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A MAXIMAL FUNCTION CHARACTERIZATION OF H?
ON THE SPACE OF HOMOGENEOUS TYPE
BY
AKIHITO UCHIYAMA

ABSTRACT. Let yy(x) € S(R") and let  gn Yo(y) dy = 0. For f € §'(R"), x € R"
and M > 0, let

fHx) = sup If * Yol ()|
and let f*M(x) = sup{|f + Y(x)|: ¢ > 0, Y(») € S(R"), supp ¢ C {y € R™ |y| <

1}, IDN|| = < 1 for any multi-index a = (ay, . . ., a,) such that 37_, a; < M}
where y,(y) = t "Wy /1).

Fefferman-Stein [11] showed

THEOREM A. Let p > 0. Then there exists M(p, n), depending only on p and n,
such that if M > M(p, n), then

lf e <IPMller < CIF*|ler

Jor any f € S’(R"™), where ¢ and C are positive constants depending only on Yo, p, M
and n.

We investigate this on the space of homogeneous type with certain assumptions.

1. Introduction. In this note, all functions are real valued and measurable. All
numbers are real numbers.

In this section, we consider functions or distributions &’ defined on R"; the
letter x denotes the vector (x,, . . ., x,) € R" and |x| denotes 7., x?)'/%

First, we define H?(R") (0 < p < 1) following Coifman-Weiss [8].

A function a(x) is called a p-atom (0 <p < 1) if there exists a ball B(x,, r) =
{x: |x — xo| < r} such that

supp @ C B(xg,7),  ||a| = <|B(xo, r)|—l/‘v
and if fa(x)p(x)dx = 0 for any polynomial p(x) of degree < [n/p — n], where

| B(xg, r)| denotes the Lebesgue measure of B(x,, ) and [7] denotes the integral part
of 1. For f € §'(R") let

o 1/p
Al > = inf [ ( > A ) : there exists a sequence
i=1

of p-atoms {a,(x)};., such that f = >, A,g; in 5'].

i1
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580 AKIHITO UCHIYAMA
If such a sequence {A,;};2, does not exist, let || f|| ;,» = + 00. We define
HP(R™) = {f € S'(R"): |N|wr < +0}.
Using the result of Fefferman-Riviére-Sagher [10] that refined the Calderdn-
Zygmund decomposition, Coifman [S] showed

THEOREM B. If 1 > p > 0and if M > [n/p — n] + 1, then

Ml <Mlar < CUP| e

for any f € S'(R"), where ¢ and C are positive constants depending only on p, M and
n.

Coifman [5] showed this for n = 1 and this is extended to n > 2 by Latter [14].
As a result of Theorem A and Theorem B, the space H?(R"), defined by
p-atoms, can be characterized by || f*|| .», that is,

i ler <M < CUFT e (*)

for any f € &', where C and ¢ depend only on p, n and y,.

For p = 1, L. Carleson [3] showed another proof of (). Extending Carleson’s
proof, R. Coifman, G. Weiss and Y. Meyer showed that if p = 1, then () holds on
the space of homogeneous type (see [8, p. 642]). This proof used the duality of
H'-BMO and the fact that || - || ;: is a norm. Forp < 1, || - || 4» 1s not a norm and
the argument of dual spaces is not so available.

In this note, we extend Theorem A to the L!-functions defined on the space X,
where X is a space of homogeneous type with certain assumptions. On the other
hand, it has been shown by Macias-Segovia [16] that Theorem B holds on X. Thus,
as a corollary of these results, we see that (*) holds forp > 1 — ¢ on X, where ¢ is a
positive number depending only on X.

Lastly, I would like to thank Professor R. Coifman who suggested the problem to
show (x) for p < 1 on the space of homogeneous type in 1976. I would like to
thank Mr. M. Satake for valuable information.

2. Definition. In this section, x, y and z denote the elements of a topological
space X and X is endowed with a Borel measure p and a quasi-distance d. The
latter is a mapping d: X X X - R* U {0} = [0, o) satisfying

) d(x,y) = d(y, x) for any x,y € X,

(D d(x,y) > 0iff x #y,

2)d(x,z) < A(d(x,y) + d(y, z))forany x,y, z € X,

(3) A7 'r < p(B(x, r)) < rfor any x € X and any r € (0, u(X)).

The balls B(x, r) = {y € X: d(x,y) <r} (r > 0) form a basis of open neighbour-
hoods of the point x.

Further we assume that X is endowed with a nonnegative continuous function
K(r, x, y) defined on R* X X X X satisfying

@) K(r, x,y)=0ifd(x,y) >r,

G)K(r,x,x) >A""'>0,

6) K(r, x,y) < 1,

() |K(r, x,y) — K(r, x, 2)| < (d(y, 2)/r)
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for any x,y,z € X and any r € R*, where y (> 0) is independent of x, y, z and r.
These definitions are due to [8]. Notice that there exist C; > 0 and C, > 0 such
that

C,K(r,x,y)>1 8)

forany x € X,y € X and r > 0 satisfying d(x, y) < C,r.
For any f(x) € L,(X) = {f: fis integrable on any bounded set}, let

F(r.x.f) = [ K(r,x, )f(y) du(y)/r,  f*(x) = sup|F(r, x, f)].
X r>0
For f(x) and o0 > p > 0 let
M,(f)(x) = 31;% F(r, x, U]p)'/’.

The following definition of H”(X) is also almost due to [8].
For f(x) € LL(X), let

L(f,0)= swp inf [ o JO) = el )/

xXEX,r>0 €€ER

L(f, @) = sup  |f(x) = f(y)|/d(x,y)* fora > 0.

XEX,yEX, x#y
Fora > 0, let

N = L(f, a) if w(X) = oo,
1A = LS, @) +'fxf<y) du(y)‘ﬂ(x)'(““) if p(X) < oo,

R(X) = {f € L=(X): A < o).
Then, || - ||? is a norm. When a =0, it is a BMO norm. When a« > 0, it is a
Lipschitz norm. If uw(X) = oo, then we consider the set of equivalence classes of
functions defined by the relation “f,(x) and fy(x) in £, are equivalent iff f, — f, is
constant”.
We say a(x) is a p-atom if fa(y) du(y) = 0 and if there exists a ball B(x,, 7,)
such that
supp a(x) C B(xg, ro), el < re /7.
In case u(X) < oo the constant function having u(X)~ /7 is also considered to be a
p-atom. It is clear that
lalle,-, <1
where £* is the dual space of £,.
ForO<p < landf e B,‘}p_,, let

) 1/p
A 4> = inf {( > A ) : there exists a sequence
i=1

of p-atoms {a,(x)} such that f = D, A,qg; in B,"}‘,_,}.
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If such a sequence {);} does not exist, let || f]| z» = + oo. We define
HP(X)={f €Ly _: N < +o}.
Lastly, for f € L! (X) we define

72 = sup{ | [ £2)9(3) du()|/r: r > 0, supp 9  BCx, ),
L(g,v) <r % ||o|=- < 1}.

3. The main theory. Our result is the following

THEOREM 1. There exists p, < 1, only depending on X, such that for any f € L(X)
and any p > p,

(Vo PZRCH T 172
where c, is a positive constant depending only on p and X.
ReMARK. For p > 1, this is clear from the Hardy-Littlewood maximal theorem.
For p = 1, this is shown by [8].
Macias-Segovia [16] showed

TueoreM C. If f € L\(X)and if 1 > p > 1/(1 + v), then

e <A < sllf*|lrs

where ¢, and c, are positive constants depending only on p and X.

REMARK. This can also be proved by exactly the same way as [15]. [16] showed
this theorem more generally for a “distribution” f.
As a corollary of Theorem 1 and Theorem C, we get

COROLLARY 1. There exists p, < 1, only depending on X, such that for any
fe€L(X)andany 1 > p >p,
/" ller < calfllar < eslf*ller < cellf ™ |lors
where c,, c5 and cq are positive constants depending only on p and X.
For the proof of Theorem 1, we need the following four lemmas.
In the following, N and Z mean (1,2,3,...} and {0, =1, £2,...} respec-
tively. The letters C and C; (i = 3,4, ...) denote the positive constants that

depend only on A and y. The various uses of C do not all denote the same
constant.

LEMMA 1. Let dv be a positive measure over X X R™ such that
v(B(x,r) X (0, r)) <r'*® (10)
forany x € X and any r € R*, where 8§ > 0 is independent of r and x. Then
)l/ (p(1+8))

(J_ rernr® a.n

for any p > 1 and any f € L?(X), where C, ; is independent of f.

< G ol zaex)
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REMARK. This lemma is essentially known. For the case 6 = 0, see [18, p. 236].
For the case § > 0, see Duren [23].
PROOF. Let f € LP(X). LetA > 0,

V={(x,r) EX X R*:|F(r,x,f)|> A}, q=24. (11)
Let W,, = {x € X: sup .1, | F(r, x, f)] > A}; then there exists M, such that
W, = & for any n > M. For each n < M, there exist disjoint balls { B(y,;, ¢")};
such that

M
Ynj € Wn,A’ B(ynj’ q") N ( U U B(ymi’ qm)) =g (12)

m=n+1 i

and that for any x € W, ,

B(x,¢") N (mLA_jn U By q’”)) #* 2.
By (2) and (11) '

V, C L,.J U (B(yy> 4"*") % (0, gM)).
Thus j

AP(|+8)V(V}‘) < 2 2 V(B(y,,j, qn+l) X (0’ qn))}\p(l+8)
noj

p(1+8)
")lf(y)l du(y)/ q"“')
»q

by (10), (12)

< 2 S q(n+1)(|+s)(f(
nj

B(yn

148
< 2 2 q(n+1)(1+s)qp(l+6)(f U-(y)lp dp,(y)/q")
noj B(y4,9")
148
: ’ )
<c, (2 S [, O 0

<Gl [T ) "

Then, Lemma 1 follows from the Marcinkiewicz interpolation theorem.

LEMMA 2. Let g(x) be a nonnegative function defined on X. Then for each t > 0
there exist {x(g8, t,))}m=12,... C X such that

1< C, 2 K(t x(8, 1,)),y) <C; foranyy € X, (20)
J

g(x(8 1,))) < CoF(t, x(g, 1,)), 872" for any j. (1)

ProoF. First, we can select { (%, /)};-1,, ... such that

d(y(t, i), y(1,))) > QA)7'Ct (i #)), (22)
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ZXB(,,(,J),(zA)-ICz,)(x) > 1 foranyx € X. (23)
J
For each y(t, j), we select x(g, ¢, j) such that
d(x(g, 1,)),7(1,))) < 24)™'Cyt, (24)
2
sl < ([ L0 a0) @076 e
B(y(t),24)”'Cat)
Then, (20) and (21) follow from (8), (22), (23), (24) and (25).

LEMMA 3. There exist p; < 1 and Cs, only depending on X, such that

[5w) ds|o < €[, 7P din)

for any f € L} (X) and any @, x,, ry satisfying
supp ¢ C B(xo, ro), L(p,y) <ry ", lolle- < 1.

REMARK. I borrowed the idea of this proof from Carleson-Garnett [4] and Jones
[13].

ProOOF. We may assume that r, = 1 and that ¢ > 0. Let

e=1/(4Cy) (30)

and let 1 be a sufficiently small positive number, only depending on X. We
inductively construct {x,} .15 . ;=12 ....js C B(xo 1) satisfying the following.

G 12/, X, ll < C; for any s € N, where B; = B(x,, Cn°),

(B2 f*(xy) < CoF(n’, x5, f*12P,

(33) 0 < ,(x) < (1 — &)°Xp(x,1)(x), Where

(34) g,(x) = p(x) — i, el — &f "', C\K(n', x;, x).

Let po(x) = @(x). Assume that {x;},., jiy have been constructed
and that @, _,(x) is defined by (34). Then, by (31) and (7),

l@s—1(x) — o, 1(»)] <|p(x) — @(»)|

s—1 ) ) )
+ 21 e(1 - o)  C)|K(n', x, x) = K(n', x5 »))|
1= J

s—1
< d(x’y)y + 2 8(1 - e)i-lCl2C3(d(x’y)/ni)y

i=1

<d(x,y)" {1+ e(1 — &)~ 2C,C3((1 = e)/a") "1 =97/ (1 — &)™)

<C((1 = e)/n") " d(x, ¥)". (35)
Let @, = {x € X: q,_,(x) > A(1 — e)*~!}. Applying Lemma 2 to g(x) = f*(x)
and 1 = 7°, we get {x(f*,0°,/)};=1,, ... such that (20) and (21). Let {x,;}/%, be a
subset of {x(f*,n" )}, which is contained in §,,,;. Then (31) and (32) are
satisfied. By (20),
i)
e(1 - €)' 7'C, 3T K(n*, x,,y) < Ce(1 — ¢)'"! foranyy € X. (36)
j=1
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If supp K(n°, x, -) N Q,,_, # &, then by (35) x € &,,,; because 7 is small.
Thus by (20)

J(s)
e(1 —e) ' <e(l - e 'c, S K(n®, x;y) foranyy €Q,,_,. 37
j=1

Similarly, if supp K(n°, x, ) N 5, /,, # &, then x & Q, 5 by (35). So,

2 K(n*, x;,y) =0 foranyy €, (38)

J
and (33) follows from (30), (36), (37) and (38).

Thus
' J(5) .
(P(X) = 2 2 8(1 - e)s CIK(nsa Xsjs X)
SEN j=1

and

JIDe) du(y) = T el ~ &) 3 C, [AK', %, ¥) dily)
J

SEN
=Cie(1 - &)'S S~ e)’n°F(n’, x f).
s

By (32),

2 21— e n°F(n’, x,,-,f)l <3 St - onF(n’, x £V
s

= +1/2)2
C4f~[,\'xk* F(r, x, f*'2)" dv(x, r),

where » = 2, 2,(1 — ¢/'n%§ .- and §,, is the Dirac measure of the point
(x,r) € X X R*. Note that

»(B(x, r) X (0, 7)) < Cr(1 — ¢)/°8"/1%8" = Cpl+log(l=e)/logn
and that

F(r, x, f*'/?) = F(r, X, f ¥/ *Xg(x1)) ON SUPP P.
Then, by Lemma 1,

ffoR,F(” x’f+l/2X3(xo,l))2 dv(x, r)

< C( fx (S )X du(y))m

where 8§ = log(l — ¢)/log
<l *xluvoen

1+6
=c( f f*(y)'/"“’du(») .

(C1)]

This completes the proof of Lemma 3.
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LemMa 4. If f € LP(X), with 1 <p < oo, then

1M:(Nller < Gl
where C, is independent of f.
This is the Hardy-Littlewood maximal theorem. We omit the proof.
PRrOOF OF THEOREM 1. By Lemma 3, f*(x) < CM, (f*)(x). Thus, by Lemma 4,

Pl < CIM,(F = CIMLE)] o

Lm < pr.llf+||L’
ifp>p,.

4. The kernel whose support is not compact. In this section, we relax the

restriction (4). Let K, (r, x, ) be a nonnegative continuous function defined on
R* X X X X such that

40) K(r, x,») < (1 + d(x,»)/n)"'77,
@1) K\(r, x, x) > A7"' >0,

“2) |K\(r, x,y) = Ki(r, x, 2)| < (d(p,2)/1)"(A + d(x,y)/n)~"' "2 if d(y,2) <
(r + d(x,y))/(44)

for any x, y, z € X and any r € R ™. In this case (8) holds; i.e.
43) C,K(r, x, ) > 1

forany x € X,y € X and r > O satisfying d(x, y) < C,r.
For any f € L'(X), let

Fi(r,x,f) = [ Ki(r, % 0)f() du(x)/
fAx) = sup |Fy(r, x, f)|-
r>0
Extending Theorem 1, we get

THEOREM 1'. There exists py < 1, only depending on X, such that for any f €
LY(X) and any p > p,

If*le < eallf e

where c, is a positive constant depending only on p and X.

As a corollary of Theorem 1’ and Theorem C, we get

COROLLARY 1’. There exists p, < 1, only depending on X, such that for any
feL'(X)andany 1 >p >p,

I Pller < cgflar < collf*ler < crollf e

where cg, ¢y and ¢, are positive constants depending only on p and X.

REMARK. The inequality || f(*))| ., < cg|| f]| y» follows easily from (42).
For the proof of Theorem V', it suffices to prove the following.

LEMMA 3'. There exist p; < 1 and C, only depending on X, such that

’ JID9() du(y)|/ro < €M, () (x60)
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for any f € LY(X) and any ¢, x, r, satisfying
supp ¢ C B(xg, o), L@, v) <rg", |||~ < 1.

Theorem 1’ can be proved in exactly the same way as Theorem 1, replacing
Lemma 3 by Lemma 3. For the proof of Lemma 3’, we need the following three
lemmas.

In the following, let x, be fixed and let d(y) = 1 + d(xg, y).

LEMMA 5. If d(x, y) < d(y)/(2A), then d(y)/(24) < d(x) < 24d(y).
We omit the proof.

LEMMA 2. Let g(x) be a nonnegative function defined on X. Then for each
0 <t < (44)73, there exist {x'(g, L))} j=12,... Such that

SN

1 < 2 Xar(ginCrdix(gen(X) < C3 for any x € X, (50)
y

g(x'(g 1,))) < CiF(rd(x'(g, 1,))), x'(& 1./, 8'/2)’. (51)

In particular,

@) 2C, T d(x'(g, 1,)) " 2K \(1d(x (g, 1,))), X'(8: 1)), %)

ot (s, Cudix(grm(®) > dx) ™' T2 (52)
for any x € X.
PRrOOF. First, we can select { y'(¢,/)};-1, ... such that
d(y'(1, i), y'(1,))) > (24) 7> Cyt min(d(y'(s, D) d(y' (7)) (i #j), (53)

? XB(» (@AY "ty (hi)(¥) > 1. (54)
For each y’(z, j), we select x'( g, t, j) such that
d(x' (8, 1,)), ¥ (1, 1) < (24) 7 Cytd(y'(1, j)), (5
g(x'(g 1, )"
< 8(»)"* du(y)/ (24) > Cytd(y'(1.))))- (56)

B(¥'(1)(24) > Cotd (' (1))

The first inequality of (50) follows from (54), (55) and Lemma 5. The second
inequality of (50) follows from (53) and (55). (51) follows from (55) and (56). If
x € B(y, C,td(y)), then

d(x) > d(y)/ (24) (57
by Lemma 5. Thus (52) follows from (57), (50) and (43).

LEMMA 6. Let 0 < r < 1 and let {x;};.,,, ... be such that

A

2 Xa(x,Cyrd(xp)(X) < C3  forany x € X. (60)
J
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LetO<a,a+ y/2<b<2y,0<Mandlet
u(x) = d(x) ™" (1 + d(x, x)/ (rd(%))) """ xar(d(x, %)/ (rd(x)))
where x), () is the characteristic function of [M, o). Then
> u(x) < Ced(x)™' " max(r®, (1 + M)7°%).

J

PrOOF. For each 1 € N, let v(x) = 3} u(x), where 37 means ;-1 ¢ g2
First,

0(x) < 27O (1 4 d(x, x)/ (°2)) " x5 x)/ (127))

< C2—(1—I)(l+a)(r21)—|
: f (1 + d(y, x)/ (r29) " ""xp((d(¥, x)/ (r2~")) du(y) by (60)
< C2-U=ha+a (] 4+ M)“P /b, (61)
If =1 > 24d(x), then d(x;, x) > Cd(x,). Thus,

v(x) < Cz—(r—l)(l+a)rl+b2/tl
Jj

< C2U=Da+a) 145 -1 by (60). (62)
If 2' < d(x)/(24), then d(x;, x) > Cd(x). Thus,
v(x) < C27U~DA+a)(1 4 d(x)/ (r2)) "' 23 71
J

< C2_(,_l)(l.,.a)d(x)—l—brl+b21(l+b)’.—| by (60). (63)

Summing up (61)-(63), we get the desired estimate.
PROOF OF LEMMA 3'. We may assume r, = 1 and |[|@|| ;- < 27'7/2 Let

e = min(1/Cy, (24)~'77%/2), (70)

where
C, =2(24)'*"*C,, Cg =4C,C,. (71)

Let n be a sufficiently small positive number to be determined later.
We inductively construct {x;};enicjciy C X> and {ej}iemicjcin C
{—1,0, 1}, where j(s) can be oo, satisfying
) 112, Xg,(¥)ll L= < C;for any s € N, where B; = B(x;, Cyn'd(x)),
(73) f O x;) < CoF(’d(xy), x, fOVR,
(74) |o,(x)| < (1 — e)'d(x)"'~7/2, where

() = 9(x) = 3 Coe(1 — )"

i=]

S edx) " T (n'd(xy), Xy, X). (75)
1<j<j(i)
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Let go(x) = @(x). Assume that {x;}, {g;} (1 <i<s—1, 1<, </(i) have
been constructed and that ¢, _ (x) is defined by (75).
If d(x, y) < 7*~'d(x)/(44)’, then d(x, y) < (n°~'d(x;) + d(x;, x))/(4A4). Thus,

s—1
[:-1(x) = 91| <Jo(x) = o]+ T Cre(1 = &)

-3 d(x,) T T K (n'd ), x5 x) = Ky(n'd(xy), ;)|
J

s—1
< |o(x) — ()| + 2 §. Cre(1 — ¢)’

-3 d(x) ™ T (d(x, )/ (n(x))) (1 + dxy x)/ (nid(x,))) "

by (42). The second term is equal to

2d(x,y)"C7.t:sil (1- s)in_i72 d(x,.j)—'_”/z(l + d(x;, x)/ (n"d(x,j)))_l_zy

i=1 j
s—1
< 2d(x,y)'Cre 3 ((1 — €)/n")'Ced(x) ™' "2
im=1
< d(x,y)"((1 = &)/n") " td(x) ' (76)
by Lemma 6, (70) and (71).
Let

Q= {x € X: @,_(x) > A1 - e)s—rld(x)_l_y/z}.

Applying Lemma 2’ to g(x) = f(*)(x) and ¢ = 77, we get {x'(f", 7%, /)}; such
that (50) and (51). Let x; = x'( £, 9%, j). Then, (72) and (73) are satisfied. Let
g, = sign(g,_,(x,)) and let

wy(x) = Cre(1 — &)’ ™" 2 e,jd(xv)—'-’/zK,(n’d(x,j), X,j» X).
J

Note that
[wo(x)| < Cre(1 — &) 'S d(x,) " 31 + d(xy, x)/ (n°d(x,))) """
Jj

<47 '(1 - ld(x)"""? (77)
by Lemma 6, (70) and (71).
If d(x, y) < Cen®~'d(y), where Cy = (e(24)~'~/2/2)'/7, then
d(y)/ (24) < d(x) < 244d(y) (78)
by Lemma 5 and

|Ps_1(x) = @1 (0)] <|9(x) — @(»)]+ 2 (1 — &)’ "'d(»)™'""* by (76)
<e(l—ef ld(y) T (79)
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by supp ¢ C B(xp, 1), L(p, v) < 1. Thus, if y & Q4 and if d(x, y) < Con®~'d(y),
then by (79) and (78),

@y_1(x) < (1 — &) d(p) T 7% < (24)' 1 2e(1 — ) ld(x) "' T
and’ by (70)’

B(y, Con*~'d(»)) N R0 = B (80)
So, if x € Q, 5, then by (52), (71) and (80),

w(x) > 2e(1 — &) "'d(x) T = Cre(1 — &) 'S d(x,) T
J

| Ky(m°d(xy), xg, x)|xC9,'-.(d(x, x5)/ (n‘d(x,j))).
By Lemma 6, the second term is less than

Cre(1 — €)' Ced(x) ™ X (Con™") .
Since 7 is sufficiently small, we see that

w(x) >e(1 —ef 'd(x)"'""? onQ,,, (81)
Similarly,

wi(x) < —e(1 — &) 'd(x)7"T? on(Q,-y)" (82)

In this way, by (77), (81) and (82), we see that ¢,(x) defined by (75) satisfies (74).
Thus,

p(x) = 3 D Cre(l — &) eyd(x,) 2K (n%d(x,y), x5 X).

SEN
So,
[0 dul)| < & S B et = o )1 x,)
s
< Cff F(r, x, fOVY2? ay(x, r)
XXR*
by (73), where
v = 2 2 8(1 - e)s""."d(xsj)_7/28(:(,,-,'r|’d(x",))
s J
<C 2 82_”/2 2 (1 - e)“."7.“8(:5‘,,1)'d(xv))
teN 5:2 71 <d(xg) <2’
= S 2, 83)
teN

Note that »,(B(x, r) X (0, r)) < (27')! *loe-9/18 and that
F(r, x, f'2) = F(r, x»f“)l/zxs(xo,cz')) on supp »,.
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Let 6 = log(1 — €)/log 0. Then, by Lemma 1,
ff F(ra x’f(+)l/2XB(xo,C2'))2 dv,(x, r)
XXR™*

1+6
< C2-'(l+8>(f3( - )j(+>x/(l+8> du)
X0, C2'

< CMl/(|+s)(f(+))(xo)

for each ¢t € N. Thus, by (83), we get

JI90) di(1) < CMytss(S)ox)

5. Examples.
ExampLE 1. If we set X = R", d(x, y) = |x — y|" and

K(I‘, x’y) = ‘I’O((x - y)/’,l/n)’

(where Yy € D(R"), supp ¥y C {x € R": |x| <1}, Wo(x) = %) < |x =y,
Yo(x) > 0, Yo(0) > 0), then (0)-(7) are satisfied with y = 1/n. In this case, the
definitions of H” in §§1 and 2 coincide forp > n/(n + 1). Since £, ,_,(R") = {0}
forp < n/(n + 1), the definition in §2 is not valid forp < n/(n + 1).

Ki(r,x,y) = (1 +|x — y|2/,2/n)—(n+l)/2

satisfies (40)—(42) and K (r, x, y)/r is the Poisson kernel.

ExaMPLE 2. If weset X =3,, = {z € C": z-7=3]_, z;z; = 1} and d(z, w)
= |l — z-w|", then X,,_, is a space of homogeneous type by using the Lebesgue
surface measure. Let @y(f) € C*(0, o) be a function such that @u(¢) =1 on
(0, 1/2), @o(£) = 0 on (1, o0) and @y(¢) > 0. Then, K(r, z, w) = @y(d(z, w)/r) satis-
fies (0)—(7) with y = 1/(2n).

K(r,z,w)=|1 -1z~ w|_2"(1 - )",
where t=1—r'"/" (0 <r < 1), satisfies (40)—(42) and K\(r,z,w)/r is the

Poisson-Szeg6 kernel. (H?(Z,,_,) has been investigated by many mathematicians.
For example, see [7), [8], [12] and [19].)
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