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WEAK SUBORDINATION AND

STABLE CLASSES OF MEROMORPHIC FUNCTIONS

BY

KENNETH STEPHENSON

Abstract. This paper introduces the notion of weak subordination: If F and G are

meromorphic in the unit disc %,, then F is weakly subordinate to G, written
w

F ■< G, provided there exist analytic functions <|> and u: % -» <?L, with </> an inner

function, so that F ° ¡i> = G ° u. A class 9Í of meromorphic functions is termed

stable if F < G and G e % =» F G 9t.

The motivation is recent work of Burkholder which relates the growth of a

function with its range and boundary values. Assume F and G are meromorphic

and G has nontangential limits, a.e. Assume further that /■(%,) n G(%) =£ 0 and

G(e'*) £ FC^tL), a.e. This is denoted by F < G. Burkholder proved for several

classes % that

F < G   and    G e 9í =» F e 9Í. (.)
H»

The main result of this paper is the Theorem: F < G => F < G. In particular,

implication (•) holds for all stable classes 9t. The paper goes on to study various

stable classes, which include BMOA, Hp, 0 < p < oo, N , the space of functions of

bounded characteristic, and the Af * spaces introduced by Burkholder. VMOA and

the Bloch functions are examples of classes which are not stable.

In this paper we introduce the notion of weak subordination of functions on the

unit disc ^l = {\z\ < 1} and we investigate classes of functions closed under weak

subordination-termed stable classes. Our motivation is recent work of D. L.

Burkholder regarding the estimation of growth of functions on the disc from their

ranges and boundary behavior. The situations he has considered turn out to be

special cases of our more general, function-theoretic notion. We are thus able to

extend his results to all stable classes, which include the classes he investigated plus

several other standard function spaces.

Let F and G be meromorphic functions in the unit disc and assume that G(e'9)

exists as a nontangential limit for almost all 0 E [0, 2w]. Assume further that

FC^li) n G(%,) is nonempty and G(e'e) E F(%), a.e. For convenience, we indicate

this situation by F < G. Burkholder strengthened a method of L. Hansen [7] to

show that for classes % of functions satisfying certain growth conditions one can

conclude

F <G    and    G E%=>F E%. (1)

Burkholder first proved this for % = Hp, 0 <p < oo, using Brownian motion
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566 KENNETH STEPHENSON

arguments [3]. He subsequently used potential theory and nontangential maximal

functions to prove it for more general classes % = A/* [4].

We define the notion of weak subordination: If F and G are meromorphic in %,
w

we say F is weakly subordinate to G, denoted F < G, if there exist analytic

functions <p, to: % -* %, with <f> an inner function, so that F ° <j> = G ° u. A class

9C of meromorphic functions is stable if it is closed under weak subordination, that

is,

F < G   and    G E % ^> F E %.

The connection with Burkholder's work is this:

F <G^F < G. (2)

In particular, implication (1) holds for all stable classes %.

The Hardy spaces, 77'', 0 <p < oo, the Smirnov class, Nt, and the space of

meromorphic functions of bounded characteristic, BC, were shown to be stable by

the author in [17]. We show in §4 that BMOA, analytic functions of bounded mean

oscillation, is also stable. In §5 we prove that the classes A/* introduced by

Burkholder in [4] are stable if we redefine them slightly to accomodate meromor-

phic functions; the previous results follow when attention is restricted to holomor-

phic functions. In §6 we give examples of spaces which are not stable, and we make

some concluding remarks.

The proof of (2) is given in §2. The method of proof obscures somewhat the

central fact that F < G implies F(sll) \ G(%) has logarithmic capacity zero, so an

alternate  structure   theorem  is  given  in  §3.  We  then justify  our  symbols   <
w

and -< by showing that these relations are transitive. This second approach is also

of some independent interest since it allows one to view F and G as maps into the

covering surface of G(%), and shows intuitively why G(e'9) £ FC^ll), a.e., means G

"leaves" the range of F on almost all radii-this was the original insight gained from

the Brownian motion approach.

I wish to thank D. L. Burkholder for conversations on this material and

specifically for his conjecture that Lemma 6 might hold. It is also interesting to

note his suggestion [3, p. 200] of a "kind of subordination of F to G" when F < G.

1. Preliminaries. <31L(%.) and %(%) denote, respectively, the meromorphic and

holomorphic functions on the unit disc. S2 is the Riemann sphere, S2 = C u {oo}-

For f E 91t(%), f(eie) E S2 always denotes the nontangential limit of / at em,

indicating in particular that this limit exists. BC = {/ E 91L(%): / is of bounded

characteristic}. If £2 C S2, 90 denotes its boundary. On 3%, normalized Lebesgue

measure is denoted by m, and a.e. means almost everywhere with respect to m.

<p E %(%) is an inner function provided <K^) Q ^ and |<p(<?")| = 1, a.e. A

general reference for properties of inner functions is Duren [6].

Definition. Let F, G E 91t(%). We say F is weakly subordinate to G, written
w

F < G, if there exists an inner function <p and an analytic function w: % -> % so
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that F ° </> = G ° co. This corresponds with the usual notion of subordination when

<b(z) = z and to(0) = 0.

Definition. We say % Q 91L(%) is stable if it is closed under weak subordina-
w

tion, i.e., if F < G and G E % => F E %. When considering a specific space %,

it is convenient to verify the following two conditions, which can be shown to be

both necessary and sufficient for stability:

(a)FE%andio:%^%^7->«6%,

(b) F E <Dt(Gll), </> an inner function, and F ° <b E % =* F E %.

For convenience, we now record some lemmas which will be needed at various

points in the sequel. A proof of the first can be found in [11]; the next is a

generalization of Löwner's theorem [18, Chapter VIII, §§5 and 6]; the third is

proven in [5, Chapter 2, §8].

Lemma 1. Let to: % -> % be analytic with a = co(0). For f E H2 = 772(%),

Furthermore, if to is an inner function, then

7^|ll/ll!<ll/-«l&

7« particular, if co(0) = 0, then ||/° to||2 < ||/||2 w'th equality if w is an inner

function.

Lemma 2. Let to: % -> % be analytic. Let E* c 3% with m(E*) = 0 and define

E = {ew: u(ew) E E*} c 3%. 77ze« m(E) = 0.

Lemma 3. Let A c °)i be a relatively closed subset of (logarithmic) capacity zero,

with <j>A: % —» % \ A a universal covering map. Then <j>A is an inner function.

Lemma 4. Assume f £ cDlt(($L) has nontangential limits, a.e., and to: ^l —> % is

analytic. Let E Q 3% be the set on which f ° to has nontangential limits. Then

(f o co)(e") = /(to(e*)) (3)

for almost all ew E E.

Proof. Consider the right-hand side of (3). u(e'9) exists, a.e., by Fatou's

theorem. Since /(£) exists for all £ E %- and for almost all £ E d%, an application

of Lemma 2 implies that/(to(e'*)) makes sense, a.e. The left side of (3) makes sense

for all e'e E E, so the only way (3) can fail for a point e'e is if/has an asymptotic

value along the path T: r ^ o¡(re'9) which is not the same as the nontangential limit

f(u(ei9)). This exceptional set of values to(e'*) is countable by Bagemihl's theorem

on ambiguous points [5, Theorem 4.12]. Thus, another application of Lemma 2

completes the proof.

2. Proof of Theorem 1.

Theorem 1. F < G implies there exist analytic functions </>, to: % —* 6li, with <p an

inner function, so that F ° <p = G ° to.
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Proof. Assume both F and G are nonconstant, for otherwise the result is

immediate. F < G implies F(6lL) intersects G(%) in a nonempty open set. Choose

a, b E % with F(a) = G(b) and G '(b) ¥= 0. In a sufficiently small neighborhood £2,

a£ßc%, we can define a single-valued analytic function « = G'l(F) with

«(a) = ¿>.

We can continue « analytically to a maximal connected Riemann surface W

lying over %. Perhaps the easiest way to describe W is to consider h, the complete

analytic function containing the function element («, £2). Let % be the associated

Riemann surface with projection tr into the complex plane. W is simply a compo-

nent of ir~x(%) n «"'(%) Ç ea>' which contains the branch associated with («, £2).

That is, H7 contains an open set £2 with it: £2 —> £2 a homeomorphism and with

£)(£) = /z(w(£)), £ G £2. Let â denote the point of £2 with w(<5) = a.

We continue to use tr to denote the projection tr: W—»■%. Since this is a

bounded analytic function on W, we see that W has % as its universal covering

surface. Let p: % -» If be a universal covering map with p(0) = â. Now, define

tp = tr ° p   and   to = f) ° p.

<í> and to are well defined analytic functions from %. into %. Let £ = p(z) E W and

consider G ° to on p~'(£2) Ç % :

(G o „)(,) = G[r,(p(z))] = G[i,(£)] = G[«M£))]

= G[ G -\F(tt(£)))] = FM£)) = F(tr(p(z)))

= (F o ^)(z),        z E p->(0).

Therefore, G ° to = F ° <j> on 6ll. It remains only to show that <j> is an inner

function.

Define the following subsets of 3% :

Ex = {eiB: <p(ei9) or «(<?'*) fails to exist},

E2 = {ew: |to(e'*)| < 1 and G'(w(ei9)) = 0},

E3 = [ei9 $ E2: \$(ei9)\ < 1 and |to(e'*)| < l},

E4 = {ei9: \<S>(ei9)\ < 1 and |to(e'")| = l}.

<f> has unimodular radial limits on 9^1 \ U f E¡, so it suffices to prove m(E) = 0,

7 = L 2, 3, 4.
Fatou's theorem implies m(Ex) = 0 and, by the countability of (z: G'(z) = 0},

m(E2) = 0 also. We show, using the maximality of W, that £3 = 0: Assume

e''fl E E3, with a = «He'*) and ß = «(e'9). G(j8) = F(a), and G'(/3) ^ 0, so in

some small neighborhood N, a EN Ç %, we can define the single-valued analytic

function k = G~X(F) with k(a) = ß. Consider the path r^>p(rei9), r E [0, 1), on

W. It starts at ä E £2 when r = 0 and i) is analytic along it; that is, the function

element (h, £2) has an analytic continuation along the projected path r —>

(it ° p)(e'9). k is clearly a further analytic continuation to a neighborhood of the

endpoint a = (77 ° p)(e'9). From the definition of W we therefore see that

lim,.^, p(re'9) is an interior point of W7 lying over a. But this contradicts the fact

that p is a covering map. The contradiction shows E3 = 0.
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Finally, we use the fact that G(ei9) E F(%), a.e. Consider eie E E4 with a =

<H.ew) and ß = to(e'9), | ß\ = 1. Let T he the path r^>u(rei9) which ends at ß.

Because G ° to = F ° <j>, we see that G has asymptotic value F(a) E F(°ii) along T.

Thus, at (8 6 3%, precisely one of the following holds: G has no nontangential

limit, G has a nontangential limit in F(%), or G has a nontangential limit different

from the asymptotic value along T. Each of these can occur only on a set of

measure zero. That is, co(7s4) lies in a subset of 3^1 of measure zero. An application

of Lemma 2 shows m(E4) = 0 and completes the proof.

This proof gives one direction of the following result; the converse is straightfor-

ward.

w

Proposition. F < G if and only if some choice of G~X(F), not the identity

function, can be continued analytically to the Riemann surface associated with an

inner function.

Of course, we are fortunate that a simple condition like F < G actually allows us

to determine the behavior of G~X(F). It gives hope that there are other situations in

which one can recognize that weak subordination occurs; for example, there may

be local geometric criteria analogous to the global condition F < G.

We record here a curious result which follows from Theorem 1 and the fact that

the composition of two inner functions is itself an inner function (which follows,

incidently, from Lemmas 2 and 4).

Corollary. Assume F and G are inner functions. Then there exist inner functions

<f> and to such that F ° <j> = G ° co.

3. Alternate approach.

Theorem 2. If F < G then there is a plane region R and a universal covering map
w w

77: % -> R so that F < H and H < G.

Proof. We must exhibit inner functions <b and \p and analytic functions v and to

with F ° <p = H » v and 77 ° \p = G ° to. The basic idea is to modify F and G

slightly (by composition with <b and to, respectively) so that the modified functions

have a common range, R. Then we observe that each is subordinate (by v and \p,

respectively) to the universal covering map (77) of their common range. We

proceed by constructing each of the required functions.

Construction of <o. Let E = S2 \ F(%). E is closed, S2 \ E is connected, and

by hypothesis, G(%) n (S2 \ E) is nonempty. First, observe that E has positive

capacity since G(e'9) E E, a.e. [13, p. 210]. (Note the importance here of the

assumption that G has nontangential versus only radial limits. There are examples

of nonconstant meromorphic functions on % having limit 0 on almost every

radius. See [5, §8.1].) Let £2 ç % be a (connected) component of G~X(S2 \ E). If <o:

<ÎL —* £2 is a universal covering map, then G°to:<iL^S2\7i. Since E has positive

capacity, G ° co E BC [10, Chapter VII, §5], hence G ° to has nontangential limits,

a.e. Since G(£) E E for all £ E 9£2 n % and for almost all £ E 9£2 n 3%, Lemma 4

implies (G ° to)(e'e) E E, a.e. In particular, F < (G ° to).
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Construction of <j>. We begin with some notation and an extension of Frost-

man's theorem due to Rudin.

If g G BC and a E C, then g — a may be factored as

g - « = 4 • Ha/Ja

where Ia and Ja are inner functions with no common inner factor and 77a is outer,

\Ha(ei9)\ = \g(e">) - al a.e. [6, Chapter 2]. We refer to Ia as the inner factor of

g - a.

Lemma 5 (Rudin [5]). If g E BC, then the set of points a E Cfor which the inner

factor of g — a has a nontrivial singular inner factor is of capacity zero.

Proof. Rudin's proof applies to functions which are in %(Gll). Suppose g G BC

is meromorphic with the set of poles A. If $A : % -» % \ A is a universal covering

map, then (¡>A is an inner function by Lemma 3 and g ° <¡>A E %(6lL). If 7 is a

nontrivial singular inner factor of g — a, then 7 ° <bA is a nontrivial singular inner

factor for g ° <f>A — a ; so our conclusion follows from the holomorphic case.

Lemma 6. If g E BC and f < g, then the set /(%) \ g(%) has capacity zero.

Proof. Let B = d(g(GlL)) n /(%). We show B has capacity zero. Then /(%),

being open and connected, cannot be separated by B, so we must have

B = /(%) \ g(%),

and we are done.

Pick a E B. Then g - a = Ia ■ Ha/Ja. Choose 8 > 0 so small that [\z - a\ <

8}Qf(%). f<g^\g(ei9)- a\>8,  a.e.   ^\Ha(ei9)\ > 8,  a.e.   =>\Ha(z)\>d,

Z E % =>

x(z) > 8,       z E %. (4)

Consider 7a: It has no zeros since a E g(%); but |g - a| is not bounded away

from zero since a E d(g(Gli)). In view of (4) we can only conclude that 7a is a

nontrivial singular inner function. An application of Lemma 5 gives us the result.

Now to construct <#>: We have F < (G » to) and G ° cj E BC. Let

B = F(<&) \ (G o œ)(%)    and   ^ = F~X(B).

By Lemma 6, B has capacity zero, so A c % is a closed set of capacity zero.

Define <b: % -» % \ A to be a universal covering map. By Lemma 3, <i> will be an

inner function. Note that

F(%) \ G(%) Ç F(%) \ (G o «)(<&),

so F(%) \ G(%) has capacity zero.

Construction of 77, \p, and z\ Observe that G ° to and F ° (¡> have precisely the

same range R c S2. Since F Ç S2\ R has positive capacity, % is the universal

covering surface of R. Define 77: % —> F to be a universal covering map; then the

usual subordination principle gives analytic functions >p, »»:%-»% so that

G ° co = 77 » ^    and   F ° <£ = 77 ° v.
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Note that \p is an inner function. If not, then 77 ° xp would have radial limits in the

interior of F on a set with positive measure, contradicting the fact that 77 ° \p =

G o to has almost all its radial limits in F C S2\ R.

Corollary. Let G E <iJ\l(Gll) with range R = G(<?L) and assume G has non-

tangential limits G(e'9) which lie outside R, a.e. Then G E BC and G = 77 ° xp where

77: % —» R is a universal covering map and \p: % —» %- is an inner function.

w

We may now show that the relations denoted by < and -< are transitive within

the nonconstant meromorphic functions. (It is easily seen that this can fail if

constant functions are included.)

Assume F, G, K E tDlL(%) are nonconstant with F < G and G < K. As noted in

the previous proof, G(%) \ F(%) has capacity zero. Since F(%) n G(%) is a

nonempty open set, we see that F("il) n K(6ä.) is nonempty. Let F, = {e'e:

K(ei9) E F(%) n G(%)} and F2 = {ei9: K(ei9) E F(%) \ G(£2)}. Because G < K,

m(Ex) = 0, and because F(%) \ G(%) has capacity zero, m(E2) = 0. Thus K(ei9)

E F(%), a.e. We conclude that F < K.

Regarding weak subordination, suppose F, G, K E 91LCÍL) are nonconstant with
w w

F < G and G < K. There are then inner functions 4>x, </>2 and analytic functions

to,, to2: % -» % so that

F ° <J>, = G ° to,,        G ° <j>2 = K o to2.

Since <£2 is an inner function, we have to, < <j>2; so Theorem 1 implies the existence

of an inner function a and analytic function ß: % -» % with to, ° a = <p2 ° /?. In

particular, F°<j>x°a=G°wx°a = G°<l>2°ß = K°u}2°ß. The composition

of inner functions <¡>x ° a is itself an inner function, so the relation F ° (<¡>x ° a) =
w

K o (co2 ° ß) proves that F < K.

4. BMOA is stable. In [17] it was shown that the Hardy spaces 77^, 0 <p < oo,

the Smirnov class N+, and BC are stable, although this terminology was not used.

We now investigate BMOA, analytic functions of bounded mean oscillation.

For the sake of completeness, we begin with an elementary proof that H2 is

stable. & will be used to denote the group of conformai automorphisms (Möbius

transformations) of %; < • ,•) denotes the usual inner product in 772.

Proposition. 772 is stable.

Proof. It is well known that 772 is closed under subordination. Thus, we need

only show that if <p is an inner function,/ E 91t(%), and/ ° <p E H2, then/ E H2.

It is not difficult to show, composing with elements from & if necessary, that we

may reduce to the case that £(0) = 0.

The powers of $, {I, <|>, 4>2, . . . }, form an orthonormal set in 772; let S be its

closed linear span with orthonormal projection P: H2 —» S. Define

00
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Since 2|</ ° <t>> V)\2 < 11/ ° <Í>HÍ, g is in 772 and g ° <p = F(/ ° <f>). We show that

g=/-
Let h = f — g and suppose « ^ 0. « cannot have a pole at z = 0, since h ° <f> E

H2, so we may write /z(z) = z*A,(z), some A: > 0 and «,(0) =5^ 0. This gives

<ho<t>,<pky = <¿k(hx o <¡>), **>-<*,. ^:1> - («, ° <f>)(0) = «,(0) * 0.

However, this is a contradiction since (« ° <i>) = (/ ° <i>) — ( g ° <|>) = (/ ° <f>) —

P(f ° <>) is orthogonal to S. We conclude that « = 0.

Definition (see [12]). For / E 772 and y G é£, let / denote the function

f ° y — (f ° y)(0). BMOA is the space of functions/in 772 with the property that

M(/)= sup{||/J2} <a>.
yeff

Theorem 3. BMOA is stable.

Proof. Suppose / G BMOA and co: % -» %. f G BMOA =>/ G 772 =>/ ° co G

772. For yea, choose ^ G £ so that («/r1 ° to ° y)(0) = 0. Then

IK/ ° «)TBa = ll(/ • * • f"1 • <o),||2 < ||j;||a < A7(/) < 00,

where the first inequality follows from Lemma 1. Since this holds for all y E &, we

conclude that / ° co G BMOA. In the other direction, suppose <¡> is an inner

function, / G 911(91), and/»<J>e BMOA. First, / ° <i> G 772 implies / G 772 be-

cause 772 is stable. For y G éB, y"1 ° <J> is inner and hence assumes some value a

with (1 + |o|)/(l - |a|) < 4 and |/(y(a)) - /(y(0))| < 1. Say (y"1 o <t>)(ß) = «,

then choose \p E & with \p(0) = ^, so that (y~' ° <f> ° »p)(0) = a. Then we have

11411a - 11/» y -/(y(0))||2 < ||/o y -/(y(«))||2 + |/(y(«)) - /(y(0))|

< 1 + \\f ° y - (f ° y ° r1 ° * * *)(0)\\2.
By Lemma 1, since y-1 ° 4> ° \p is an inner function, this is

1/2

||(/ ° y ° Y"1 ° <t> ° t) - (/ ° Y ° V"1 ° <í> ° t)(0)h

< 1 + 2||(/ o ^||2 < l + 2M(f o j) < co.

Since this holds for all y G â,f E BMOA. This completes the proof.

Remark. The range of a meromorphic function remains unchanged when the

function is composed with an inner function, except for the possible removal of a

set of capacity zero. Thus, stability seems to be a natural property to investigate for

classes of functions where geometry of the ranges is involved. For the space % of

Bloch functions, sets of capacity zero can be very important, and we will see in §6

that % is not stable. On the other hand, sets of capacity zero are in some sense

negligible for functions in BMOA, which is stable. The connection between

geometry of the range of a function and membership in BMOA is investigated in

[8]. In contrast, there are no geometric conditions on the range which imply a

function is in VMOA, analytic functions of vanishing mean oscillation. This is

reflected in the fact that VMOA is not stable-the identity function is VMOA, while

most inner functions are not.

< 1 + L±M.)
U-I«l



STABLE CLASSES OF MEROMORPHIC FUNCTIONS 573

5. The classes M*. Burkholder defined the classes A/* in terms of the non-

tangential maximal function; however this restricts consideration to holomorphic

functions only. Fortunately, his work implies an equivalent definition based on

balayage which, with a minor adjustment, allows meromorphic functions to enter

in a natural way. We use the same notation A/* for this (possibly) broader class,

with the justification that the original classes are precisely the holomorphic func-

tions in A/*. Indeed, we will see shortly that when $(a) = Xp, 0 <p < oo, then the

associated classes A/* (denoted Mp in [4]) contain only holomorphic functions, so

our definition is equivalent to Burkholder's. These specific classes are of particular

interest because they generalize the 77'' spaces.

Before defining A/* we need some notation. A good reference for the potential

theory terminology and results used in this section is Helms [9].

Fix / G 9H(9l) and X > 0. § denotes the superharmonic functions in %.

Define sets

^={I/I<A}, rV[={\f\>X},

and the function

R[(z) = inf{u(z): vE%,v>0, v > Ion WQ,       z G <%,.

Each point of W{ is contained in a continuum belonging to W{, so each compo-

nent of V( is a Dirichlet region. Also, the boundary of W{ in 9i is a level set for

the meromorphic function /, so each z0 G dlV[ n 9i has a neighborhood N =

{\z - z0\ < e} such that N n V{ has a finite number of components. Using

standard arguments in potential theory one can verify that R{ has the following

properties:

(a) R{ = 1 on W{.

(b) R{ is a continuous real superharmonic function on % bounded by 1.

(c) In each component D of V{, R{ is the (Perron-Wiener-Brelot) solution of the

Dirichlet problem with boundary values 1 on oD n 9i and 0 on 37) n 39i.

In short, R[ is the balayage of 1 relative to W{ on %.

Definition. Let $ be a real function defined for all large X. To avoid trivialities

assume <b(X) > 8 > 0 for some 8 and all large X. A/* is the class of functions

/ £ 911 (%) with the property that

lim inf &(X)R((a) = 0, (5)
A—*oo

for some a E 9i not a pole of /. This is independent of a, for suppose ß E 9i is

also not a pole of /. For sufficiently large Xq, a and ß will be in the same

component of V{, and for X > Xq, R[ will be positive and harmonic in V(o. By

Harnack's inequality there are constants c and C, independent of X > X& so that

cR((a)<Rl(ß)<CR{(a).

Therefore, (5) holds or fails simultaneously for a and ß.

If F G %(%), we may take a = 0 in (5). Referring to the proofs of Lemmas 1

and 4 in [4], we see that we arrive at the same collection of functions on X(%) as

Burkholder. To see what changes may occur, consider F(z) = 1/z. For X > 0,
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F{(z) = log|l/z|/logÀ.

Set a = 1/2 and consider (5). Clearly,/ G Af * if and only if

lim inf 4>(A)(log a)-1 = 0.
A—*oo

For instance, if $(A) = Vlog X , then / E A/*, while if 0(X) = Xp, 0 <p < oo,

then / E A/*. In fact, easy computations along this same line show that if

<3>(À) = Xp, 0 <p < oo, then Af* contains only holomorphic functions; that is, our

definition of A/* gives precisely the same class as considered in [4].

Theorem 4. Af* is stable.

Proof. Suppose co: 9i -* % is analytic and/ G 9H(%). Then for a not a pole of

f ° to

F{-(«) < F/(co(a)). (6)

Therefore, /EA/*=>/°coEA/*. The other condition for stability is more dif-

ficult. It is sufficient to prove that when co = <¡>, an inner function, then equality

holds in (6).

Fix X > 0. If \(f ° <i>)(a)| > A, then each side of (6) is 1 and we are done. Hence

we assume X is sufficiently large so that <¡>(a) G V{. Denote by D the component of

V{ containing <£(«)■ For each r, \<t>(a)\ < r < 1, denote by Dr the component of

D n (|z| < r) containing <£(a) and by £2r the component of <p~x(Dr) containing a.

Both Dr and £2r are Dirichlet regions. Let ur be the solution to the Dirichlet

problem in Dr with boundary values 1 on 37L n 3K{ and 0 elsewhere. Define vr,

harmonic on £2r, by vr = ur ° <f>.

First we consider the functions vr. Suppose z0 G 3£2r; then one and only one of

the following occurs:

(a) z0 E d%. Because <p is an inner function, 3£2r n 39i has harmonic measure

zero with respect to £2r. (See the proof of Proposition 3.3 in [17].) Thus we can

ignore this part of 3£2r.

(b) z0 E % and <Kz0) E dV[. In this case, z0 E dV{° *, and

lim sup vr(z) < 1 = F{°*(z0). (7)
z->z0

zeiL

(c) z0 E % and <j>(z0) E dV{. In this case, |ti>(z0)| = r, so ur has continuous

boundary values in a neighborhood of (f>(z0). Therefore,

lim    w,.(z) = 0,
z^><t>(z0)

zeDr

which gives

lim sup vr(z) = 0 < Rl'^Zo). (8)

zenr

Now, (7) and (8) and the fact that vr and R{°* are bounded imply ur < F^* in £2r.

In particular, we have shown

v,(a) = «rW«)) < F{=*(«X        W«)l < r < 1. (9)
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Next we consider the functions ur. As /-fl, Dr increases to D, and for rx < r2 it is

clear that ur < ur < R{ on 7)r. Applying Harnack's theorem, there exists a

harmonic function u > 0 on D with

«,T«. (10)

Of course,

w < R{   onD. (11)

Fix z0 G 97) n ^L. As was observed earlier, there exists a neighborhood N =

{|z — z0| < e} so that D n N has a finite number of components. For sufficiently

large r, all of those contained in D will be contained in Dr and z0 G 37),.. The

boundary values specified for ur will be continuous at z0, so

lim inf u (z) = 1.
z^z0

ze.Dr

lim inf z<(z) > lim inf wr(z) = 1. (12)
z—*zQ z—*z0

zBDr zeD,

lim inf u(z) > 0. (13)
z—>z0

zeo

But F/ is the solution of the Dirichlet problem in D with boundary values 1 on

37) n % and 0 on 3D n 3%. Therefore, (12) and (13) imply R{ < u on 7). Along

with (11) this gives

»(<#>(«)) = Rjfttfa)). (14)

Finally, (9), (10), and (14) imply equality in (6) with to = <¡>. This concludes the

proof that Af * is stable.

6. Remarks.

6.1. We give two examples of spaces which are not stable. The first is due to

Richard Timoney; the second was considered at the suggestion of L. A. Rubel.

Example I. We denote by "35 the Bloch functions. There are several characteriza-

tions of this space (see, for instance, [2]), but for our purposes the best description

is as follows: Let / G %(^i) and let dj{z) denote the radius of the largest schlicht

disc about f(z) on the Riemann image surface of / Then / E % if and only if

suPze% dj(z) < oo. Let g be any meromorphic function not in $. Let Z2 = (z G

C: Im z and Re z are integers} and let A = g~'(Z2 u {°o})- A c ^ is closed and

of capacity zero, hence a universal covering map <j>A: %. —» % \ A is an inner

function. Now/ = g ° §A is holomorphic and omits Z2, so supze<îldf(z) < V2 /2.

Therefore, g ° <j>A = / G "3J although g E ® , so 9> is not stable.

Example II. Let p be a continuous, decreasing, real function on 0 < r < 1 with

p(l) = 0 and p(r) > 0 for r < 1. Let % be the linear space of functions/ G %(GH)

such that /(z)p(|z|) —>0 as |z| -» 1. These spaces were introduced by L. A. Rubel

and A. L. Shields [14]. We show that 9C may fail to be stable.

Since D n N <z Dr,

lim inf u(z) =
z—>z0

zBD

Obviously, if z0 G 37) n 9%,
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Let p(r) = e\p{(r + l)/(r - 1)}, 0 < r < 1. Consider

/(z) = exp{-f((z+l)/(z-l))},

and let <> be the Möbius transformation <£(z) = (z - \)/(l — \z). Then \f(r)\p(r)

-> oo as r -» 1, so/ E %. However,/ ° <¡> = exp{-i((z + l)/(z - 1))}. |(/ ° <i>)(z)|

< (/ ° <f>)(kl), z G %, and \f(<Kr))\p(r) -> 0 as r -+ 1, so/ ° <f> £ 9C.
6.2. In [4], Burkholder considers classes, Af *, more general than those we

consider in §5. In fact, we can define analogous classes for any upper semicontinu-

ous function ^onC; however, it is no longer clear that these are all stable.

To be specific, if ^ is upper semicontinuous we may define Af * to be the class of

/ E 91L(%) such that

lim inf <¡>(X)R*V\a) = 0,
A—»oo

for some a not a pole of/. The proof in §5 shows that a simple sufficient condition

for A/* to be stable is that ^ have the following property:

Given f G 91L(%) and X sufficiently large, if \~*(f(z0))\ = A., z0 G 6ll, then there is

a neighborhood N = (|z — z0| < e} such that

N n {|*(/)| < A}

has a finite number of components.

This holds, for example, if *(z) = Re z, *(z) = (Re z)+, or *(z) = log+|z|. Is

some such condition necessary, or are all such classes Af * stable?

6.3. If was proven in [3] that if F < G, F(0) = G(0), and G E Hp, 0 <p < oo,

then not only is F E Hp, but HFI^ < \\G\\p. This follows easily from Theorem 1:

If a = G(0) = F(0), then in constructing the functions <¡> and co we may specify

<í>(0) = 0 = co(0). The final statement in Lemma 1 holds for any value 0 <p < oo

in place of 2, hence

II^II,-||^0«pII,-||G0«II|,< ||G||,.

The work in [17] shows that for % = Hp, 0 <p < oo, A/„, or BC, % actually

has a property slightly stronger than stability. Namely, if <b is an inner function, / is

meromorphic on <>(%), and/ ° <#> G 9C, then/can be extended to be meromorphic

on % and/ G %.

Since BMOA Q H2, this also holds for 9C = BMOA. However, it clearly does

not hold for stable classes in general. For example, let/be analytic in % except for

an essential singularity at z = 0, and let </>(z) = exp{(z + l)/(z — 1)}. Then with a

proper choice of the function <£> we can have / ° <p E M*, even though / E A/*.

The stronger property only holds when sets of capacity zero are in some sense

"removable" under the growth condition associated with the class 9C.
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