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A NEW RESULT ON THE CONVERGENCE OF

NONHOMOGENEOUS STOCHASTIC CHAINS

BY

ARUNAVA MUKHERJEA

Abstract. Nonhomogeneous stochastic chains with a finite number of states are

considered in this paper. Convergence of such chains is established here in terms of

strong ergodicity of certain related chains of smaller size. These results are shown

to be best possible and extend earlier results of Maksimov. Nonnegative idempo-

tent matrices are also considered.

1. Introduction. There are many papers, recently and earlier, which considered

various problems concerning nonhomogeneous stochastic chains. Some of the

better known contributors in this area are Dobrushin, Hajnal, Maksimov,

Sarymsakov and Wolfowitz. For some of the references of these authors and other

extensive works in this area, we refer the reader to [3], [7]. For some historical

comments on Doeblin's work in this area in the context of weak ergodicity, we

refer to [8].

Our paper here is mostly concerned with an interesting theorem of Maksimov in

[4]. Maksimov considers nonhomogeneous bistochastic chains with a finite number

of states and establishes the convergence of such chains in terms of strong

ergodicity of certain chains of smaller size. To be more specific, let (Pn) be a

sequence of s x s bistochastic matrices (i.e. matrices with nonnegative entries

adding up to 1 in each row and column separately) such that for each k, the

sequence Pkn = Pk+\Pk+2 • • ■ Rn converges to some bistochastic matrix Bk. Then it

is easy to verify that the sequence (Bk) converges to a bistochastic idempotent

matrix Bx. It is well known (and can be proven easily, see, for instance,

Maksimov's paper) that for every such bistochastic idempotent matrix Bx, there is

a basis, that is, a partition of the set {1,2, . . . , s) into disjoint subsets

C,, C2, . . . ,Cp such that

(BJ0 = 0   for z G Ck¡,j G Cki (kx # k2),

= 7z(Cj     "'^^

where n(Ck) = the number of elements in Ck. The most interesting (and perhaps

the deepest) result of Maksimov is then that for i and / belonging to two different

cys,
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2 4n) < « (•)
n = l

where P„ = (p^f). He uses this result to conclude that for a sequence (P„) of

bistochastic matrices, the products Pkn converge as n —* oo for every k with a basis

(C,, C2, . . . , Cp) iff (i) ^=xp\f> is convergent for z and y belonging to any two

different Ck's and (ii) for each i, 1 < i < p, the stochastic chain (Q„(,)) is strongly

ergodic, where £?„(,) is an h(C,) X n(C¡) stochastic matrix obtained from P„ in the

following manner: for y and t in C¡, (Qf¡%, = pj,")/^kec¡Pjk>- Maksimov's method

in proving the above (and other) results was mainly based upon his earlier results

on convolution products of probability measures on finite groups. For these kinds

of algebraic results, his methods, though unorthodox and new, are effective. We

will show, however, that his method of correspondence between bistochastic

matrices and measures on finite groups, though admittedly convenient, can avoid

the use of his prior results on groups and thus can be simplified. But the main

purpose of our paper is not simplifying his proofs. Our main aim is to show that

Maksimov-type results hold for a larger class of stochastic chains (which contain

properly and is, in fact, much larger than, the class of bistochastic chains). Our

result (Theorem 8) is also best possible. Maksimov's results on groups are not

applicable or useful for our purpose. Naturally our method is completely different

from Maksimov's, though we will use Maksimov-type correspondences extended

for stochastic matrices to serve our purpose. Our main results are Theorems 7 and

8. We also give a characterization of the ergodic classes of a convergent nonhomo-

geneous chain. In §4, we consider an application. In the last section, we consider

nonnegative (rather than stochastic) idempotent matrices and present some basic

results on their structures.

2. Preliminaries.

Definition 1. Let P be an s X s stochastic matrix and S be the multiplicative

semigroup ofiX j stochastic 0-1 matrices (i.e. matrices where the entries are either

0 or 1). Suppose that P = 2"_, a¡P¡, where {ax, a2, . . . , a„} are nonnegative reals

with sum 1 and P,'s are 0-1 matrices in S. If p is the probability measure on S such

that n(P¡) = a¡, 1 < i < n, then we define P ^> ¡x.    □

We will often say that p represents P if P <-» p. This representation is, fortunately

or unfortunately, not unique. However, for every stochastic matrix, there is at least

one probability measure representing it. (See [6] for proofs of these facts.) Also, if p

and X are two probability measures on S (as defined above) such that P <r+ \i and

Q <-+ X, then it is easily verified that the usual convolution product p ■ X defined by

p-x(x)= 2 p{z)My)
zy = x

is a representation for the matrix product PQ. Let P(S) denote the set of all

probability measures on S. Then, if (P„) is a sequence of stochastic matrices and

(p„) is a sequence in P(S) such that for each n, Pn^^n„, then the weak conver-

gence of the convolution products pkn = ¡ik + x ¡ik+2 . . . p„ as n tends to oo (here

weak convergence is the same as pointwise convergence since S is finite) implies
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the convergence of the matrix products Pkn. The converse is not true. For example,

let í = 2 and the sequence P„ be given by

(a(n)     b(n)\       . . .       1      2       . .. ,      1      2
P« = \   )i     h)      '    wherea(«)=- + -andè(n) = T--.

\a(n)     b(n) ) In In

Let c„ be a nonconvergent sequence of positive reals such that each c„ < \. Define

the measures ju^ by prescribing the values \ — c„ — l/n to each of (¡ ¿) and (¿ ,),

± + cn - \/n to (o !), and \ + cn + 3/n to (J °). Then, Pn^ p„. Though P„'s

converge, it is clear that u„'s do not.

Though we do not deal with infinite dimensional matrices in this paper, we will

point out the difficulties involved in the infinite situation. In that spirit, our Lemma

1 describes how and in what form the above "finite dimensional" statements can be

made in the infinite case. First note that an infinite stochastic matrix D where the

«th row entries are

(l/n, l/n,..., l/«,0,0, ...)
n times

is not a convex combination of infinite 0-1 stochastic matrices. The reason is: if

2,- a,P„ where P,'s are infinite 0-1 stochastic matrices and a/s are positive reals with

sum 1, equals D, then every row of D must contain at least one entry greater than

or equal to a,, and this is not possible. Similar questions in the context of infinite

doubly stochastic matrices have been studied in detail earlier; see [6].

Lemma 1. Let (P„) be a sequence of countably infinite stochastic matrices such that

each Pn is a finite (or countably infinite) convex combination of 0-1 stochastic

matrices. Suppose that P„ <-> /l,, where pn's are probability measures on the countable

discrete semigroup S generated by all these 0-1 stochastic matrices. If p„ —» p weakly

for some p E P(S), then

\\P„-  P\\=SUP    2 |(i"»)(r- PU\

tends to zero as n —» oo, where P <h» p.    □

Proof. Given e > 0, there is a finite subset A <z S such that for some N,n > N

(ï)p„(A)> I"«,
(ii)pL4)> 1 - e,

(iii)2xe/l|p„(x) - n(x)\ <e.

Now by definition, Pn = 2xeS xp„(x) and P = 2xeS xp(x). Let By = [x G S:

x¡j =1}. Then for j =£ k, By n Bik = 0 (Vz). Thus, we can write: for any i and

n > N,

I \{Pn),j - pv\ < 2   2 |ft,00 - P(*)\
y'-i 7 = 1   *eß„

OO 00

< 2 2        \Pn(x) - P(X)\ +2 2 [ Pn(x) + MW]
7=1   xei,yn/l                                   7=1   jceBj,-n(S-y4)

< 2  kW - P(x)\ + P„(S - A) + p(S -A)< 3e.
xŒA

The lemma is now clear.    □
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Note that the (infinite case) converse of the situation described in Lemma 1 does

not hold. An example similar to the one (preceding the lemma) in the finite case

can be easily constructed. In the infinite case even if \\Pn — P\\ —» 0 as n —* oo, it is

not clear if there will be a weak limit point for a sequence of probability measures

p„ on S (where p„<r+ Pn and 5 is as in the lemma). Later, it will be clear that this is

one reason why the extension of our results to the infinite dimensional case seems

difficult.

From here on, all matrices in this paper are s X s stochastic matrices (except in

§5, where we consider nonnegative matrices which are not necessarily stochastic).

Let (P„) be a squence of matrices such that for every positive integer k, the

sequence Pkn = Pk+xPk+2 ■ ■ ■ Pn~* Qk- Such a sequence (P„) will be called a

convergent stochastic chain. Let Q ' and Q " be any two limit points of the sequence

{Qk: k > 1}. Then since for k < n < m, PknPnm = Pkm, we have as m —» oo,

PknQ„ = Qk and then passing n to infinity for each k, QkQ' = Qk, QkQ" = Qk so

that

Q'Q" = Q- 0)

This equation implies that every limit point of the Qks is an idempotent stochastic

matrix. [Note that if the P„'s are bistochastic, then lim^^ Qk exists, but, in the

stochastic case, this is no longer true. This follows from the discussion following

Lemma 2.]

Now we recall an important theorem of Doob on the structure of an idempotent

stochastic matrix B = (By); see [1, p. 121]. For a more general theorem, see our

Theorem 11 in §5.

Lemma 2. There exists a partition of the set (1, 2, . . . , s) into disjoint classes

{ T, C„ C2, . . . , Cp) such that {1,2, ... ,s} = Pu C, u ... U Cp and the follow-

ing are true:

(i) By = 0 iff G T;
(ii) By = Bj; (> 0) if i,j both belong to the same Ckfor some k,

= 0 if i,j belong to two different Cks;

(iii) By = Bj (2keCi Bik) if i G T,j G Ct.    □

Now let us consider the equation (1) again. Since we have Q'Q" = Q', Q"Q' =

Q", it is clear that

(00.7 = 0,    i < , < s<^(Q ")¡j = 0,    Ki<s.

Let {T, Cx, C2, . . . , Cp) be the partition (as in Lemma 2) corresponding to the

idempotent matrix Q'. Let z G Ck¡,j G Cki (kx ¥= k^. Then (£'),, > 0 and (ß% =

0; also, by equation (1), (Q')y > (ß')„(ß'% implying that (Q")y = 0 and thus, for

z'G T,

(Q')u = 0**(Q'% = 0.

This means that all the limit points of a convergent stochastic chain have the same

unique partition (via Lemma 2) associated with them. Thus, we can make the

following definition.
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Definition 2. The unique partition that corresponds to all the (idempotent) limit

points of a convergent stochastic chain is called the basis of the chain.    □

For a convergent bistochastic chain, the ' 7" set of the basis is empty. It can be

easily verified using Lemma 2 that in case the basis of the chain has its "T* set

empty, then

Q'Q" = Q'    and    Q'Q' = Q" => Q' = Q"
where Q' and Q" are as above, and therefore, lim^^ limn_>0O Pk   exists. However,

this is not a necessary condition for the limit to exist. The following examples will

help us clarify this and also the context of the paper.

Example A. The chain given by

P, =

a,

0

a„

0 0

«»     a«

«B «B

«- «B

1

0 < a. < \,

is a convergent chain for all possible choices of an between 0 and | and if we write

B = lim^ limn Pk , then B will be a stochastic matrix where each row is (0 0 0 1)

whenever 2n an diverges, and this limit is

0     0

whenever S„a„ converges. Note that in the latter case, the basis of the chain is

given by T = {1}, C, = {2, 3}, C2 = {4}. Here T is nonempty and still for i in C,

and / in C2, *L„(Pn)y converges. In this paper, we prove that this is always the case

in the case when the '7" set is empty and conjecture that this is also true when T is

nonempty. The interesting nature of this result lies in the fact that the convergence

of the chain can be characterized by the strong ergodicity of the normalized

C-blocks of the chain. (See Theorem 8.) □

Example B. Consider the chain given by

b.

2b„

b„

1 - 3h

1 - a„ - 2bnn n

an

2b.

where S„ a„ converges and 2„ bn diverges. Following the classical Bernstein

theorem [7, Theorem 4.8, p. 105], we see that this chain is weakly (and therefore,

strongly) ergodic. In this case, lim¿ lim„ Pk is a bistochastic matrix where each

row is (j j }). The basis consists of only one C-class and yet S„(Pn)23 converges.
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Example C. Consider the stochastic chain (Rn) given by

Rn = P   for n even,

= Qn    for n odd,

where the matrices P and Qn are given by

K
1 - l/n

0

P =
1
1

0
<2b =

"b

l/n

0

(a„ and bn are nonnegative numbers with sum one). It is easily verified that

lim„ Rkn = P for every k. The basis of the chain is given by T = {1}, C, = {2},

C2 = {3). Notice that 2„(P„)21 is divergent.    □

All the three examples will be found useful later specially in the context of our

remark following Theorem 8 characterizing the C-classes (for a convergent chain

with no '7" in its basis) in terms of divergence of certain series. Regarding

examples of convergent stochastic chains with no ' T', we remark that our Theorem

8 characterizes such chains completely and using this theorem, one can obtain any

number of examples of such chains.

Example D. This example has been provided by A. Nakassis. This example

shows that our Theorem 8 cannot be extended to the case of nonempty '7".

Consider the stochastic chain (Pn) given by

P. =

0 1/2
l/n 0

l/n 1 - l/n

0 0

1/2 0
1 - l/n 0

0 0

0 1

Then it can be verified that this is a convergent chain with basis T= {1},

C, = {2, 3} and C2 = {4}. But notice that the normalized C,-blocks of (P„) are not

even convergent.    □

3. Main results.

Definition 3. A stochastic 0-1 matrix A is said to belong to the basis of an

idempotent stochastic matrix B if Ay = 0 whenever i, j belong to two different

'non-7" members of the basis.    □

Lemma 4. If the stochastic 0-1 matrices A and D both belong to the basis of some

idempotent stochastic matrix (here ' 7" is empty), then the product A ■ D also belongs

to the same basis.    □

Proof. The proof is immediate since (A ■ D)0 = 2¿_! AikDkj.   □

Lemma 5.1 Suppose that the 0-1 stochastic matrices A and D are such that

BA = BD, where B = B2 is stochastic. Then if the basis of B has ' 7" empty and if D

belongs to the basis of B, then A also belongs to the basis of B.   □

This lemma is of independent interest and not used later.
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Proof. Suppose that A does not belong to the basis of B. Then there are

members Ck , Ck (kx ¥= k2) in the basis of B and / 6 Q ,;' 6 Ck such that Ay = 1.

But then since P„ > 0, (BA)0 > BuAy > 0 and therefore, (BD)tJ > 0. This means

that there is an / such that BaDl} > 0. This is impossible since Ba > 0 => / G Ck

and D0 > 0 =* / G Cki.    □

Lemma 6. Let B be a stochastic idempotent matrix such that its basis has "T

empty. Let us define the set K by

K = [X: X is a stochastic 0-1 matrix and X belongs to the basis of B).

Then K is a subsemigroup of the semigroup S of all s X s 0-1 stochastic matrices.

Moreover, if X G K, then YX G K for a stochastic 0-1 matrix Y iff Y G K.   □

Proof. AT is a semigroup by Lemma 4. Suppose now that YX G A", A' G AT and

y is a 0-1 stochastic matrix. Suppose that Y G K. Then there are members Ck , Ck

(kx ¥= k2) in the basis of B and z G Ck,j G Ck such that Yy = I. Now choose / so

that Xj, = 1.  Since X G K,  / G Ck\ But then,  (YX)¡, > YyXß = 1.  This is a

contradiction, since YX G A.    □

Now we consider a convergent stochastic chain (P„). Let hmn_>00 Pkn = Qk. In

what follows, we will assume that the basis of the chain has its '7" set empty. Then, as

we remarked earlier, lim^^ Qk exists. Let Q — lim^^ Qk. Now we take a

probability measure p„ on S, the finite semigroup of all s x s 0-1 stochastic

matrices such that pn<r* Pn. We define K by

K = {X: X £ S and X belongs to the basis of the chain (P„)}.

Then we claim the following:

Given e > 0, there exist a positive integer k0 (k0 = k0(e)) and a positive integer N

(N = N(e)) such that n > N =>

p^(A-) > 1 - e. (2)

To prove (2), suppose there are m many elements in S - K. Let Z E 5 — K. Then

there are i G Q ,j G Q2, where CAi and Q2 are two different members of the basis

of Q such that Z0 = 1. This means that "2,keCk %ik = 0- Since 1keCl¡ Qik = 1 and

nmr^<x> limn^oo ^r,B = Q> we see tnat there exist positive integers k0 and N such

that n > N implies for each /, 1 < / < s,

2(JU«>i-¿ W

where the summation is over all those A: such that /c and / both belong to the same

member of the basis. Since Pk     =SA.EiS Xpk „(X), we have

2 (PkJ,k <  2 Pk^ix) < ^„(s - z).
fcec», ATtt-l

Hence, for any ZGS— K, «>A/=>pi „(Z) < e/w. This means that n > N =*

pk „(S — K) < e, which establishes (2).

Next we claim the following: There exist positive integers n0, N' and a 8 > 0

such that « > N' =>

xma*K Pnot„(Kx'1) + 8 < ^(i). (4)
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To establish the claim, we suppose that the claim is false. Then for every increasing

sequence (k¡) of positive integers, there exists a positive integer «,' > N¡ (N¡ is the

integer N(e) and k¡ is k0(e)) in (2) for e = 1/2' and some x¡ E S - K such that

^JXx-^ + ^yp^K).

Let x G 5 - K be such that x, = x for infinitely many z. Then by using (2) and

taking suitable subsequences k¡ ( = Pj, say) and n'¡ (= mp say), we have

lim pp(Kx-x) = I,       xGS-K. (5)

Now ppm <-* P' . Let X' be a limit point of the sequence (pp„). Let À'<->A/'.

Since P//; Pp m = P/>m, it is clear that Q,M' = Q, and so passing / to oo, we have

QM' = Q. (6)
By (5), X'(Kx~ ') = 1. Therefore, we have:

Sv c Ax"1. (7)

Since ií Í, there are members Ck¡, Cki (kx ^ &2) of the basis of the chain and

z e Ckt,j E Q2 such that (x)0 = 1. Now by (6), 0 < Qu = 2, ft/A/,) so there exists

/ E Ck¡ such that M,'¡ > 0. Since X' <-> A/', there is v E 5V such that ( v),, = 1. By

(7), yx E AT. But then, (yx)y > yhXy = 1. This is a contradiction since / E Ck¡ and

7 E Q and vx G K. This establishes our claim (4).

Now we prove the following assertion:

f p„(S - *)< oo. (»)
B=l

Proof of (8). Let n0 be as in (4). Write: An = max^g^.^ p„ n(Kx~x). Then there

exists 8 > 0 such that «>A/'=i>^r + ô< pnon(AT). Now

Mb^-mM   =     2    Pno.n^X'^Pn+lix)
xes

=     2    Pn0,n(Kx~X)Pn+i(x)  + 2        p^„(AjC-1)pn+1(x)
jêJî xeS-K

< ft„,»Wtt. + ,W + ^ft,+ .(S- A")

= Pn0,n(K)[l  - Pn+i(S -  A)]   + A„fin+x(S-  K)

= p„o,„(A:) - [ ßn^(K) - An] pn+x(S - K)

< Pn^niK)  -  8K+X(S -  K).

Repeating the above procedure, we have

/**„„-1(*) < *_*■(*) - 8   "¿     p,(5 - AT)
i = N' + \

so that for each n > N', we have

2     P,(S-A)<4.

Thus, (8) is established.

n+ 1 ^
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Now consider i E Ckj,j E Q2 (kx +k2) where Ck¡, Cki are two different mem-

bers of the basis of the chain. Since P„ <-» p„, P„ = 2xeS xpn(x); therefore,

(Pn)iJ   <     2     Pn(x)   <   pn(S -   K)

which implies that ~Z™=x(Pn)y < oo, by (8). Thus we have proven the crucial result

of our paper.

Theorem 7. Let (P„) be a convergent stochastic chain with the basis

{C„ C2, . . . , Cp}. Then for i,j belonging to two different C¿s Z~_x(Pn)y < oo.    □

Now we consider a convergent stochastic chain (Pn) with the basis

{C,, C2, . . ., Cp}. Let us define for each z, 1 < z < p, and for each n > 1 an

n(C¡) X n(C¡) matrix as follows:

(PÂC,))jk =      'fi   .       J 6 C, * E C,
■^/ec.V^B^/

Write ö,„ = P„(C¿). Then (ô,„)n>i is a stochastic chain with n(C¡) states. Now if

we define the chain (P„') with s states by

(Pñ)jk = (ô,n),*,    if y, * both belong to C„

= 0,    if/, & belong to two different C,'s,

then the chain (P„') is equivalent to the convergent chain (Pn) (because of Theorem

7) in the following sense:

2   \{Pn)jk - (P'n)jk\ <   «
n=l

for each j, k (1 < j, k < s). It is now easy to show that the chain (P„') is also

convergent with the same basis {C,, C2, . . . , Cp). It follows that for each i

(I < i < p), the chain (Pn(C¡)) is strongly ergodic (i.e., for each k > 1, the products

Pk,n(C¡) — Pk+i(Ci) ■ ■ ■ Pn(C¡) converge to a stochastic matrix with identical rows).

Now it is not difficult to see that the following theorem is true.

Theorem 8. Let (Pn) be a convergent stochastic chain with basis

{C„ C2, . . . , Cp). Then (i) for j, k belonging to two different Q% ^.¿PJjk < °°

and (ii) the chains (Pn(C¡)) for each i are each strongly ergodic with no '7" class.

Conversely, the conditions (i) and (ii) are also sufficient for the convergence of the

chain (Pn) with basis (C,, C2, . . ., Cp}.   □

This theorem can be useful for practical reasons in the sense that convergence of

larger chains can be checked by checking strong ergodicity for the corresponding

smaller chains. It is also clear that any convergent stochastic chain whose basis has

the '7" set empty is strongly ergodic if for somey' and each z, 2"_i(Pn)y = oo. In

particular, any convergent bistochastic chain for which this last divergence condi-

tion holds is strongly ergodic.

A characterization of the C-classes. Two states t andy are in different C-classes iff

for every sequence (ak) of positive integers, the series SjJLiiP^,^   )fy- is convergent.
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To see this, we first observe that considering

rW,+1(*)~    2   Pn^iXx-^Jx)
xes

and following the proof of (8) almost identically, the nontrivial part (the only if

part) of the above statement follows easily. To check the validity of the "if" part,

notice that for t, j in the same C-class, Qtj > 0 and there exist sequences (k¡) and

(nk) of positive integers such that for n > nk, (Pk„)y >\Q,j > 0. We can now

construct the sequence m(i) such that km(¡+X) > nkm¡ for each z. Write p¡ = kmW

Then it is clear that

2   (P^Jy   =    00.
1=1

The proof of the characterization is now complete.

4. An application. We will now present an application of Theorem 7 to a problem

on probability measures on semigroups. It is well known that if (p„) is a sequence

of probability measures on a finite group S such that limn_>00 pkn = Xk exists and

lùn*^» Xk = Xx exists, then S^=, p„(S - SXJ < oo. In other words, the measures

p„ can, for most purposes, be considered to be concentrated on Sx^. This result is

not true on finite semigroups S. For example, take S = {0, 1} with multiplication

and p„=p where p(0) = p(l) =j. Then limn^,00 p" = the point mass at 0, but

p(l) > 0. The following theorem, as an application of Theorem 7, will give us the

information with respect to the above behavior in semigroups. We will use another

type of correspondence, originally due to P. Martin-Löf.

Theorem 9. Suppose that S = [ax, a2, . . . , as) is a finite semigroup with an

identity e = au. Let p„ G P(S). Suppose also that

lim pk„ = Xk,        lim Xk = Xx and e G Sx   = H (the support ofXx).
" ' k °°

Then S„ ¡in(S — H) converges.    □

[For each a, in S, we define the 0-1 matrix (s X s)A¡ by

(A,)jk = 1»    if ajai = ak,

= 0,    otherwise.

Then the mapping <I>: 5 -> S' = the semigroup of stochastic matrices of order n(S)

defined  by  $(a,-) = A¡  is an  isomorphism. For p G P(S), define P  G S' by

Pu = 2xes ®(x)p(x). Then (P^ = p(af~xak). It can be verified that the corre-

spondence p -* P is a homomorphism from P(S) into 5'.]

Proof. We have S = S ■ H. Let p„ -» P„, Xk -* Qk and Xx -» Q as discussed

above. Then for each j, there exists i such that a~ xOj n H ¥= 0 so that XM(a~ xa/) >

0; then

(QJ0 > 0. (9)

Clearly, lim^^ Pkn = Qk and lim^^^ Qk = Qx. Hence, by (9), the basis of the

convergent chain has its '7" set empty. Let the basis be (C,, C2, . . . , Cp). Let

5, = {Oj\j G C,};  then 5 = S, u S2 u . . . U Sp is a partition of S. Note that
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g G H=>Xx(g) > 0. If S¡g n Sj:¥= 0 (for some z, j, i ^j), then g G akxa, for

some a^. G S, and a, G S,, so that A: G C, and / G C, (i ^y). Then (Ö«,)*/ = 0; but

(ôoo)*/ = Aoo(a* 'az) > 0, a contradiction. Hence, g G 77 => 5,g c S, (1 < z < p).

Let 77, = {g G S: S¡g c S„ 1 < / < p). Suppose that au =e G S,. If /z G 77„

then S,- h c S, and therefore, /z G S,. If /z = am, then m and m both belong to C, so

that (Qx)um > 0; therefore, XJa-'aJ = Xx(h) > 0^ h G 77. Hence, 77, c 77.

Now g G S - 77 =>

3z, / (z ^=7) such that S¡g n S, t^ 0, and therefore, g G a*-1«^,

where kx G C„ k2 G C.

By Theorem 7,

2 (^„)*„*2 < °° => 2 Pn{ak¡\) < °°
B=l

=> 2 MbU) < °°-
B=l

Since 5 is finite, the theorem follows.    □

The above theorem shows that it is possible to obtain limit theorems for

probability measures on semigroups and groups from limit theorems for Markov

chains. Below we present another result (omitting the proof) in this direction using

the well-known Bernstein condition for weak ergodicity [7, p. 105] for a nonhomo-

geneous Markov chain.

Theorem 10. Let ¡i„ G P(G), n > 1, where G is a finite group. Suppose that

2"_,{min p„(x)} = 00. Then for each k > 1, pk„^>X = X2 G P(G).

5. Nonnegative idempotent matrices. Here we show that a basis similar to that for

stochastic idempotent matrices exists for nonnegative idempotent matrices and

then present explicitly the structure of such a matrix and other related results in

details. The reason for including this section is that convergence problems for

products of nonnegative matrices appear very naturally in various problems in

demography and, as in the stochastic case, the role of idempotents can be

important in many contexts. (This question will be dealt with in details elsewhere.)

Also, determination of the structure of nonnegative idempotents seems to be more

difficult than the corresponding stochastic problem, and finally, as far as we know

this result is missing in the literature.

Our result can be described by the following theorem.

Theorem 11. Let P = (Py) be an s X s nonnegative idempotent matrix. Then there

is a partition of {1,2, ..., s) into classes {T, C,, C2, . . ., Cp} such that the follow-

ing results hold:

(i) thejth row or the jth column or both consist of only zeros iff j G T;

(ii) Py = 0 whenever i G Ck and} G Ck (kx =£ k^\

(iii) in any Ck-block (1 < k < p) of the matrix, the rows are all proportional, each

entry is positive, and the sum of the diagonal entries is 1 ;



516 ARUNAVA MUKHERJEA

(iv) if i E T and the ith column is a zero column, then for j, k in C, (1 < t < p),

*V>ii = ^ik/Pjk>

(v) if j E T and the jth row is a zero row, then for i, k in C, (1 < t < p),

Py/Pa = Pkj/Pkt-

In particular, if P has no zero rows or zero columns, then P must be of the form

C,      0       0       • • •        0

0      C2      0       • • •        0

0       0      C3      • • •        0

0       0       0 Cp

where the Ck-blocks are as described in (iii) above.    □

Proof. Let us first suppose that the theorem holds for any nonnegative idempo-

tent matrix which has no zero rows or zero columns. We then claim that the

theorem also holds in the general case. To see this, let T be the set {j: either

Py = 0 for every z or P« = 0 for every z'} and let T be nonempty. Then it is easy to

see that Q, the restriction of P to the complement of T, is a nonnegative

idempotent matrix with no zero rows or zero columns. Then by our above

assumption, there is a partition of the complement of T into classes

{C,, C2, . . . , Cp) such that the Ck-blocks of P satisfy properties (ii) and (iii) in the

theorem. Now if z G T and the z'th column of P is a zero column, then for j, k in C,

(1 < t < p), we have

Py=   2   PiuPuj    and   Pik =   2   *W
uec, uec,

Notice that Puj > 0 for each u in Ct and therefore, Py = 0 iff Plk = 0. In case both

Py and Pik are positive, then since the rows of Cr-blocks of P are proportional (by

property (iii)), we have P^/ PJk = Puj/ P^ (for each u in Ct, and therefore) =

Py/Pik. Thus property (iv) (and similarly, property (v)) follows and our claim is

verified. This means that with no loss of generality we can assume that P has no

zero rows or zero columns. To prove the theorem, we will use induction on the

dimension í of P.

The theorem is easily verified when s — 1 or s = 2. So let us assume that the

theorem is valid for all nonnegative idempotent matrices of dimension less than s.

To prove the theorem for dimension s, we use the following steps.

Step I. In this step, we show that P„ > 0 for each i, 1 < i < s.

Proof of Step I. Our proof is by contradiction. Suppose that P,, =0. Since

^.i = 2;.17',7.7^,,wehave

P,,P,, = 0   for each j. (10)

Let us define the set A by

A = {i:PXi>0}. (11)
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Then A as well as its complement is nonempty. Notice that for i G A, 0 = Pw =

2>e/( P\jPj¡ and therefore,

Pß = 0    whenevery G A and i & A. (12)

Using (12), it can be easily verified that the matrices P, and P2, the restrictions of P

to the sets A and the complement of A respectively, are both idempotent matrices

of dimension less than i. Then P looks like

Now following the induction hypothesis, we can write the basis for P, as:

{7", C'x, C2, . . . , Q}. Choose i & A, i ¥= I such that P,, > 0. (Since P has no zero

column, there exists such an z.) Let us write C[ = {j\,Ji, ■ ■ ■ ,jr}- Let

ßx, ß2, . . . , ßr be positive real numbers such that the z(th) row of the C,'-block of

P, is /?,-times the 7st row of this block so that

2 ßtPu -ßk,        Kk<r. (13)
z=l

Also we have

P¡j, =    ¿i   PikPkj, +    2   P¡kPkj,
k<EA k$A

>      2     PikPkj,  +    2    PikPkj,-
AeC( k<£A

Hence,

2 ßtP0l > 2 pJ 2 AfJ + 2 pJ 2 ¿pJ-
t=\ kec;      \t=\ I      k€A      \t~i I

Now by (13), the first sum on the right is equal to the sum on the left; as a result,

the second sum on the right must be zero and therefore since P,, > 0 and 1 £ A,

we must have 2^=, ß,PXJi = 0. Since for each t, ß, > 0, Pu = 0 for each t. This

contradicts (11). Thus, Step I is verified.

Step II. In this step, we show that Py = 0 iff P,, = 0.

Proof of Step II. For simplicity in writing, we show that P,2 = 0 implies

P2, = 0. So let P12 = 0. Let D = {k: PXk > 0}. Then D as well as its complement

is nonempty. (In fact, 1 G D and 2 g D.) Now for k G D, 0 = PXk = 2,eZ) PXjPJk

and therefore,

^•* = °    whenever,/' G D and k G 7J>. (14)

This means that the matrices P3 and P4, the restrictions of P on Z) and its

complement respectively, are both idempotent matrices of dimension less than s.

Let us now write C = {j0,Jv ■ ■ ■ >tV}>./o = 1> where C is the C-class in D for

the matrix P3 that contains 1. (Note that by induction hypothesis, the theorem is

valid for the matrices P3 and P4.) Let ß0, ßx, . . . , ßrhe positive reals such that the

Zth row in the C'-block of P3 is /3,-times the 7st row in this block. Then we have
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2 ß,Py, = 2 Pikí 2 ß.Pkj)
t=0 k \(=0 /

> 2 + 2
*ec       k&D

= 2 ß.Py, + 2 Pi! 2 ß/Ü
z = 0 *«£> \/ = 0 /

since 2Ç=0 /3,P,y = ßm for A: = jm in C (this follows easily by induction hypothesis

and property (iii)). It now follows that the second sum on the right side of the

above inequality is zero and here taking 2 for k and / = 0, we have P2, = 0. Thus,

Step II is verified.

Step III. In this step we complete the proof of the theorem. Choose any i,

1 < i < s, and let C, = {j: Py > 0}. For anyy, k in C„ Pjk > PßPik > 0. Also, if

j G C, and k G C„ then Pjk = Pkj = 0 since PyPJk < PlVt = 0. This means that g„

the restriction of P to C,, is a positive idempotent matrix. Therefore, the proof of

the theorem will be complete if we show that every positive idempotent matrix

must be of rank 1. To this end, let Q = (Q0) be such a matrix. Let a(i,j, k) be

positive reals such that Q0 = a(i,j, k) • QkJ. Choose jik such that

a(ijtk, k) = max{a(i,j, k): 1 < j < s).

Now we have

a(Uik, *)2 Qk,Q,Jlk = Qy,k = 2 a(i, t, k)QklQtJ¡k.
t t

Since Q is positive, it is clear that a(i, t, k) = a(i,jik, k) for each t. This means that

the z'th and the kth rows of Q are proportional. Hence, rank(z2) = 1-    D

Before we close this paper, it is relevant to consider the consequences of equation

(1) for nonnegative idempotent matrices. In Theorem 11, the partition

{T, C,, C2, . . . , C' } for the matrix P will be called its basis. Furthermore, Tr and

Tc will denote subsets of T such that

Tr = {t E T: P„ = 0 for each z),

Tc = {t G T: Pu = 0 for each z).

Now let Q and Q' be two nonnegative idempotent matrices such that QQ' = Q

and Q'Q = Q'. Suppose that the bases of Q and Q' are respectively

Q: {Tr,Tc,Cx,C2,...,Cp},

Q':{Tr,T'c,C'x,C'2,...,C'q). (15)

Note that Tr and Tc need not be disjoint, whereas the C,'s are pairwise disjoint. Let

us consider some examples:

(i) Let

Q =
0
0
0

1
0
1

and   Q' =
0
0
o

1
1
0

1
1
0
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Then Q and Q' are both idempotent, QQ' = Q, and Q'Q = Q'. Also, Tr = {2},

Tc = {1}, and C, = {3}, T'r = {3}, T'c = {1}, and C'x = {2}.    Q

(ii) Let

0 =
0 1 1
0 0 0
0     1     1

and    Q' =
0 a a

0 b b
0     b     b

where b = \ and a > 0. Then g and g ' are both idempotent, QQ ' = Q, and

ß'ß = ß'- Also, r; = {1} and C{ = {2, 3).    Q

Now we consider the consequences of the equations QQ' = g and g'£? = Q'

where Q and Q' are as above in (15). We claim the following results:

(I) Tc = T'c andp = q;

(II) for i and y in two different C-classes in the basis of Q ', Qy = 0;

(III) for each i (I < i < p), there is ay'(z') such that C[ c C-(0 u A¡, where A¡ is

either empty or a subset of Tr.

In (II) and (III), dual results are, of course, also valid.

Proof. Clearly Tc = T'c (because of the way matrices multiply). Also, p =

rank(z2) = rank(t2') = q. If i G C, and y G C2, then

o = qó = 2 q;,q0.
t

Since for z G C{, Q¡, > 0, QtJ = 0 for each z G C,'. This proves (II). To prove (III),

let Q(i) and Q'(i) be respectively the restrictions of Q and Q' to C,. Then it is easy

to verify that Q'(i) = Q'(i) ■ Q(i\ Since rank(ô(,)) is 1, the rank of Q'(i) is at most 1.

Now notice that C{ cannot intersect more than one C-class in the basis of Q. For,

suppose that k e C{ n C, and t G C¡ n C2; then, Qkk > 0, Qkt = Qtk = 0, and

Q„ > 0 and therefore, the restriction of Q to C/ has rank more than 1, which

contradicts our earlier result. Thus, (III) follows.    □
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