 3.2 a G n\T(7F/+1 )2n_/_i); thus by Theorem 3.3(i) the special

constituent of ®(Ua(:ñi+x2n_,_,)) is ©(^¿„-/-î)- All the other constituents must

occur in Trj+X2n_¡_x and must have a in their T-invariants. By (i) and by Proposi-

tion 3.2 the only candidate is 0(wl+2). Let ß = e, + 2 — eI+3. Then ß G

t(77,+ 12„_,^i), ß G t(w,+2); so by that multiplicity theorem the multiplicity of

0(w,+ 12„_,_,) in ®(Uß(7Ti+2)) is equal to the multiplicity of &(tt¡+2) in

0(^4(^1+i,2«-i-i))- ^ut one checks easily that ®(ñi+X2n_i_x) is the special con-

stituent of ®(Uß(TTj + 2)), so this multiplicity is one. Hence

0(^(^+1,2,-,-.)) = 0(^2« — .) + 0(T/ + 2)

and, therefore,

s_«e(»,+ilto-,_i) = 0(^+i,2n-,-.) + 0(^,,2n-,-.) + 0(^+2)-       (5)

Since a £ t(7t1 + 1) and a¡ + xa = e1 + 1 — e„+1, using Theorem 3.4 and Proposition

3.5 we get

s_a0(77/+1) = ©K2n-,) + ©K+1). (6)

Finally, a G t(7tí + 2) so

S-a©K+2)= -0K+2)- (?)

Now, (4), (5), (6), and (7) give (ii).

(iii) We have y„_,„ = y„_lt„+1 - ä, where ä = - 2e2 is simple for J»„_,.+ ,.
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Furthermore a = <ív_Y„ + x(ä) = 2en +, and we get from (i)

©K_M) = S_a0(^_1>B+I) + S_a@(K_x) + S_„©K). (8)

Since a G t(it„_x) and a G T(vn) we have

S-„eK_,)=-e(Vl), (9)

s.„eK) - -6K). (io)

a G T(OTr„_,„+1) and the special constituent of ©(i/a(wn_, „+,)) is ©(??,,_ !,„)• All the

other constituents of @(Ua(TTn_x „+,)) must occur in 7r„_ln + 1 and must have a in

their T-invariants. The only candidates are ©(7rn _,) and 0(wn).

Let ß = e„ - e„+1. Then 0 G t(?„_i>b+1) and ß G r(77n), 0 £ r(mn_x). Since

o„)8 = £„-£„ + , and an_x ß = en+1 - e„ then by Proposition 3.5 and Theorem 3.4

it follows easily that

0(^K-.)) = 0(^-.,n+.).

8(i//,K)) = ö(^- .,«+.)•

By a multiplicity argument as before we conclude that both ®(tt„) and &(tt„_x)

occur once in ®(Ua(ïfn_x„+1)). So

*_„©(*„_,,„.►,) = 0(^_,,„+1) + 0(i/a(i„_lin+1))

= 0(^„-,,„+,) + 0(^_,,J + ©K) + 0K+1).     (n)

The equations (8), (9), (10) and (11) imply (iii).

(iv) We have y„_2„ = y„_, „ - ä where ä = en + x - ex and a = (^.^"'(ö) =

en_, — e„. Therefore, by (iii)

0K-2.J = s_a@("n-ij = S-a0(^-,,J + S-.ofà-,,„+,)•      (12)

a G r(y„_, „); therefore the special constituent of ©(i/a(w„_,,„)) is ®(ñ:n_2n). The

other constituents must occur in irn_x and have a in their T-invariants, but there

are no such constituents, and hence

s_„e(?B_liB) = 0(^_,,j + 0O?n_2,j. (i3)

«k-M+i« " «Wi - e, and yB_1>B+1 - (en+x - e,) - YB_2,„+j. Therefore

©(^(^n-Lii+i)) = 0(^/.-2,n+i) + ©o» where 0O is as in Theorem 3.3. The only

candidate for 0O is ®(tTn).

Using ß = en — en+x and the usual multiplicity argument it follows that @0 =

0(77„) and hence

S_„e(irB_ljB+1) = @(^/,-2,J + 0(^-2,n+,) + ©(*„). (14)

The equations (12), (13) and (14) imply (iv).

(v) We have ?„_,„_, = y„_2>n - ä, where ä = e„+x - e2 and a = (<i>n_2,„)"'(«)

= En _ «/.+ !• Therefore, by (iv)

0K-2,,,-.) = S..8K.J = S_a0(^_2jJ + 5_a0(^_,,J

+ S_o0(in_2,„ + 1) + S_a0(^_ljn+1) + S_a©K,).       (15)

Since a is in the T-invariants for wB_,B+1, tt„^ , „+,, w„_, „, we have

5-„@(%_2,„ + ,)= -0(^_2,n+.)' (16)
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s_ae(*F„_M+1) - -©(^-,,„+,)' (17)

5-„0(^-,,J= -0(^-,,n). (18)

a & T(îrn_2n); therefore ®(Ua(Tfn_2n)) = @(7rn_2n_,) + @0. Candidates for @0 are

0(^,-2,«+ i)._0(^-i^+i) and 0(^-i,J- Let ß = e„_, - e„; then ß G T(irn_x„),

and ß G T(ïrn_x„), ß G t(7L,_, „ + 1). By the usual multiplicity argument we may

conclude that 0O contains 0(w„_,„) once and does not contain 0(w„_ln+1). For

the fact that the multiplicity is one we need to use the first three character

identities. Using ß = 2e„+1 for ñn_2tH+i we also get that ©0 contains 0(w„_2b + 1)

once. Hence

0(t4(^-2,J) = 0(^-2,«-.) + 0(^-1, n) + 0(^-2,n+l).

and, therefore,

S-M**-2») = 0(^-2,J + ®(*n-2,n-x) + 0(^-.,J + 0(^-2,„ + .)-     (19)

By a similar but much easier argument one gets

S-M*m) - ©(O + efa_lilI+1). (20)

Now, putting together (15)—(20) we get (v).

(vi) Suppose now i + j = k, 1 < k < 2« — 2. We want to prove (vi) by back-

wards induction on k. To start the induction we have to prove that if k = 2n — 2

then 0 < i < n - 3,

©K2/.-2-,) = 0(*U-,-2) + 0(^,2„-,-i)

+ 0(^+.,2/.-,-2) + 0(^+.,2„-,-l)- (21)

We have y,,2„_,_2 = y,,2„w-i - « with S - - e2 - ei+4 and a = (<i>,j2„ _,_,)"'(a)

= e/ + 3 ~~ e;+4-

By (ii) we have

0K,2n-,-2)  =  S-„0(^-,-l) =  S-M^On-t-l)  +  S_aG(ñi,2n-i)

+ S_a®(ñ¡+ i,2„-,-.) + S_a©0r,+ 1). (22)

a € t(77,.2„_,_,); thus 0(t/a(iFi>2B_,_,)) = ©(w^.,.^ + ©0- Candidates for 0O

are 0(w,2„_,) and @(7r,+ 1). Using ß = eí+2 - e, + 3 we conclude easily that @0 =

0(77,2„_,). Therefore

S-Mïm-i-y) = 0(^,2n-,-i) + 0(^,2„-,-2) + &(«,*,-,)■ (23)

By a similar argument we get

S-M'l*lO»-l-l) " 0(^+.,2,-1-l) + 0(^,+ .,2«-,-2) + ©k+i)-

Since a is in the T-invariants for w,2„_, and iri+x we get the required results.

Suppose now that we know that (vi) is true up to a fixed 1 < k < 2n — 2 and let

us prove it for k — 1. We have to distinguish two possibilities, k — 1 even or k - 1

odd.

We first prove it in the case k — 1 even. So we want to prove that 0 < i <

[(* - l)/2] - 2, e(îr,.,) = ©K,.) + ©K,.+ 1) + e0r,+ 1</) + ©v^,^,) where y =
k - I - i, knowing that it is true with t instead of k — 1, t > k. (Note that

5 < k < 2n - 3.)



460 M. W. BALDONI SILVA AND H. KRALJEVIÓ

We have ya_,_, = y, + ,,*_,_, - « with a = e, + 3 - e, and

« = (<V+l^-,-i)",(â) = e, + , = e, + 2.

Hence, by the induction hypothesis

0K*-,-i) = S-.»(«i+u-i-i) = S-«©0w-.-i) + S-«3(«,+u-i)

+ S_a©(^+2,*_,_,) + S_a0(^+2,*_,).

a is in the r-invariants for w(+2,*-/i an(i ^/+2,*-/-i' while it is not in the T-invariants

for ïi+w-_,_„ ïl+w_,. Thus è(î/a(w/+u_,_,)) = 8(«U-i-i) + ©o, where @0 has

the usual meaning. By means of the root ß = eí+2 — e,+3 we may conclude that

0O = 0(^+2,*-,-1)-

«r»i+i,A_/(«) = el+3 - ex and y, + w_, - (e,+3 - e,) = ya_,; thus 0(t/a(ir/+u_,))

= e(ffa_,) + ©o- Since k + 1 is even and 1 < i + 1 < (k + l)/2 - 2 by the

induction hypothesis we know that the constituents of "ñi+Xk_¡ are ñt+i<k_¡,

w; +,*_,+ ,, ñ¡+2jc-i and ^, + 2,A:-/+r a is in tne ^-invariants of only the last two;

hence the candidates for @0 are ®(^¡+2tk-¡) and 0(w,+2Ä_,+ 1). Using ß = e1+2 —

e1 + 3 and the multiplicity theorem we get that 0O = ®(ñi+2tk-i).

With all this information we get the result.

The proof in the case k — 1 odd is a little more complicated; we indicate the line

of proof. We have to distinguish two cases: (a) 0 < i < (k/2) — 3 and (b) / =

(k/2) - 2.
Let us consider (a) first.

Va-,-1 = Y, + i,*-,-i -5,       ä = el+3 - ex,

a = (<f>, + u-,-i)~'(«) = £, + i - e.+2-

Then by the induction hypothesis we have

8(^w-i) = S-M*i+iji-i-i) = S-«©0w-/-i) + ^-«0(^+1,*-,)

+ s_M*,+2jc-i-i) + S-M«i+xk-i)-

Since a G T(^+2>fc_,), a G H^y^.,), a <2 T(w/+,jJfc_/_1), a g t(íF,.+ u_,.) exactly

as in the case k — 1 even we may conclude

S-a&(ni+2,k-i) =  -0(^ + 2,*-/)-

S_„0(w/+2>t_,._,) = -ö(ff/ + 2^-,-l).

S_a0(^,+,,,_,_,) = 0(^,+,,,_,_,) + ®(ñ,k_,_x) + 0(^.+2j,_,._1).

Also @(C/a(77,+ ,*_,)) = 0(wj-,*_/) + @0 where @0 has the usual meaning. To find

candidates for 0O we have to know the constituents of w, + 1¿_,. If k < 2n — 2

again we do not have any problem and we may conclude by the induction

hypothesis that

S-M*i+i*-i) = 0(^+..*-/) + ©K*-/) + 0(W-.)- (24>
If k = 2« — 2, then by (ii) we have that

0K+1,*-,)  = 0K+l,2*-.-2) = 0(^+l,2/.-,-2)  + 0(^, + 2,2«-/-2)

+ 0(^+,.2„-,-l) +  0K + 2)-
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« e t(«/+2¿»-í-2)> « G t(^,+z)» « £ 1-K+i,2«-,-2). « £ ,<"(«i+ij»-/-i)- Therefore

the candidates for @0 are 0('?,+2,2„_,_2) and 0(^,+2). Using the root ß = e,+2 —

e,. + 3 we may conclude 0O = 0(¿F,+2,2„_,_2) and ®(Ua(ñi+x¡2n_¡_2)) = 0(^,,2n_,_2)

+ ®(ñ¡+22n_¡_2). Therefore (24) is true also for k = 2n — 2 and so the result holds

true for (a).

Let us now consider (b), i.e. / = k/2 — 2. Recall that 2 < k < 2n — 2. We need

to distinguish two subcases

(b,) 2 < k < 2« - 4.

(b¡) k = 2n -2.

For (b,) using yift_/_, = ya_, - (ek_i+x - e2) the proof goes on without any

problem and we omit it; we have only to be careful in the choice of the root to

apply the multiplicity theorem; it will be different depending on whether k — i + I

= n + 1 or k — i + 1 < n. (If k — i + 1 = n + 1 choose ß = 2en + x; if k — i + 1

< n chooseß = ek_i+x - ek_i+2.)

Let us consider (b2). In this case /' = n — 3 and k — i — 1 = n, so we want to

prove

0K-3.J = 0(^n-3,J + 0(^-3,«+.) + 0(^n-2,J + 0(^-2,n+l)- (25)

y„_3,„ = Y„_3,„+i - 5, a = - 2e2 and a = (<t>„-3,n+x)~x(a) = 2e„ + 1. By the induc-

tion hypothesis, we have

©K_3jj = s_0©K_3,„+1) = 5_a©(^_3>n+1) + s_a©(^_3,„+2)

+5,_ae(íF„_2tB+,) + S_a@(ñ„_2¡n+2).

It follows immediately that

S-M^-3.n+2) = -efo-^+i).    s_ae(ïB_2jB+2) = -0(^_2,B+2).

Furthermore, we find easily

S_a©(77„_3)„+1) =  0(^-3,,,+ ,) + 0(^-3.J  + 0(^-3,n + 2)-

For the last equality we use the root ß = e„ — e„ +, in the multiplicity argument. To

compute S_a@(ñ„_2 +x) we use (ii) and the root ß = en — en + x in the multiplicity

argument to get

S-«0(^-2,„+.)   =   0(^-2,„+.)   +  0(^-2,J   +   0(^-2,n + 2)-

From these equations (25) follows.

(vii) We will use again the backwards induction on k. Suppose k = 2n — 4; then

we want to prove that

0(*„-3,„-l) = ®(<-3,n-l) + 0(^-2,n-l) + 0(^-3,J + 0(^n-2,J + ©fö-!,„)•

Y«-3,»-i = ln~3,n - « with â~ = en+x-e2 and a = (4>„-3J~\ ä = en - e„+x.

Then, by (vi)

0(^-3,»-!)   =   5'-«0(ff»-3,n)   =   S-a®(ñ„-3,n)  +   S-a^n -3,/.+ l)

+ 5_a©(^_2,„)+ s_ae(ñn-2,n+i)-

a is in the T-invariants of ■ifn_3n+x and wn_2n+1 while it is not in those of irn_3B,

K-2M- Thus 0(^0(^-3,«)) - 0(^-3,/.-1) + 0o- Candidates for @0 are 0(w„_3>„ + 1)
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and ©K_2,„+1). Using ß = 2en+x we get that @0 = @(wn_3,„+1). <£„-1¡n(<x) = e„+i

- e2 and y„_2„ - (<>„_2,„a) = yn_2,„_^ so ®(Ua(iï„_2n)) = ®(€„_2n_x) + 0O.

Combining the character identity for 0(^„_2n) and Proposition 3.2 we conclude

that candidates for @0 are 0(w„_,„), 0(7rn_2n + 1) and ®(ñ„_x n+x). Using ß = 2eB+1

for 7Tn_Xn + x and 77n_2n+, and ß = en_x — en for îrn_, n and ^n_2n we conclude that

©0 = 0(^-2.n+i) + ®(^-i.J  and 0(t/a(^_2i„)) ='©(ÍFn_2,n_1') + ©(^_2,„+1) +

0(^-i,J-
The desired result is now straightforward.

Suppose now that (vii) is true for t > k and prove it for k — 1. We have to

consider the two possibilities

(a) k - 1 odd.

(b) k — 1 even.

We first consider (a);  1 < k — 1 < 2« — 5 and / = k/2 — 1 and we want to

prove @(77a_^,) = ©(*;•*_,_,) + ®(ñi,k-,) + @(^+2,*-/+i)-

Y<,*-/-1 = Ji,k-i - «-   where   a = ek-i+i - e2   and   « = Or».,*-/)"'« = «*-, -

e^_,+ 1. Therefore, by the induction hypothesis

0K,_,_,) = s_ae(^k_x) = s_a&("i,k-i) + s_ae(*i+i,k-i)

+ S-a@(ñi,k-i+i) + s_a©(Ä;+u_,+1) + s_a®(ñi+2k_i+x).

Since a is in the T-invariants of ñ¡+]¿_¡, ñik_j+x and vi+lifc_/+1 we have

•^«0(^+1,*-,) = -0(^ + 1,*-,).

*-a0(*a-i+i) = -0(^,*-¿+i)'

5_a0(?¿+u_(+1) = -0(^,+1,*-,+1),

a G (wa_(); hence

0(^(^-,)) = 0(^-,-.) + 0o-

Candidates for 0O are @(w,+ 1A_,), 0(wa_/+1) and 0(w,+ 1A:_,+ 1). Using ß = e, + 1

- ei+2 for ^+u_,. and JFI+Ut_l+,, and ß = e*_<+, - ek_l+2 for wra_/+1 we get

that ©o = 0(?(>*_/+1) + 0(^+,,*_,); hence 5_„0(^_;) = 0(^a_,) + 0(^_,_,)

+ ®(«u-/+i)+ 0(*w-«)- _
Let us now compute 0(i/o(wJ- + 2,Ä_l-+1)). It is easily obtained that

0(t/„(*/+2,*-,+ i)) = e(fl+u_l+l) + ©o- (26)

To find candidates for @0 we must distinguish three possibilities

(1)* = 2« - 4,
(2) k - 2« - 6,

(3) A: < 2/j - 8.

If & = 2/j - 4 then (26) becomes 0(La(wn_1 J) = 0(tFb_2jB) + ©0 and a = e„_, —

£n-

By (iii) together with Proposition 3.2 we are forced to conclude that 0O = 0. If

k = 2n — 6 then (26) becomes ®(Ua(7rn_2n_x)) = ®(ñn_3„_x) + @0 and a = e„_2

- e*-i-

By (v) together with Proposition 3.2, the only candidate for 0O is ®(tt„). Using

ß = en - en+x the usual multiplicity argument gives 0O = 0. If k < 2« — 8 then by



COMPOSITION FACTORS 463

the induction hypothesis the only candidate for 0O is @(w,+4fc_,+3). Using ß = e(+4

- e,+5 we get again 0O = 0.

So in each case ®(Ua(ñi+2k_i+x)) = 0(7r,+,*_, + ,). It is now a simple matter to

get the required results.

The proof in the case k — 1 even goes on without any problem and we omit it.

The theorem is thus completely proved.

4. Composition factors for singular infinitesimal characters. In this section we shall

consider the reducible principal series representation w(y) such that y G D + is

singular. By Theorem 2.2, the reducibility of ir(y) implies that y is integral. So we

have to consider y, contained in at least one wall, such that

n+l

7=2   a7<7> 0)
7=1

Oj e Z,        1 < y < n + 1, (2)

ax > a2,   ax > - a2,   a3 > ■ ■ ■ > an + x > 0. (3)

If y satisfies (1), (2) and (3), then it is easy to see that y can be contained in at most

two walls.

In the proof of the character identities we shall use very often a result from [12].

For the convenience of the reader we shall state this in terms of our notation. Let

X G tc be integral and contained in the wall separating C, from C, + 1 (0 < i < n).

We denote by tt + (X) (resp. tt~(X)) the limit of discrete series representation with

infinitesimal character Xa and determined by C,+, (resp. C,) (see [7] and [16]).

Let C be a Weyl chamber in it* (or (z'b~ + a)*). Let y be dominant with respect

to C. Let y be the highest weight (with respect to C) of an irreducible finite

dimensional representation of G. Suppose that y + p is strictly dominant with

respect to C. Let ^+il denote the Zuckerman's functor as introduced in §2. Recall

that for the dual t of the restriction to tc (or b¿) of any inner automorphism of gc,

^+T" = ^+". Especially, for w in the Weyl group ^+w" = <Py+,i.

Theorem 4.1 [12, Theorem 6.18 and Corollary 5.12]. (a) Let Q be a chamber in

bc, y E be integral and dominant (with respect to Q). Let p be highest weight (with

respect to Q) of an irreducible finite dimensional representation of G such that y + p

is strictly dominant with respect to Q. Then

4>]+*(*(y + m)) = <y\

If there exists a root a simple for Q such that (a, y) = 0 and either compact

imaginary, or real, or complex with ®a negative, then

4>yy+»(*(y + p)) = o.

If such a root does not exist, then i^+(1(tF(y + p)) = w(y).

(b) Let X G tc integral and contained in the wall separating Ctfrom C, + 1 (0 < i <

n — 1). Let p be the highest weight (with respect to C¡, C, + 1, respectively) of an

irreducible finite dimensional representation of G, such that X + p is strictly dominant

with respect to C, Ci+X, respectively. If there is a compact root a simple for C,, C) + I,
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respectively, such that (a, X) = 0, then

^+"(tt(a + p)) = 0.

If such a root does not exist, then ^A+fl(7r(X + p)) = 7r~(X), ^a+,i(w(X + p)) =

■tt + (X), respectively.

Let now y = 2"= ¡ aiei G D + be integral and contained in only one wall. We

have the following possibilities:

(I) a2 = — ax, ax ¥= a-, 3 < j < n + 1, ax > 0.

(II) a2 = 0, a, > 0, ax 7¿ Oj, 3 < j < n + 1.

(III) a, = a, for some /' G {3, . . . , n + 1}, a2 > 0, a2 ¥= a,, 3 < y < n + 1, a, >

«2-

(IV) a, = a, for some i G (3, . . . , n + 1}, a2 < 0, —a2¥=aj, 3 <y* < « + 1,

a, > - a2.

(V) a2 = a, for some i G {3, . . . , n + 1), a, ^ a,-, 3 < j < n + 1, a, > a2.

(VI) a2 = — a,, for some /' G {3, . . . , n + 1), ax ^ Oj-, 3 < j < n + 1, ax > — a2.

Let such y be given. If y is of type (I), (II), (III), (IV), (V), (VI), let b denote a„

oj, a2, —a2, ax, ax, respectively. Lety G (1, ...,«} be defined as follows: if b > a3

we set j = 1 ; if an+x > b we set j = n; otherwise, j is the unique integer such that

aj+x >b >aJ+2.

In what follows, r (or t,) will always denote the dual of the restrictions to tc of

an inner automorphism of gc carrying tc to be and such that t(P) = C, where P

and C will be specified systems of positive roots in <#> and A.

If a is a root, wa will denote the reflection with respect to a.

Theorem 4.2. Let y = 27» î o,-e,- e D+ be integral and contained in exactly one

wall. Let j be defined as above.

(i) If y is type I, then

®(TT(y)) = e(*r-(n)) + 0(^ + (n)),       r(Pj_h2n_j_x) = C,_,.

(ii) .//y » of type II a«¿/' = «, w(y) is irreducible.

(iii) 7/y « of type V, / = n + l,y = « — 1, i/je/î

e(tf(y)) = ©Or(y)) + ©(^(ry)),        t(P„_2,J = C„.

(iv) 7/y is of type V, i < n,j = i — 2, then

0(w(y)) = 0(w(y)) + 0(w(wy))

wAere u> = we¡_ewei_e:+: (i.e. wPt_3i_x = />,_,,).

(v) If y is of type VI andj = i — 2, then

®(*(y)) = 0(^(y)) + ©(TT-(Ty)),        tJ»_3j2b + 2_, = C,_2.

(vi) 7/y « of type IV a/irfy = i — 1, Z/zen

0(^(y)) = 0(jr(y)) + ©(^(ry)),        t7> _2>2„+2_,. = C,_2.

(vii) 7« all the other cases

0(tt(y)) = @(w(y)) + @(w(wy))
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where

we,-9+a.     y of type II, V, VI,

we2-eJ+2>     y of type III, / < n - 1,
W    =    Í TTT       •

"W Y °/ 0^ 111,7 = n,

Vi+«»'     y of type IV.

Proof. The method of the proof is the following. For each such y we specify a

system of positive roots P in $ with respect to which y is dominant. Then we

choose an irreducible finite dimensional representation of G with highest weight p

(with respect to P) so that y + p is strictly dominant with respect to 7*. Using

Theorem 3.6 we know the composition factors of w(y + p). All of them are of the

form tt¡j(x) or irk(x), where x = Xy+,i- For each composition factor it we use

Theorem 4.1 to compute ^^^(tt). Since ^yJr>i(TT(y + p)) = w(y), we shall get the

required character identities due to the exactness of the functor 4'y+li-

Let y be of type I. Take P = Pj_X2n_J+x, p = e, + 2itô ek (p = ex if y = 1). By

Theorem 3.6(i) we have (with x = Xy+>1)

©Ky + p)) = ©(^..^.^.(x)) = ©(v,,2„-7 + i(x)) + 0(^7-i(x)) + 0(^(X))-

Therefore,

®(n(y)) = ©(^(^.^^.(X))) + ©(^"("/-.(X))) + ®(W+fiWx)))-

ß = e, + e2 is simple for Pj_x2n_j_x, it is real and orthogonal to y. Therefore,

•rVY+"(^-i>-7+i(x)) = ^+^(y + P)) = o.

Let rPj_X2n_j_x = Cj_x. Then rex = en + x, re2 = tp rek = ek_2, 3 < k < j + 1,

rek = ek_x,j + 2 < k < n + 1; hence

7-1 n

TY =  2 ak + 2£k - a2£j +    2    ak+i£k + axen+x.
k=l k=j+l

£/i+i — ej is the only root simple for C7_, and orthogonal to ry. But en+, — e, is

noncompact; therefore

^+M(^7-.(X)) = ^"VWy + p))) = W"(ry).

Let t,7^_12„_7+1 = Cj. Then r,y = ry. e, - en+x is the only root simple for C,

and orthogonal to r,y. But & — eB+, is noncompact; therefore

W^jix)) = •Tr^W^y + P))) = ^ + (T,y) = 77 + (ry).

In this way the theorem is proven if y is of type I.

Let y be of type II. Take P = 7^_ln, p = 2Xt\ eJy x = XY+M- We distinguish

three cases:

(a)7 < n — 2. By Theorem 3.6(vi) we get

©OKy))-  2 0(^+M(^-.+a,,+6(x)))-
a,* = 0

2e2 is simple for Pj-Xn, complex,  9(2e2) = — 2ex is negative for 7^_ln and
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(2e2, y) = 0. Therefore,

^y+"(^-u(x)) = W*H*{y + m)) = o.
Similarly, ^Y+"(^,„(x)) = «C'^Wy + p))) = 0 where w = wj<nwr_\n =

we -e.   (use again the root 2e2).

ñj'_ln+x(x) = w(w(y + p)), where w = Wj_Xn+xwr_xXn = w^. The only root sim-

ple for Pj_Xn+x and orthogonal to wy = y is —2e2. Since 0( — 2^ = 2e, is positive

forPy_ ,,„+,', we get^+"(^_lilf+I(x)) = <Y+M)(^(w(y + p))) = ÍF(wy) = ¿F(y).

"7,/.+ i(x) = ^(wi(y + P))' where w, = wei_     vt^. Exactly as above we find

^+"(í,,„+1(x)) = WÜ+^Hwiiy + P))) = *(*!?) = <r(wy)

where w = w,   .   .
el~ej + 2

(h)j = /z — 1. By Theorem 3.6(iv) we get

©Wy)) =   2  0(^+M(^-2+a,+z,(x))) + 0(^+"(^(x))).
a,b = 0

Exactly as before we obtain the following identities:

W+^n-lJx)) = 0,

<rvY+M0Wx)) - o,

^+"(^-2,n+,(x)) = *(y),

W + lí(ñ„-i,„+x(x)) = w(w,y) = w(wy),

where w, = w^.^w^, w = H>ei_w

"■„(x) = "-(T(y + p)), where tP„_2„ = C„. Then

n-2

TY =  2 «, + 2£, + «A-i + a„ + 1e„ + a2en + x.
i=i

The compact root 2en + x is simple for C„ and orthogonal to ry; therefore

W+ßMx)) = ^TT(7+ft)(^(T(y + p))) = 0.

(c)7 = n. By Theorem 3.6(iii) we get

©My)) = 0(^+*(iF„_1)n(x))) + ©Orr^-M+.M))-

It is easy to see that ^+"(^_,,„(x)) = 0 and ^Y+,1(^_1,n+1(x)) = ^(y)- Therefore

©Wy)) = 0(w(y)), i.e. 7r(y) is irreducible.

Therefore, the theorem is true in case y is of type II.

Let y be of type III. Take P = P,_3i/, p = 2'^"J3 ek + e,, x = Xy+fi- We have to

distinguish three cases:

(a)7 > i. By Theorem 3.6(vi) we get

©Ky))=     2     0(^ + "(^-3 + a, + 6(x))).
a,b = 0

Since e, — e¡ is a complex root simple for P¡-3j, orthogonal to y and 9(ex — e¡)

G Pt_3J, it follows that ^Y+"(^_3i/(x)) = 0.

ñi_3J+l(x) = ñ(w(y + p)) where w = w +j if 7 < n - 1 and w = w2<?2 if7 = n.

By means of the root ex — e, we easily get »/'YY+'Xw,-3i/+i(x)) = 0.
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"TTi-2j(x) = 'ñ(w(y + p)) where w = we¡_e and wy = y. The only root simple for

Pj-2j and orthogonal to wy is e, — ex. But it is complex and 9(e¡ — ex) G P¡-2¡.

Therefore,

ifVY+'1(ï<r/_2i/(x)) = íF(wy) = t7(y).

^_2i/+1(x) = ^>i(y + P))> where w, = h^.^w,^ if j < « - 1 and w, =

w2e2»vei_e if 7 = n. Set w = w * if j < n - 1 and w = w^ if y = n. We have

wiY = ^Y- The only root simple for P¡-2j+x and orthogonal to w,y is e¡ — ex.

It is complex and 9(e¡ — ex) G P¡_2j+X; hence

W+M(^-27+i(x)) = ñ(wxy) = w(wy).

(b)y = i - 1, i < n. By Theorem 3.6(vii) we get

0(t(y))=  2 e(^+'(t,HM+i(x)))Te(f;+'(iM.(x))).
a,6 = 0

One easily obtains that

«rVY+"(^-3,i- .(x)) = 0       (use the root ex - e,),

>rVY+"(^-3,,(x)) = 0 (use the root ex - e¡ simple for P,_3< = we2_e+P,._3,._,),

^Y+"(^,-2,,-i(x)) = ^(Y)'

^y+li(^i-2.i(x)) = w(w,y) = ñ(wy),    wx = h^.^ we,_e¡, w = w,2_w

^-i,,(x) = w(w(y + p)) for w7>,_3,_, = T*,^,. The compact root e¡ — e, + 1  is

simple for T^,, and orthogonal to wy. Therefore tä+l%wt_t ,(x)) = 0.

(c)7 = n, i = n + 1. By Theorem 3.6(iv)

0("(y)) =   2 ®(%y+,l(tn-2+a,n+b(x))) + 0(^Y+M(^(x)))-
a,b=0

In the same way as in the case (b) (only using 2e2 everywhere instead of e2 — e¡+x)

we get

%y+^n-2,Âx)) = 0,

^Y+^„_2,n+1(x)) = o,

^+"(^-.,n(x)) = ^(Y)>

^yY+M(7r„_1„+1(x)) = w(wy),        w = w2e2.

We have tt„(x) = 7t(t(y + p)) where rPn_2n = C„. The compact root e„_, — en is

simple for C„ and orthogonal to ry. Therefore, »/'Y+''('rn(x)) = 0.

Therefore, the theorem holds true also if y is of type III.

Let y be of type IV. Set P = 7>,_3,2„ + w, p = e,2*"J3 ek, X = Xy+„- We have to

distinguish two cases.

(a)7 > i. In this case we have by Theorem 3.6(vi)

0«y))- 2 0(^+M(^-3+a,2„+,-7+fc(x)))-
a,b = 0
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The complex root ex — e¡ is simple for P¡_32n+X_j, orthogonal to y and 9(ex — e¡)

£ Pt-^+x-j- Therefore, ^Y+"(^_3,2„+1_/x)) = 0.

w,-3,2«+2-7(x) = TT(w(y + p)), w = ™e2+eJ+l- e\ ~ *i is again simple for

p¡-32/1 + 2-7'   orthogonal   to   wy   and    9(ex  - e¡) $. P¡_32n+2_j.   Therefore,

^¿(^-3.2n+2-7(X» = 0.

"■/-2,2/1+1-7(x) = w(w(y + p)) where w = we . We have wy = y. e, — e, is the

only root simple for 7>,_22n+1_y and orthogonal to y. But e, — ex is complex and

9(e, - e,) G JP,._2>2„+,_,. Hence, ^Y+"(í,_2,2n+1_,(x)) = «M-

7r/-2,„+2-7(x) = w(w,(y + p)), where w, = we[_ewe|+(,+i. Set w = we2+e.+ [. Since

W|Y = wy we get easily that

W+tí(ñi-2,2n+2-j(x)) = w(w,y) = ÍF(wy).

(b)y = i — 1. By Theorem 3.6(h) we have

0(W(y)) = 0(^Y + ,Í(^-3.2n + 2-,(x))) + 0(^ + f,(^-3,2n + 3-,(x)))

+ ©(^ + "(^-2,2„+2-,(x))) + ©(^"(^(x)))-

In a quite similar way as above we get:

^ + "(^-3,2n + 2-,(x)) = 0, ^Y + "(^-3,2n+3-,(x)) = 0

(use the real root ex + e2 which is simple for 7>,_3i2n+3_, = wej+e.7>,._3,2,,+2-,)

^+"(^-2.2n+2-,(x)) = *(y).

7r,-2(x) = w(r(y + p)), where rPi_32n+2_i = C,_2, we have

Í-3 „

TY =  2 "k + 2ek + û,e,_2 - a2e,_, + 2 % + !«* + %+i-
*=i * = z

e,_2 - e„+1 is the only root simple for C,_2 and orthogonal to ry. But it is

noncompact; hence \py+**(mi_2(x)) = ", + (ty).

Therefore, the theorem is proven in case IV too.

Let y be of type V. Set P = Pj_Xi_x, p = ex + 2*=3 ek, x = Xy+M- We have to

distinguish three cases.

(a) 7 < / — 2. By Theorem 3.6(vi) we have

9Wy))-   2  8(^+^_,+fl,_1+4(x))).
a,b = 0

The only root simple for P and orthogonal to y is the complex root e¡ — e2. But

9(e2 - e2) is in P; therefore W+'Xñj-u-iiX» = *vY)-

^,;-i(x) = ""(vKy + p)) where w = w, . The only root simple for T,,., and

orthogonal to wy is e, - e2. But 9(e¡ - e2) G /,,,_,; therefore ^J"*'''(^_i(x)) =

w(wy).

Finally, we easily find

«rVY+*(*7- .,,(X)) = 0, ^Y + "(^(X)) = 0.

(In both cases use the root e¡ - ei + x if i < n and e2 + en+x if / = n + 1.)
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(b)7 = i — 2, i < n. By Theorem 3.6(vii) we get

©wy))= 2 0(^+^-3+a„-.+z>(x))) + @(^r''(^-.,(x)))-
a,b = 0

We easily get as before

W**(*i-v-i(x)) = *(?)>
^+"(^-3.,(x)) = 0,

>r'yY+'x('?,-2,,(x)) = 0       (use the complex root <?, - ei+x),

V'y + M(^, -2,/-1(x)) = 0       (use the compact root ex — e2).

Finally, w,_M(x) = w(w(y + p)), w = wei-e,we2-e,+ ¡- The only root simple for

P¡-\,i ancl orthogonal to wy is the complex root ei+x — ex. But 9(ei+x — ex) G

7>,_M; therefore*»+''(»,_y(x)) = *(wy).

(c)j = n — 1, i = fi + 1. By Theorem 3.6(iv)

0(Hy)) = 2 0(^Y+"«-2+o,n+i(x))) + e^'KOd)).
a,6 = 0

By similar arguments we easily get:

^(^.„(x)) = *(y),

*7+"(^-2,n+1(X)) = 0       (use the root en+x + e2),

W+li(ñn-i,Ax)) = 0        (use the root ex - e2),

4'yy+fí{K-l,n+ÁX)) = 0       (use the root e, + e2).

wB(x) = «y + P)) where tP„_2„ = C„. Then

n-2

TY =  2 a*+2e* + <*&-i + a„ + 1e„ + a2e„ + x.
k = \

The noncompact root e„ — en+1 is the only root simple for C„ and orthogonal to xy.

Therefore ^Y+"(^(x)) = t+(ty).

Therefore, in case V the theorem is also true.

Finally, let y be of type VI. Set P = Py_,,2„+2_„ p = <?, + 2*„3 e„ x = Xy+„-

We have two cases.

(a) 7 < i — 2. By Theorem 3.6(vi) we have

©Wy)) =      2     ®(*r"(ñj-l+a,2n + 2-i + b(x))).
a,b = 0

Since e, + e2 is a complex root simple for P, orthogonal to y and such that

ß(e, + e2) G P, we conclude that»//YY+^,_12,,+2_,.(x)) = 0.

We have ^2n + 2_,(x) = w(w(y + p)), w = we      .. Using the root e¡ + e2 we find

«f-r^+z-.to) = o.
We have ^-_,,2„ + 3_,(x) = w(w(y + p)) where w = w,j+v Then wy = y. -e2 -

e, is the only root simple for P-_1j2b+3_,- and orthogonal to y. —e2 — e¡ is complex

and 9(-e2 - e,) G P,_1>2„ + 3-,. Therefore ^YY+íl(w,_12„+3_,.(x)) = ñ(wy) - í(y).
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Finally ir,,2n+3_,(x) = v(wi(y + p)) where w, = w£|_e + we¡+ti. Set w = w,,_w

Then w,y = wy. The only root simple for P,i2„+3_, and orthogonal to wy is the

complex root -e2 — e¡, but 9( — e2 - e¡) G 7^2n + 3_¿; therefore

^y+J1(^j.2n+3-i(x)) = w(w,y) = w(wy).

(b)7 = i — 2. By Theorem 3.6(h) we get

®(TT(y))  = 0(^YY + ,l(^-3,2n + 2-,(x)))  +  ©(^Y + ,l(^-3,2n + 3-,(x)))

+ 0(^Y + "(^-2,2„+2-,(x)))  + ©(^"K^X)))-

Exactly as before we get

^ + "(^-3.2n+2-1(x)) = 0,

^Y+il(^,-2,2n+2-,(x)) = 0       (use ex + e2),

^Y + "(^-3,2n + 3-1(x)) =  *(y).

Finally, w¿_2(x) - w(t(y + p)), where tF,._32„+2_, = C,_2. Then

1-3 n

TY =   2  ak+2ek + «ie<-2 - »2e,-l +   2 %+l£Zt + «VWl-
*=1 A=i

e„+1 - e,_, is the only root simple for C,_2 and orthogonal to Ty. Therefore,

W+^i-zti» = »"(»Y).
By this the theorem is completely proven.

Theorem 4.3. If y e D + is integral and contained in two walls, then -rr(y) is

irreducible.

Proof. The possibilities for y are as follows.

(a) a2 = 0, a, = a, for some i G {3, . . . , n + 1).

(b) ax = a¡, a2 = a- for some z',7, 3 < i <j < n + 1.

(c) a, = a¡ = -a2 for some z G {3, ...,« + 1).

(d) ax = a,, a2 = -a, for some z',7, 3 < i <j < n + 1.

The method of the proof is the same as that in the proof of Theorem 4.2. In each

case we show that vr/yY+'i(7r) = 0 for every but one composition factor it of w(y + p).

But this is an immediate consequence of the proof of Theorem 4.2; for each of the

cases (a), (b), (c), (d) (or its subcases) one should only combine the two parts of the

proof of Theorem 4.2 which correspond to the two walls containing y.
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