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L" BEHAVIOR OF CERTAIN SECOND ORDER

PARTIAL DIFFERENTIAL OPERATORS

BY

CARLOS E. KENIG AND PETER A. TOMAS1

Abstract. We give examples of bounded inverses of polynomials in R", n > 1,

which are not Fourier multipliers of Z/(R") for any p ¥=2. Our main tool is the

Kakeya set construction of C. Fefferman. Using these results, we relate the

invertibility on Lp of a linear second order constant coefficient differential opera-

tor D on R" to the geometric structure of quadratic surfaces associated to its

symbol d. This work was motivated by multiplier conjectures of N. Riviere and R.

Strichartz.

0. Introduction. Let D be a linear constant coefficient differential operator on R",

with symbol d. We assume throughout this paper that D has order at most two, and

we shall examine the Lp spectrum and invertibility of D. (See §1 for the precise

definitions we use.) Our main tool in this analysis will be the Kakeya set construc-

tion of Charles Fefferman, through which we shall relate invertibility of D to the

geometric structure of quadratic surfaces associated to d.

If D is elliptic and d has no real zeroes, D is Lp invertible for allp, 1 <p < oo.

As we examine less trivial cases, great complexity seems to arise. The operator

32/9x, -d2/dx2 + i (1)

is made tractable through the multiplier theorems of Marcinkiewicz [10] or

Hörmander [6]; it is LP(R2) invertible if and only if 1 <p < oo. But a simple

generalization

a 2A>*, - 2 a2/9*/ + ' (2)
7-2

cannot be L^R") invertible if 1 < p < 2(n - l)/n. Again, Littman, McCarthy

and Rivière [9] showed that

id/axx + 2 32/ax/+ i (3)
7 = 2

cannot be LP(R") invertible if 1 < p < 2n/(n + 1).

The complicated indices in the above results are illusory; it is the purpose of this

paper to show that operators such as (2) and (3) above are LP(R") invertible if and

only if p = 2. The distinction between operators like (1) and those like (2) or (3)
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will appear as a consequence of the distinct geometric properties of the surfaces

£, - Ü = 0 versus |2 - Í,2 = 0 or tf - i2 - |32 = 0.

In §1 we collect preliminary results. We shall state and prove our main results in

§§II and III; in §IV we discuss applications and motivations.

The work presented here was motivated by multiplier conjectures of N. Rivière

[12] and R. Strichartz. Weaker versions of some of these results appeared previ-

ously in [16] and [17]. The main results of this paper were announced in [8].

The authors wish to thank Professors C. Fefferman and R. Strichartz, who

suggested several ideas basic to this paper. We also wish to thank Professor M.

Jodeit Jr. for generously sharing with us his ideas, and Professor E. M. Stein for

helpful conversations on these problems. Finally, we wish to acknowledge our

gratitude to Professor A. Cordoba, with whom we have discussed these and related

problems over the past five years.

I. Preliminaries. We begin with some facts on Fourier multipliers. A more

extensive discussion may be found in Stein and Weiss [15].

Definition. Let m be a bounded measurable function. The operator T defined

by 7y"(£) = m(Ç)f(Ç) is said to be an Lp multiplier if T has a bounded extension to

Lp.

Lemma l. m is a multiplier of L2 if and only if m is in L00.

Lemma 2. Let m be a multiplier of Lp. Then m is a multiplier of Lp and of all Lr

for r between p and p'. In particular, m is in L°°.

Lemma 3. m is a multiplier of Lx if and only if there exists a finite Borel measure p

with ß = m.

Lemma 4 ([4] and [18]). Let m be continuous and a multiplier of Lp(R") with

operator norm C. Then

(a) the restriction of m to any k-dimensional hyperplane is a multiplier of LP(R"),

with multiplier norm not exceeding C.

(h) if A is any nonsingular linear transformation of R", m(A£) is a multiplier of

Lp(Rn) with norm C.

We now recall some definitions and facts on Lp-behavior of constant coefficient

partial differential operators D. A more extensive discussion may be found in

Schechter [14].

Definition. Let X be a Banach space, and let D0 be a (possibly unbounded)

linear operator from X to itself. A scalar X is said to be in the resolvent set p(7J>0) of

D0 if R(D0 — X) is dense in X and there is a constant C such that

||*|| <C||(7>0-A)*||,        xED(D0).

The spectrum o(D0) of D0 consists of those scalars not in p(D0). If D(D0) is dense

in X, and 0 E p(D0), we say that D0 is invertible.

As is well known, (see [14]) constant coefficient differential operators D are

closable on LP(R"), 1 < p < oo, and thus, have a minimal closed extension on
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LP(R"), which we denote by D0  . When no confusion is likely to arise, we denote

Dq.p simply by D0.

Lemma 5 (See Theorem 4.1 of [14]). À E p(D0p) if and only if (d(£) - A)"1 is a

multiplier of Lp for 1 < p < oo.

Corollary, (a) D0 is invertible on L2 if and only if \d(£)\ > C0for all £ E R".

(b) IfD0 is invertible on L", then |<7(£)| > C0for all £ E R".

(c) If n = 1, then either D0 is invertible on Lp(Rn)for all p, 1 <p < oo, or for no

P-
(d) If D is an elliptic operator of order m, m > 1, and d(£,) =£ Ofor all £ E R", then

D0 is invertible in Lp(R")for 1 <p < oo.

The remaining results are the essential constituents of our theorem. Lemma 6 is

due to Marcinkiewicz and Zygmund [11]; Lemmas 7 and 8 are variants of the

construction in Fefferman [2].

Lemma 6. Let T be a linear operator with \\ Tf\\p < CH/H^,. Then

i(2i^n<c|(2t//n,.
Lemma 7. Let Nk = 2k log k. For each large k, there exists a set of K c R2 and a

collection of2k disjoint rectangles {Rj}, such that for every y > 0:

(a) The shorter and longer sides of each Rj are bounded above by Nk, Nk, and below

by Nk/4, N2/4.

(h) \K\ < 20(log log Nk)-x2\Rj\.

(c) Let Vj = (cos Bj, sin Of) be the direction of the longer side of Rj. Then \6j - 7r/4|

< tt/8.
(d) Let Rj denote Rj + (1 + y)vr Then \R/\/A < \Rj n K\.

Lemma 8. Let Nk = 2k log k, and let a, ß, y be given reals. For each k > k0(a, ß)

there exists a set of K C R2 and a collection of 2k disjoint rectangles R with

(a) the longer and shorter sides of each R¿ are bounded above by ßNk, cxNk, and

below by CßNk2, CaNk.

(b) \K\ < 20(C log log Nkyx-Z\Rj\.

(c) Let Vj denote the direction of the longer side of Rj. Let Rj = Rj, + (1 + y)vj.

Then \R, n K\ > \\RJ\- Here C = C(a, ß) =\ß(a2 + ß2)~x'2.

II. Parabolic invariance.

Theorem A. Let <p be in Ls n L°°(R') for some s, 0 < s < oo, and assume <p is

not identically zero. Then the multiplier m(£x, £2) = <p(£2 — |2) is LP(R2) bounded if

and only if p = 2.

Remarks. (1) The theorem is easily extended to higher dimensions using Lemma

4(a).

(2) The requirement <p E Ls is natural if we expect m to correspond to the

inverse of a differential operator, and some condition is needed to prevent m from

being constant. But arguments similar to those of [2] easily show that <f>(r) = \r\"
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does not yield a multiplier of Lp if p =£ 2, and Jodeit has remarked that a similar

situation occurs if <p(+ oo) ¥= <p(— oo). It seems likely that the requirement <p E Ls

is not essential.

The proof is conceptually straightforward. Let w,(£,, £2) = m(r£,, t2^, mx =

sign(£2 - £,2), and let Kt, Kx be the corresponding convolution kernels. It is an

immediate consequence of C. Fefferman's work on the disk that mx is not a

multiplier of Lp. This is shown using a variant of Lemma 7, due to Yves Meyer and

by showing that e"*''xKx(x) is large on Kakeya set counterexample functions, for

appropriate choices of SL To prove Theorem A, we show that t may be chosen so

that e'">'x(Kt - K^) is small on the above counterexamples.

Proof of Theorem A. We shall assume m is a multiplier of L'XR2) for p ¥= 2,

and derive a contradiction. By Lemma 2, we may assume p > 2. The conjugate m

is a multiplier, as are m ± m; we may assume m is real: Powers of m are also

multipliers, as these correspond to iterates of the operator: we may assume m is

positive. Given that rp is in Ls n L°°, some power of <p is in Lx, so we may assume

<p is in L1.

In all, we may assume ep > 0 and /„, <p = 1 ; this requires ç> not identically zero.

From Lemma 4 we see that dilates m(t£x, z2£2) are uniformly bounded multi-

pliers; if Kt = mt, we see from Lemma 6 that

. 1/2|, i'/2||

ziK.fjiTi^Aizw2)'
Let KJ(x) = e'"y%(x); then

\(2W*fÁTl<4z\ff)l/l «
where A is independent of wy and /.

Let K, Rj, Rj he as in the construction of Lemma 7. Lety^(jc) = Xjt(x)', we shall

show that for each Nk, and Z = y5A/¿

| Ay * fj(x)\ > CyS   when x is in Rj.

As in Fefferman [2], it immediately follows that

C^/loglogA^y/2-'/'
A>   2

(™,y-- (5)

As Nk tends to infinity, we find that (4) cannot hold uniformly in t for p > 2,

which is the desired contradiction.

To prove (5) note that

But

Í 2\xi *fJ(x)\2 > 2/_   \xt */Ax)\2 > c2^\Rj hk\> c2s-2\Rj\J K JRjPiK

f ^\x^fAx)\2 <\K\x-2H(^\K^fJ\2)l/2\\
J k \\p

2

<|^|,-2/^2|(2tól2),/2|

= | K\ ' -2/pA 2( 2|^|)VP   as the Rj are disjoint.
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Then

c\ i y\R i \l~2/p

and estimate (b) of Lemma 7 completes the proof.

To estimate K{ * fj(x) on 7L, choose ¿ö,. = ( - \ cot f?y, ̂  cot2 Of), where f?, is as in

Lemma 7. Note

*7 *fj(x) = t-xf(x2- y2YX'2 exp{z'<f>(* -y)}<p((x2 - y2)/t) dy
■>Rj

where <¡>(x - y) = (x2 - y2)/4[(xx - yx)/(x2 - y2) - cot 0,]2.

The quantity in brackets is cot t - cot Oj, where t is the angle between x — y and

the axis. As x and y vary, the difference cot t — cot 0. is easily maximized, and is

bounded by 5(yNk)~x; then

\<$>(x -y)\ < 10y_1    and    exp i<b = 1 + 0(y~x).

Then Ä"/ * f(x) = M + E where the main term M is

rl[ (x2-y2rl/2<v((x2-y2)/t)dy
Jrj

and the error term E is

0(rxy-x) f (x2 - y2yl/2\<p((x2 - y2)/t)\ dy.

For Je E Rj,y E Rj,

1*2 - y2\ < |* - v| < (2 + y)N2 < 4yN2,        \x2 - y2\/t < 2yN2/y8N2 = 2/8

when y > 2;  hence  \x2 — y2\~x¡2 > (4yNk)~x/2. As <j> is continuous, we may

choose 5 sufficiently large such that Re <p((x2 — v2)/z) > <p(0)/2 = 1/2; hence

Re M > Z^,(4y/V/2)"1/2|Ä/| 4 = (4y3/2ô)-'.

To estimate E from above, we have

1*2 - yi\ = \(x -y)-e2\=\x ~y\- sin»// >||x -y\ > \yN2,

and

|<p((*2-^)A)|<||9|«<Mi-i-

Thus

\E\ < (lOO/ZyXiy^2)'172!^! < 200(y5/2á)-'.

If we choose y > 1600, \M\ > 2\E\ and \K¡ * fj(x)\ > (Sy3/28)~x = cyS. This com-

pletes the proof.

III. Hyperbolic invariance. Let r2 = S"_, x2, s2 = 2JL, */+„• We shall establish

negative multiplier results for SO(n, m) invariant multipliers <p(r — s ), when

max(«, m) > 1. (If max(«, m) = 1, the Marcinkiewicz multiplier theorem shows

there are many <p which yield Lp multipliers.)
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Lemma 4(a) allows us to restrict attention to the case n = 2, m = 1. Our results

in this case are weaker than those for n = 3, m = 1, so that we state two separate

cases. Lemma 4 allows us to use case (a) if min(«, m) > 2, and case (b) if

min(n, m) = 2.

Theorem B. (a) Let <p be in Lq n L°°(R') for some q, 0 < q < oo, and rp ^ 0.

Then m(x) = <p(r2 - s2) is Lp(Rm + n) bounded iff p = 2, when min(n, m) > 2.

(b) Let <p be as above, with <p(i) = 0(t~a) for some a > 0. Then m(x) =

(p(r2 - s2) is Lp(Rn + m) bounded iff p = 2 when min(n, m) > 2.

Proof. We present the full proof only of part (a); the proof of part (b) is similar,

but there are more error terms. Assume then that m is an Lp multiplier; we may

assume p > 2, and by Lemma 4(a) we may assume n = 3, m = 1. Applying Lemma

4(a), (b), we see that the multiplier m,(x,y, z) = (p(t{(x2 + y2 + z2) — 1}) =

y(t(r2 - 1)) are uniformly bounded on LP(R3). As in the proof of Theorem A,

we may assume <p is in L'(R'), <p > 0 and ftp = 1. Let

J,-°o J, n(2-nrR )
\x/2    <p(t(r2-\))r2dr

o       (rR)x/2

■ °° sin 2trrR

We shall first show that

r°° sin 2trrR    ,     ,      ,.,  ,
J0   -^-<P(t(t*- VtVdr.

T.W^^e^f^ + E^R) (5')

where E(t, r) = o(t~xR ~x) as t ~ /? tend to infinity. For,

7;(Ä) = -^ |    e2"iRr<p(t(r2 - l))r dr
R Jç>

+ 0(z-1/?-');

the o-estimate follows from the integrability of rp.

In the region (— z1/4; z1/4) Taylor series shows that

(s/t + 1)1/2 = 1 + s/2t + 0((j//)2) - 1 + s/2t + 0(t~3/2),

hence

exp(2mR(s/t + 1)I/2) = e2mV'"*!/2' + (?(7?Z-3/2)

and

T¡(R) = ^ f'/4 e2m^/2V(i) ds + 0(z"9/2) + o^-'R-')
2tR J_ ,1/4

2/7?

as desired, if / — /?.

/      e2mÄe2WRj/2'<p(i) & + o(t - {R - ')
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The proof of the remainder of the theorem is now similar to that of Theorem A,

with obvious modifications to account for error terms and for the three-dimen-

sional nature of the problem. We first construct three-dimensional analogues of the

sets in Lemma 8. Let K, Rj, Rj be as in Lemma 8, and let 8 > 0 be given. Let

Sf = {y E Rj\ | Vj: • y — n\ < 8 for some n},

Sf = {x ERj\ \vj-x- (n +\)\<8 for some«}.

Let L = K X [0, aNk], Sj = 5,° X [0, aNk], S~j, etc.

Now let Vj denote the direction of the longest side of S¡, and let vv, be any

perpendicular to êj. For the remainder of the proof, we shall assume x E Sj and

;E^. We then have estimates analogous to those of Lemma 8.

a2ß8Nk4 < \Sj\ < 2a2ß8Nk4. (i)

(i/c5)|s,|<|^. n l\. (ii)

1^1 < |(c log log tv^)-1^ |s;|- ("0

yN2 < \x -y\ < ((ß + y)2 + 2a2)l/2N2. (iv)

yN2 < \(x -y) ■ «3,| < (2/3 + y)^2. (v)

(3c -y) -Wj <V2 aNk. (vi)

(i), (iii), (iv), (v), (vi) are obvious, while (ii) follows from the proof of Lemma 8, as

given in [2].

Let/-(j?) = Xs(y) cos[277-(t3j • y)]. As in the proof of Theorem A, we shall show

that when t = dNk,

\TlfJ(x)\>C(a,ß,y,8,d)>0 (6)

independently of Nk ; it then follows that

|| r,!^, > C(a, ß, y, 8, d)(C log log Nk)X/2-X/p,

which will yield a contradiction, when Nk —> oo.

The T, commute with rotations, so that it suffices to prove (6) when Vj =

(1, 0, 0). Let x = (xx, x2, x3), and similarly fory. Then

TJj(x) = ^ f/^-ylf(^r)\^ -y\~l cos 2m>j-y dy

+ j E0(t, \x -y\) cos 2"n{vj ■ y) dy = Mx + Ex.

Recall that E0(t, R) = o(t~xR~x) and

\x -y\ > yN2,       \Sj\ < 2a2ß8Nk4,       t = dN2,



528 C. E. KENIG AND P. A. TOMAS

then Ex = o(l). To estimate Mx, let <p = F + iG; then

Mx =ytf sin 2m\x -y\p{     2/     J|* -y|~' cos 2nVj • y dy

+ ytf cos2v\x ~y\G(^j^\\x -y\~x cos 2wj-y dy

= M2 + E2.

To estimate F2, note that as x and y vary,

\x-y\       .    .       nt   ((/3 + y)2 + 2a2)'/2
-—-—- vanes from 0 to-—-— = e.

¿t 2d

Let G = sup0<J<e |G(5)|. Then

\E2\ < (l/2dN2)\Sj\(yN2ylG < (a2ß8/yd)Ö.

To estimate M2, note that

\x - y = \xx -y,
. (f 2 - ^2>2 + (*3 - ^3)2

(*i - v,)2

= |*1 -/l|+ ¿>(*>Í0

where

|i)(x,^)|<oa/Y + o(iV1)-

1/2

Then

M2 = —f sin 27r|x, - v,|(cos 2-nD) -\x -y\   'FjL——- Icos 2^ • y c«y
5) V /

/_ _,   / |x —y\ \
cos 2tt\xx - y,|(sin 2tt£>) • \x -y\    F\ Jcos lirvj-y dy

+ Yt
= M3 + E3.

Note   that   |F3| < (2dN2)-x\Sj\(2tra2/2y)(yN2)-x\\F\\x + o(l).   But   HFIL

||F+ /GH«, < ||«p||, = 1, so that

|£3| < (a2/?r3/y¿)(,7a2/y) + o(l).

To estimate Af3, note that 5, and Sj may all be oriented so that xx — y, > 0.

Vj-y = yx,

sin 27TX,
^ = —^~

JsIt
f  cos22<nyxcos2-nD\x-y\   'F(     2       ) *&

cos 277X,   /- _     _ _,   / |x — y| \   _
- I   sin 27ry, cos 27ry, cos 2-nD\x -y\    Fl———I dy

= M4+ E4.
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To estimate E4, recall that \xx - (n + \)\ < 8 and |y, — n\ < 8. If 8 is small,

|cos 2nxx\ < 2ir8 and |sin 2?ry,| < 2tt8, and therefore

|F4| < 2ir8(2dNk)-2\Sj\2TT8(yNk2)-l\\F\\00

or |F4| < (a2ß8/yd)(4ir282).

We shall now compute a lower bound for M4. If we require 8 < 10~3, sin 2mxx

>\ and cos2 27ry, > \. We shall also require a2/2y < 10~2, so that cos 2irD > \.

Then if F = inf0<í<£ F(j),

M4 > (4dN2y'\Sj\y[(ß + y)2 + 2a2]-1/2N-2F

> <*2ßö(_yF \

yd  \S((ß+y)2 + 2a2)l/2!'

In all, TJj(x) = M4 + E2 + E3 + E4 + o(l) where \E2 + E3 + E4\ <

(a2ß8/yd)[G + <na2/y + 4<n282]. We shall now choose ß «y -|; we still must

require 5 < 10~3 and now a2 < 10-2. Then y((ß + y)2 + 2a2)'x/2 > 1/4 and

M4 > (a^/dX^F. Since e = ((ß2 + y)2 + 2a2)x''L/2d < d~x, e is small if d is

large. We shall use the continuity of rp = F + z'G to estimate F and G. 1 = <p(0), so

that if d is large, inf0<J<e F(s) >\ and sup0<J<e |G(i)| < 1/6.128. Then M4 >

a28/d ■ 1/64. To insure that the error terms are only a fraction of M4, choose 8 so

small that 47r2r52 < 1/6.128 (still requiring 8 < 10~3) and a so small that 7ra2/y <

1/6.128 (still requiring a2 < 10"2, y = j).

Then \E2 + F3 + F4| < a28/d- 1/128, whence \TJj(x)\ > a28/64d + o(l). If

Nk is large, \TJj(x)\ > a28/l2%d = C(a, ß, y, 8, d) > 0. This completes the proof.

IV. Applications and extensions. (1) A. P. Calderón observed that every bounded

rational function of a real variable gives rise to an LP(RX) multiplier if 1 <p < oo.

The work of Littman, McCarthy and Rivière [9] showed this cannot hold in higher

dimensions, but Rivière [12] conjectured that bounded rational functions must be

LP multipliers for some p =£ 2. Theorem A shows this conjecture is false.

(2) Let G be a noncompact connected semisimple Lie group with finite center,

Lie algebra g and Killing form B. Greenleaf, Moskowitz and Rothchild [5] showed

that there are no nontrivial finite measures on g invariant under the action of

Ad G. This means that there are no nontrivial multipliers of Lx(g) which commute

with the action of Ad G. R. Strichartz conjectured this holds for all p # 2.

Theorem B provides evidence in favor of .'he conjecture. Defining a Fourier

transform on Lp(g) by f(y) = fg e'^^fix) dx, a multiplier is seen to commute

with Ad G if and only if m is Ad G invariant. If Ad G acted transitively on the

level sets B(x, x) = constant, it would follow that m(x) = q>(B(x, x)). Diagonaliz-

ing B and observing dim g > 3, we see that Theorem B applies, and m is indeed

not ^multiplier of Lp(g). In general, Ad G does not act transitively, but there is a

three-dimensional subspace on which B has signature ( + , —, — ) and on which

Ad G acts transitively. We use Lemma 4(a) to restrict m to this subspace, and then

apply Theorem B. This provides a partial solution to Strichartz' conjecture, with
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restrictions on the growth of m. But m(x) = \B(x, x)\" is easily seen not to be a

multiplier, but fails to satisfy our growth restrictions. The general case of Strichartz'

conjecture therefore remains open.

(3) The results in this paper were adapted to the analysis of second order

differential operators, or, more generally, multipliers constant on quadratic

surfaces. The techniques may nonetheless be used to obtain unboundedness of

multipliers of the form <p(£ — <i>(r/)) where <p has growth restrictions and <j> curvature

restrictions. As A. Cordoba has kindly pointed out, positive and negative results for

such operators may be obtained using the methods of [1]. He has informed us that

an analysis of such operators has been carried out in the doctoral dissertation of his

student, A. Ruiz.

(4) The techniques of this paper have more general applicability for the study of

the Lp spectrum of constant coefficient differential operators. We shall consider a

class of "good" differential operators for which our techniques are applicable.

Using Lemma 5, the central result of this paper may be phrased as a classification.

Classification. Let D he a "good" operator. Then either

(a) o(D0p) = range dfor allp, 1 <p < + oo, or

(b) o(D0j!) = range dwhertp = 2, while o(D0j!) = C for 1 <p < oo,p ¥= 2.

The basic problem is to find the largest class of good operators for which the

classification holds. It is clear that we cannot expect this for all operators; for

example, the operator with symbol (f2 - f ,2 + z')(f2 + f2 + i) is LP(R2) invertible

for somep # 2, but not for allp (see [7] and [13]).

Using Theorems A and B, and some simple variants of the Marcinkiewicz and

Hörmander multiplier theorems, one can see that if d is a polynomial of degree 2,

with real coefficients, then D is a "good" operator. It seems plausible that this

holds for arbitrary 2nd order operators. We have made some progress on this

question, and shall return to the problem in a later paper.
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