
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 262, Number 2, December 1980

REGULARITY OF CERTAIN SMALL SUBHARMONIC FUNCTIONS

BY

P. C. FENTON

Abstract. Suppose that u is subharmonic in the plane and that

lim,.^^ 5(r)/(log r)2 = a < oo. It is known that, given e > 0, there are arbitrarily

large values of r such that A(r) > B(r) — (a + e)w2. The following result is proved.

Let u be subharmonic and let o be any positive number. Then either A(r) > B{r) —

ir2a for certain arbitrarily large values of r or, if this is false, then

lim (B(r) - o(log r)2)/log r
r—»oo

exists and is either + oo or finite.

1. Introduction. Let u(z) be subharmonic in the plane and define

B(r) = B(r, u) = max u(z),
\z\ = r

A(r) = A(r, u) =   inf   u(z).
|í|-i-

In [3] the following result is proved.

Theorem A. Let p > 1 be given and suppose that u(z) is subharmonic in the plane

and satisfies

lim   -^— = a < oo.
,-^B   (logry

Then, given e > 0,

A(r) > B(r) - (a + e)Re{(log rf - (log r + imf) (1.1)

for r outside an exceptional set E for which

f=Z¡,   (log rY~lJEn[i,r] t a + e

Theorem A is related to certain results of P. D. Barry. (See Theorem 4 and the

remarks in §7.4 of [1].) With Kjellberg's version of the cos tt\ Theorem [5], [6] in

view we might expect that functions extremal for Theorem A would have some

kind of regular asymptotic behaviour. In this direction we shall prove

Theorem 1. Suppose that u(z) is subharmonic in the plane and that a is any

positive number. Then either

A(r) > B(r) - 7r2a (1.2)
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for certain arbitrarily large values of r or, if this is not the case, then

\2
a =  lim    B(r) - a(log r)

/--►oo log r

exists and is either + oo or finite.

This result corresponds to p = 2 in Theorem A. It seems likely that, for the case

of general p, the limit of (1.3) could be replaced by

,.       B(r) - a(log rf ^
lim   ——-s—°—i— > _oo.

(log rf~x

Example. Any value of a admitted by Theorem 1 can in fact occur. Write

z = re'9, where -it < 9 < it. In the case a = + oo we may let u(z) = r cos 9. If

a = 0 we set

u0(z) = 0,        r < 1,

u0(z) = max(o-(log rf - o92, 0),        r > 1.

Evidently u0(z) is continuous and subharmonic except possibly on the segment

r > 1 of the negative real axis, since a(log rf - o92 = Re a(log r + i9)2 is

harmonic except for negative real z. If we write 9V 92 for the values of arg z which

satisfy respectively

-2* < 0, < 0,       0 < 92 < 2m,

and set

m,(z) = a(log rf - o92,        u2(z) = a(log rf - o92,

then m, and u2 are harmonic near the negative real axis and so

u0(z) = max(w,(z), u2(z))

is subharmonic there and so everywhere in the plane. Also, for any real a, we

define c by 2a log c = a, and set u(z) = u0(cz) — a(log cf. Then

B(r, u) = a(log r)   + a log r,        r > \ /c,

A(r, u) = B(r, u) - tr2a,        r > e"/c,

so that (1.2) fails and

B(r, u) - q(log r)
2

= a,        r > \/c.
logr

From the Riesz representation theorem for subharmonic functions it follows that

there is a unique nonnegative measure /x defined on all bounded, Borel measurable

subsets of the plane such that, if R is a given positive number,

u(z) = hR(z) + [        log
'-!

440 0-4)

for \z\ < R, where hR(z) is harmonic in \z\ < R. In the proof it is assumed that u is

harmonic at 0 but this may be achieved without loss of generality to our results by

replacing m in a disc about 0 by the Poisson integral of its boundary values on the



REGULARITY OF CERTAIN SMALL SUBHARMONIC FUNCTIONS 475

disc. Throughout the paper we shall assume that w(0) = 0, as we may do without

affecting the generality of our results. We define ¡x*(r) = ¡i({z: \z\ < r}) for r > 0.

Theorem 2. Suppose that u(z) is subharmonic in the plane and that a is a positive

number such that

A(r) < B(r) - m2o

for all large r. Suppose further that the limit a of (1.3) is finite. Let

k,(z) =  f log
■/|f|<oo

z

IÏÏ
¿/ta)=r log

-'n
1 + 4i*(r)

and define Bt(r) = max, ,   ,. w,(z). Then

,.        B,(r) - g(log rf
lim-= a.
/■-»» log r

Theorem 3. Under the conditions of Theorem 2

lim (n*(r) - la log r) = a.
r—»oo

The first part of the paper is devoted to showing that, under the conditions

expressed in the second alternative of Theorem 1, ¡i*(r) = 0(log r) when

lim (B(r) - a(log r)2)/log r < oo.

This is rather more drawn out than might be expected due to certain tiresome

modifications to u that seem to be necessary in the subsequent parts of the proof.

In §6 and §7 the growth properties of u and w, are considered and the theorems are

proved more or less together.

2. Decomposition of u. In [2] Barry has put into subharmonic form results derived

by Kjellberg [5, pp. 190-192] in the case u(z) = log|/(z)|, where / is an entire

function. Some of these are as follows.

With n*(t) = fi(\z\ <t) define

u,(z, R) = f        log
J\S\<R

1 -

u2(z, R) = f        log
J\{\<R

1 +
1*1

dKf ) = fR log

(2.1)

1 + dp*(t), (2.2)

u3(z, R) = u(z) - Uy(z, R). (2.3)

Then, with Bj(r, R) = max,z|_r m,(z, R), Aj(r, R) = inf|z)_, Uj(z, R),j = 1, 2, 3,

A2(r, R) < Ax(r, R) < Bx(r, R) < B2(r, R); (2.4)

and

-^B(2R) <A3(r, R) < B3(r, R) < ^B(2R). (2.5)

forO < r <±R.
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We note finally the subharmonic analogue of Jensen's Theorem [4, p. 473]: for

r > 0

«(0) + [' log - rfM*(/) = -±- (lr,u(reie) d9 < B(r). (2.6)
Jq t ¿IT Jq

Concerning u2(z, R) we have the following lemma.

Lemma 1. Let R{, R2 and R be positive numbers satisfying Rx < R2 < R. Then

<-R2A2(t,R) - B2(t,R)

fJa

Also

dt

t + R,

t - /?,
dt

t + R{

t- R,
dt.

I(Rl,R2,R)=fR^fJr.       S   Jn

R2 ds r* A2(t, R) - B2(t, R)

rx     s J0 t

R2   ds   C"

dt

-*K t/oM'-í«")*
rR ¡i*(t)    ,  fRi  1  .     \s + t\   ,_  i     r \ !  df i       _ jog -   ds

Jq t Ri      ̂  \ ^        M

The first part is contained in the proof of the Lemma in [3] and the second part

follows immediately from the first on integration.

3. Preliminaries. To prove the theorems we assume that for all large r

A(r) < B(r) - tr2a

and that

(3.1)

B(r) - q(log r) .     .
a = lim   —^—;—-— < + oo (3.2)

and aim to prove the existence of the finite limit (1.3). The first step is to show that

(3.1) and (3.2) together imply

ß*(r) = 0(log r)    as r -* oo (3.3)

and in order to do this we assume that

TmT   f^ = +
r^oo    log r

00 (3.4)

and deduce a contradiction. We have
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Lemma 2. Suppose that (3.1), (3.2) and (3.4) hold. Then there exists a subharmonic

function U(z) which satisfies the following conditions:

(i) «'.")-f*rf<^t<_±^ + 9l). (35)
/■-»oo °o ' 7T

(ii)   A(r, U) = 5(r, I/) - m2o (3.6)

ÄoWi /or e" < r < r0 and for 2r0 <, r < cc, for some r0 > e";

(iil)     ÜS  ^à = ». (3.7)
r^oo      logr

Set t;,(z) = max{«(z), B(\z\) — w2a}. Since 5(|z|) is subharmonic [7, §3.20] so

also is u,(z). Also, since u, and « have the same maximum on each circle about the

origin, (3.2) holds for ot; and it follows from (2.6) that (3.4) is equivalent to

lim   -l—— f2,ru(reie) d9 = oo,
'-»oo   (log r)  •'o

so that (3.4) persists likewise for v{. Now set v2(z) = vx(cz), where c is a positive

constant. Then B(r, v2) = B(cr, t>,) so that

..       B(r, o2) - "(log r? _, -,   ,
lim   -:-= a + 2a log c,
7z^ log r

and we choose c so that condition (i) obtains. Moreover

A(r, v2) = B(r, v2) — <n2o

for all large r, say r > Ä0, and (3.4) holds for v2.

Since (3.4) holds we conclude that, given any positive number M, there is some

number r0> R0 + 2 such that

B(2r0, v2) - B(r0, v2) > M log r0.

For if there were no such r0 we should have, for all large positive integers n,

5(2", v2) = 5(2", v2) - 5(2"" \ Cj) + 5(2"-', o2)

< A/(« - l)log 2 + 5(2""', o2) - 5(2"~2, v2) + 5(2""2, o2)

< . . . < \n2M log 2 + 0(\) = 0(log 2")2.

Thus B(r, v2) = 0(log rf and so 5(r, w) = 0(log rf. This together with (2.6)

contradicts (3.4).

Now w(z) defined by

w(z) = 0,        \z\ < 1,

w(z) = max{a(log|z|)2 - a(Arg zf, 0},        \z\ > 1,

is subharmonic in the plane (as was shown in the example following Theorem 1).

We define a new function

w(z) + D,        \z\<r0,

■ h(z),        r0<\z\< 2r0, (3.8)

v2(z),        \z\>2rQ,
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where D = B(r0, v2) — a(log r0f + m2o and h(z) is the harmonic function in r0 <

\z\ < 2r0 taking boundary values w(z) + D on \z\ = r0, v2(z) on \z\ = 2r0. Clearly

U(z) satisfies conditions (i) and (ii) of Lemma 2. Moreover, once we have shown

that U(z) is subharmonic, it is evident that (3.7) holds.

To show that U is subharmonic it is enough to show that h dominates both v2

and w + D for r0 < \z\ < 2r0. For \z\ = r0,

h(z) = w(z) + D > a(log r0f - m2o + D = 5(/-0, ü2) > v2(z),

while for |z| = 2r0,

A(z) = ü2(z) > A(2r0, v2) = 5(2r0, u2) - 7r2a > B(r0, v2) + M log rQ — m2a

= a(log r0f + M log r0 + D - 2m2a > a(log 2r0)2 + D > W(z) + D

provided M is large enough. This completes the proof.

4. Modification of U. Let U be the function of Lemma 2. From (3.7) it follows

that given any positive number K there are arbitrarily large values of r such that

B(r, U) > K(\og rf. Given one such value, say rx, take 2R to be the smallest

number greater than r, such that

o(log2Rf-B(2R,U)=A
log 2R v    '

From (3.5) such an R exists; and clearly (if K is large enough) rx < R so that

a(\og Rf - B(R, U)
log R <A-

That is

B(R, U) > a(log R)2 - A log R. (4.2)

Also

B(R, U) < B(2R, U) = a(log 2R)2 - A log 2R. (4.3)

We modify U(z) in \z\ > R so as to obtain a subharmonic function which is not

too large when \z\ is large. Let h(z) be the harmonic function in R < |z| < 25

which takes boundary values U(z) on |z| = 5 and 5(25, C/) on |z| = 25. This

function clearly dominates U on 5 < |z| < 25 so that

i/(z),        Izl < 5,
ÍAU) = ,

1 /i(z),        5 <|z|< 25,

is subharmonic in \z\ < 25. Further, h(z) > hx(z), where /i,(z) is the harmonic

function in 5 < |z| < 25 taking boundary values Vx = a(log Rf — A log 5 -

w2o- on \z\ = 5 and K2 = 5(25, U) on |z| = 5. (This follows from (3.6) and (4.2).)

hx(z) may be written explicitly as

K, - V
hx(z) -

We define

*'(2) ^ iWl log ^ + K- <4-4>

£/2(z) = 2a(log rf + 5(25, U) - 2a(log 25)2
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and show that, if 5 is large, U2(z) < h(z) for 5 < \z\ < 25 so that

is subharmonic. For 5 < \z\ < 25 we obtain, after some simplification,

h(z) - i/2(z) > A,(z) - U2(z)

5(25, £/) + .4 log 5 + 772o - g(log 5)2

log 2
2a log2|z|5  log M

25

25

I -0og25)2-^log22+,2a-a(log5)2 _ ^ ^ ^ j

>0

if 5 is large enough.

We note that WR(z) = Ux(z) = U(z) for \z\ < 5 and that

5(52, W*) = ^(52) < 10a(log5)2. (4.6)

5. Behaviour of ¡x*(r). Throughout this section the functions A, B, ¡i and ju* will

be understood to refer to the function WR. Set p = 53/2. Given / <\R we have

from (2.5)

A(t)= f       log
,/lfl<p

B(t)= f       log
,/|f|<P

'"7 ^a) + o(^5(2p)j,

MS) + °[LpBv-p)\

where |z,| = |z2| = /, and thus

A(t) - B(t) = f        log '

+ f log
•'Ä<lfl<p

-7 ¿M(n - f   log
•/Jf|</! r 4t(?)

f-*i ^(0+0^5(2p))

,|^*(.)+0^5(2p))

j - r
>y*,(r, 5)- Bx(t,R)- f   log

> A2(t, 5) - Z?2(r, 5) - ju*(p)log(|^) + o(^5(2p)).

Hence, for 1 < 5, < 52 = ¿R,

■R2 ds fsA(t) - B(t)
dt

JR,       s   J0 '

•R2 ds f*A2(t,R) - B2(t,R)
dt> p * f

Jr,     s J0

= TX- T2 + o(l), (5.1)
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from (4.6), and we estimate Tx and T2 in turn. From Lemma 1

■*1 s    ,^

^0 ' JR,    s \t - s |

Also

so

where

We have

Argil - -j^e'") > -Arc sin -^ > -

r, > -Í7r2ít*(5)-/(52) + /(51),

/(,)-/**£> */'! log
■'O ' ■'0    s

■ÏÏS

25

/ + s

t - s
ds.

I(R2)<f«^dtf°i log

= /    ̂ rf/J    -log
•'O * •'0     s

/ + s

t - s

s + 1

5-   1

ds

ds

\«>S*£!p-dt<\«*B{R) + 0{l),

from (2.6), and combining this with (5.2) we obtain

Tx > ->V(/0 -\tt2B(R) + I(RX) + 0(\).

A straightforward estimate yields

7W(P)f2/* f ;>g( j^w < 2,*(p)
JR,/R      s   J0    ' \ l        ' I

and combining (5.1), (5.4) and (5.5) we obtain

A(5„52) > -(2 +\n2)>i*(p) -\tt2B(R) + I(RX) + 0(1)

(4+i^2)  fR2 ^(t)
> —

log

10

log 5

>_1 f«  LIU. dt-^B(R) + 7(5.) + 0(1)
R     -'rV2     /

B(R2) -\it2B(R) + I(RX) + 0(1)

> -110a log 5 -[-rr2B(R) + I(RX),

from (4.6). On the other hand W(z) = U(z) for \z\ < 5 and thus from (3.6)

A(5„ 52) < f^ [J€w-r dt+lo   — dtj -

< -j7r2a(log R2f + jVaOog Rxf + 2-n3a log 52.
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Since 2tt3 < 70, (5.6) and (5.7) together yield

\tt2(B(R) - a(log R2f) + 180a log 5  > 7(5,) - ^(log Rxf.

Since R2 =^R the left-hand side of (5.8) is, from (4.3), no larger than

¿7T2(a(log 25)2 - A log 25 - a(log {-Rf} + 180a log 5

= log 5(2w2a log 2 - I Am2 + 180a) - \<n2A log 2 < 0

when 5 is large, from (3.5). Thus (5.8) reduces to

\<n2o(\og Rxf > I(RX).

481

(5.8)

(5.9)

Now W = Ux = U for \z\ < 5 and U satisfies (3.7). Thus, by taking 5 sufficiently

large, we can find 5, such that 1 < 5, < 53/2 <\R and p.*(5,1/2) > 5a log 5,.

For such an 5,

r¿'2 n*(t)

R¡/2 t

?/> 1    .   fR, 1

7(5.) >  («" *£&.*( --log
./».1/2 Í •/()

Í + S
<&

r v   '    ^JÄi/2   í      J0    s

r Rl/2 1      /•'/' 1
> 5a log 5. {    '    - dt i      - log

^Äfi/2 ?        ^0        5

/-I 1 rl 1
> 5a log Rx\        - dt\   - log

JRl</2t J0      S

t - S

s + 1

ds

s - 1

+ 1

ds

1
ds

= ^V(log Rxf,

which contradicts (5.9). The assumption which leads to this contradiction, namely

(3.4), is thus mistaken and we deduce (3.3).

6. Bounds on the growth of B(r). The remainder of the paper is concerned only

with the functions u and ux occurring in the statement of the theorems. In this

section we aim to show that (3.1) and (3.2) together imply

B(r) - q(log rf ^ _ _ --   B(r) - a(log rf-oo < a =  lim   —v /      -\—o ■ /   ^ n

,-Too log7" »■-»» log/"

As we have shown, (3.3) holds and we may thus introduce

lim
/•—»oo

< +00.    (6.1)

ux(z) =  lim   u2(z, R) = Reiz /"°°_i!*ííL dt\

We write 5,(/-) = maX| ,   r ux(z), Ax(r) = inf. .  r ux(z) and take the limit as 5 —» oo

in the first equation of Lemma 1 to obtain for all large 51 < 52

•R2Ax(t) - Bx(t) + m2a

'R, ' ~r
where

0 > / dt = p(Rx) - v(R2), (6.2)

"(r) =        —^ log
-/0        '

t + r

/ - r
dt — ir o log r. (6.3)
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We conclude that v(r) is nondecreasing for all large r. Integrating (6.3) over (1, r)

we obtain

f°° ¡i*(t)   , /-M ,      t + s   J       1   o /,       ^2      r
I     t    dt)x 7 log 7^7 ds - 2 * a(log r) - Sx

so that

Thus

/ - s

t + s

v(s)
ds

r^l dtf1- loglftl   * _ 'V,0g,f=/^ + 0(1).     (6.4)
J0       t J0  s       \ t — s 2 Jx     s

Bx(r) = rr-f^-dt
Jo    t(t + r)

= a(\og rf +-*- f 2}l dt + J(r) + 0(1),
77     J\ ITT    J\

where

where

J0       t    \r+ t      ^ J0 s     ë

the integrals of (6.6) yield

j{r).r£kü.h{t)dt,
Jo        t

2   f\/t\
~t~V2i   slog

s + t

s - t
ds\dt.

Two changes of variable in the integrals of (6.6) yield

¡x*(rt)

(6.5)

(6.6)

(6.7)

h(t)
1

1 +

1 + i

1 - s
ds.

We have

Lemma 3. h(t) > 0 for t > 1 and h(\/1) = -h(t) for t > 1.

For t > 1

2  r'/'l
('+1)4/    7 lo*

TT2-^ S

1   +   S

1   -  J

.      ,       ,, 2   ri/»/       2í2     2s* \

A4/l 1 1 \

-±(i+I + _L + _L+...)
772l <       32?2      3V /

7T2l 32        52 /

Thus h(t) > 0 for / > 1 and certainly h(\) = 0. Further, for / > 1,

\t) \  +  t ^Jo' s

I//

5 +  1

S -   1

Í  +   1

ds

t 2    r™ 1  ,

= TT7-^i1/,71°8

?      Ail! _ r'/'J.
=   1  +  / „2 [   2 J0        S

and this proves Lemma 3.

s - 1

log
Í + 1

Í - 1
ds) = -h(t)
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Now, from (6.7) and Lemma 3,

J(r)=f^h(t)dt+r^h(t)dt
J0       t J\ t

/■°° fi*(r/t) .,,.*.        f°° H*(rt) . , v   ,
= |     >* v /   > h(\/t)dt + I     — v   ' h(t) dt

J\ t Jx t

=  r^rt)-»*(r/t)h{t)dt>0 (6g)
J\ t

ß*(rt) - r*(r/i)

'l

Combining this with (6.5) we obtain

Hence

/»,(/■) > a(log z-)2 + 4 f 4^ * + °W-

„, , ,lm    «,(')-°0°8')2 > Hm | -UÜ ,*| > -a,,      (6.9)r? *)log r r— \ T2 log r

since f(i) is nondecreasing. Moreover, since for any /c > 1

,v J0    '0 + r)

<(kr>^-dt + o(rr^^dt)
Jo        t \ Jkr   t(t + r)     )

< B(kr) + o(f"l0gt{t++l<*' dt} = B(kr) + 0(log r),      (6.10)

we deduce at once from (6.9) that

B(r) - a(log rf
a = hm   -A-i-—v   B   Í   > -a,. (6.H)

But a < oo by hypothesis and from this together with (6.10) we deduce that

a, < oo. Thus, from (6.9),

lim   v(t) = A0
r—»oo

exists and is finite. From (6.5), then,

—   Bx(r) - g(log rf       7. j(r)
5,= hm-= —-An + hm   -r+-*-. (6.12)

logr w2   °     _„   logr

But

J(r)=fi°°\(ri*(rt) - ^(r/#(/)<fi<|"Ä rfr

- °(rJ2frrVr *) - o<i°-»-
so, from (6.12), ß, < oo. Since ß < ß, we deduce finally (6.1).
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7. Conclusion of the proofs of Theorems 1 and 2. We prove

Lemma 4. n*(r) = 2a log r + 0(1).

Since lim^^, v(r) exists and is finite we deduce from (6.2) that

f°°Ax(t)- 5,(Q + TT2a
I     - dt > -oo.

J\ t

Hence

Ax(r) >Bx(r) - 2m2a (7.1)

outside a set E of finite logarithmic measure, and thus

CVl±£l dt = J_ /%,(,-<>*) ¿0 = 5,(r) + 0(1)
y0 ? llT J0

J0    t(t + r)

as r —> oo outside Tí. Rearranging (7.2) yields

r^rt)-,*(r/t) dt =
J\ t(t +1)

Using (6.8) and the fact that h(t) < 1/(1 + t), we deduce that J(r) = 0(1), and so

(6.5) yields

Bx(r) = o(\og rf + \ f ^ dt + °0) <7-3)
IT    Jl t

as r —» oo outside £. Combining (7.2) and (7.3) we obtain

p4^ = a(log,)2 + ± f*Mdi+o(X)
J0 t IT* J\        '

as r —» oo outside E. Now, given r outside E, we may choose k satisfying 3 > k > 2

such that kr is also outside E (this follows since E has finite logarithmic measure).

Thus, for r outside E,

^)ioit<raá

= 2a log * log r + a(log Â:)2 + 4 f *'-^ ¿f + 0(1)

i       2
< 2a log klogr + a(log Â:)   + — v(kr)log k + 0(1)

and so

M*(r) < 2a log r + O(l) (7.4)

for r outside E. Since E has finite logarithmic measure and ¡i*(r) increases with r

we easily deduce that (7.4) holds for all large r. Quite similarly we obtain

fi*(r) > 2a log r + 0(1) and this proves the lemma.

From Lemma 4 and (6.8) it follows that J(r) = 0(1) as r —» oo and hence, from

(6.5), a, = 5,. From (7.1)

B(r) >A(r)> Ax(r) > Bx(r) - 2-n2o
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for r outside E. But E has finite logarithmic measure and so, given any r, we may

choose k = k(r) > 1 such that r/k is outside E and k(r) —> 1 as r-» oo. Hence

B(r) > B(r/k) > Bx(r/k) + 0(\) and finally

a= Urn   m^^J±>  lim    ^/k)-a(logrf
F=^ logr — logr

= a, —  lim   2a log k = a,.
r—»oo

But a < ß < ß, = a, so a = ß = a, = ß, and this completes the proof of Theo-

rems 1 and 2. Let us note that, from (7.3), a = (2/tr2)A0.

8. Proof of Theorem 3. We write ¡i*(r) = 2a log r + e(r), where e(r) is bounded

for r > \. From (6.3) we obtain

i

00 n*(t) - 2o log t
log

t + r

t - r
dt = v(r). (8.1)

We introduce ex(t) = e(t) for / > I, ex(t) = e(l) for 0 < / < 1, and write

Jo

Then vx(r) —> ̂0 as r —» oo and (8.1) may be rewritten as

,x(r)=v(r)+ (\e(l) - e(t))log dt/t.

f°°ex(t)

Jo        '

With a change of variable we obtain

f°°ei(e')log
■' — oo

Now e,(e') = ¡x*(e') - 2a/ so

t + r
dt = *,(#■).

dt = vx(er).

lim    (e,(eO - e,(e*)) > 0;
JC—»00

(j-x^O

that is, ex(e') is slowly decreasing in the sense of [8, p. 209].  Moreover an

application of contour integration yields

e'x' log
e'+ 1

dt =
1 - e

\x\  1 + e' A4

for x^O. We are thus able to apply Theorem 10a of [8, p. 211], to deduce that

*i(e')-
2^1r

= a

as t —» oo and this completes the proof of Theorem 3.

Note added in proof. The conjecture that follows the statement of Theorem 1

is false. Details of a correct theorem for p ^ 2 should appear in due course.
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