TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 263, Number 1, January 1981

ON A RELATION BETWEEN S“lz CUSP FORMS
AND CUSP FORMS ON TUBE DOMAINS ASSOCIATED
TO ORTHOGONAL GROUPS
BY
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ABSTRACT. We use the decomposition of the discrete spectrum of the Weil repre-
sentation of the dual reductive pair (S"Lz, O(Q)) to construct a generalized Shimura
correspondence between automorphic forms on O(Q) and S"L). We prove a
generalized Zagier identity which gives the relation between Fourier coefficients of
modular forms on S"l'.2 and O(Q). We give an explicit form of the lifting between
flq and Q(n, 2) in terms of Dirichlet series associated to modular forms. For the
special case n = 3, we construct certain Euler products associated to the lifting
between SL and Sp, = O(3, 2) (locally).

Introduction. Let Q, be a nondegenerate quadratic form on R*~2 having signa-
ture (k — 3, 1). Let £ be a lattice in R*"2 so that Q,(8, L) C2-Z, ie., Q, is
even-integer-valued on £. (Also £ must satisfy certain other technical assumptions
relative to Q,.) Let f be a holomorphic modular cusp form of weight s for the
Hecke congruence group I'y(¢+ N;), where N, is the exponent of £ and ¢ is a certain
positive integer. Suppose that

fz) = 3 afmyernV 1
n>1
(z € H, the upper half plane) is the corresponding Fourier development of f at co.
Then let £ € £ so that Q,(£, §) < 0. We may write £ = m§, with £, a primitive
element in £ and m € Z, the integers. Then define

m2
@@= 3 x(»)v”*/z"af(?
{rlv|m}

where x is a Dirichlet character mod N,. Then ay, is defined on the set of all £
lattice points in the self-dual cone W = {X € R*"2|Q,(X, X) < 0)}. It is easy to
see a, is invariant by the arithmetic group I'* = {g € O(Q))|g(L) = £}, i.e.,
a.(g & =ax()forgeTfandt € L N W.

Then we can define a Dirichlet series

1
e n%’/l‘f a#(g)_e—(ﬁ—)

300 6)) (1)

10\ I (I-2)

where the summation is over I'® equivalence classes in £ N W and &%) =
order(I'™¢) (where T'™* is the stabilizer in T'® of £). This Dirichlet series has several
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2 S. RALLIS AND G. SCHIFFMANN

features. First, after being suitably normalized by T factors, (I-2) admits an analytic
continuation to the whole complex plane. Second (with the same normalization)
(I-2) satisfies a functional equation in 8. Third, (I-2) admits (in a certain sense) a
type of Euler product when the Dirichlet series
D3, f) = 2 a(mn”
n>1
has the same properties.

The three properties of (I-2) above are the standard type of properties exhibited
by Dirichlet series attached to automorphic forms. Thus we must look for a cusp
form on some reductive group so that (I-2) is the Dirichlet series “associated” to
this cusp form. We start by noting that there is a natural tube domain in the above
considerations. Namely we let R, = R*"2 + V-1 W and we consider the con-
nected component of the full group of analytic automorphisms of R ,. We know
that this group is isomorphic to the connected component of O(Q), the orthogonal
group of the quadratic form Q, @ x -y, where x - y denotes a “hyperbolic plane”.
Following the well-known theory of automorphic forms in tube domains, we ask
whether there is a cusp form F on @, automorphic relative to O(Q) and a
suitable arithmetic subgroup I'“(Q) of O(Q), so that (I-2) is the Mellin transform
of F along the direction of the cone.

The answer to the above question is in the affirmative. The main idea behind
such a result is to use the correspondence between automorphic forms on .S"iz and
automorphic forms on O(Q) given by the Weil representation of §le X O(Q) in
(1], [III] and [IV].

This paper is the sequel to [II]. It is part of our program to show that the
so-called Shimura correspondence given in [8], [10] and [12] can be interpreted in
terms of the theory developed in [II]. We now work with an arbitrary quadratic
form Q on R* (no restriction on the signature except that sgn Q = (a, b) satisfies
a>b>1).

In [8] and [10] a correspondence is set up between ﬁ,z cusp forms and O(Q)
cusp forms (see also [2], [4]). Essentially starting with a Schwartz function ¢, which
transforms according to a finite dimensional representation of a maximal compact
subgroup of Siz X O0(Q), we form the @ series T;“(G, g) with G € S‘Iz and
g € 0(Q) (where L is a lattice in R* so that £ is a direct summand of L). Then
if fis a cusp form in the ﬂz variable we form the Petersson inner product
<TL( 2)|f())> (note here we view f simultaneously as a function on H and S‘Iz)
Thus the map f~» <T’“( 2)|f()) gives a correspondence between ﬂ, cusp forms
and O(Q) automorphic forms. However in the different cases ([4] and [8]) it must
be shown directly that g ~» <qu( , 8)|f()) is a cusp form, etc. On the other hand if
we start with ¢,, a function belonging to the discrete spectrum of the Weil
representation of S,Zz X O(Q) then we can also define T’“(G g). In a similar
fashion we consider (T, ( 2I|f( )>. Then we have another correspondence
between SL2 cusp forms and O(Q) automorphic forms. However the cuspidal
properties of

g~ <T (L I f()>
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are evident from the cuspidal properties of qu;( , ), which are set forth in §§3 and 5
of [II]. We recall from [II] that

T«ﬁ,((; i_l)’8)= 3 BlgeV (1-3)

n<-1
withz = -y /x + V-1 /x? € H, ~ denotes complex conjugation, and

B.(g) = > op(g™N).

(AELIQAN)=n)

We know for the special case when Q has signature (k — 2, 2) that each B, is a cusp
form on O(Q). Thus <Tq,';( , 8)|f()) is a cusp form in the O(Q) variable. Moreover
if f corresponds to an Eisenstein-Poincaré series G, for general Q, then

T (5 2|G,()> = B.(8)

The first question is the relation between the two types of correspondences
defined above. We show in Theorem 1-1 that given ¢ a Schwartz function, as
above, there exists an Siz X O(Q) intertwining projection operator P,* onto the
discrete spectrum (of the Weil representation of SL2 X 0(Q)) so that the dif-
ference T TP*@) is orthogonal to all holomorphic SL2 cusp forms of weight
> Tk + 1 (relatlve to the Petersson inner product). Thus the two correspondences
given above are essentially the same.

On the other hand the functions B, have a highly transcendental nature.
Specifically in [II, §7] a formula for the Fourier coefficients of B, is given which
involves an infinite sum of Bessel functions and certain types of trigonometric sums
(such a sum is reminiscent of the Fourier coefficients of Eisenstein-Poincaré series).
However we can express Tqi in another way (this idea originated in [14] for the
special case Q having type (2, 2) and is extended to (k, 2) for £ > 4 in [9]). Namely
we can write (valid for any G € ﬁz and certain g described below)

T,.(G.g) = 21 Br(8)G,(G) (I-4)
n<-—
where

Brg)= 2 op(g™)
AEX,

with X, the subset of all lattice points A in {X € R¥|Q(X, X) = n} N L satisfying
Q(, v) = 0 (where v is a given nonzero isotropic vector in L). Although 8* is not
an automorphic form relative to O(Q), it is invariant under the discrete group
I'Y N O(Q)"), where O(Q)™ is the parabolic subgroup of O(Q) stabilizing the line
determined by the vector v. The important point is that the validity of (I-4)
depends on the “cuspidal” behavior of 7o ( g "¢, in the Weil representation. That
is, if 7y( g Dep is a cusp form in the Weil representation (which means that
To( g Do, satisfies the first and second Cusp Vanishing Theorems in [II] relative to
the parabolic O(Q)*)) then the formula in (I-4) holds. Thus in §2 we have set up a
rather elaborate technical machinery to deduce (I-4). We have adopted this point
of view in order to prove a more general formula than in [14] and [9] and to show
the dependence of the formula on the cuspidal properties of the Weil representa-
tion.



4 S. RALLIS AND G. SCHIFFMANN

Using (I-4) we deduce that (when Q has signature (k — 2, 2))
Te(oO> = 2 afllmDBH@Inl' "
ne—

Thus we can compute the Fourier coefficient of <qu;( , 8)|f()> and obtain (I-1)
(modulo certain constants and a Gauss sum, see Theorem 5-1). Then we consider
the Dirichlet series (I-2) associated with <T;;( , 8)|f()>. At this point we must
however make the correspondence between modular forms and Dirichlet series
more precise. Indeed in §3 we define a “Dirichlet series” associated to automorphic
cusp forms on the tube domain 9@ ,. Following the ideas in [6] we prove the
analytic continuation and functional equation for such Dirichlet series. We note
here that such results are of a fairly standard nature, but we could not find any
reference in the literature for the particular case of the tube domain 4R, ; so we
have included proofs of these statements in §3.

On the other hand we can determine the “Dirichlet series” of
Z ad|n)BX( g)|n|' ~* as a type of Mellin transform

S aflnlin~* [ BH(mA(N)r d*(r) dN(m)  (I-5)

n<-1 O(Q,)/TEXRA
where dA is an O(Q) invariant measure on O(Q)/T* and A(r) is the group of
positive dilations in R, with d*(r) = dr/r as invariant measure (on A(r)). Then in
§4 we compute each inner integral as a function of 8. As a result (Theorem 4-1) we
deduce that (I-5) is given by the product of two Dirichlet series (aside from
normalizing I" functions and elementary functions like a~*),

Lix2s+ 1= 3 alnhM(Q, . n)ln*} (1-6)

n<-1
where r = s + 2 — k/2, where L(x, ) is the usual L function with Dirichlet
character x, and where M(Q,, £, ) are the Siegel mass numbers. The second term
of (I-6) is the Rankin convolution of the SL, Dirichlet series of f and the Siegel zeta
function

$(0,L,8)= X M(Q), L, n)n™
n<-1
This then allows us to make certain statements about the Euler product properties
of (I-6).

From purely algebraic considerations (using Hadamard products of power series,
see [11]) we know that if k is even and if both the Dirichlet series of f and
$.(Q,, £, 8) admit the usual Euler product of the GL, theory, then the second term
in (I-6) can be expressed as an Euler product with numerator of degree 2 and
denominator of degree 4 for almost all primes p. On the other hand if k is odd then
fand ¢ (Q,, £, 8) do not have the usual GL, type Euler product. However in [10] a
modified theory of Euler products is set forth for ﬁz automorphic forms of half
integral weight. In particular we know that for 4" a “fundamental discriminant”,
the series (having a Hecke eigenfunction property) 2, -, af(d’mz)m"3 has an Euler
product with numerator of degree 1 and denominator of degree 2 for almost all
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primes p (see Theorem 6-2). In the special case k = 5 we know from the theory of
binary quadratic forms that

> M(Q,, L, d'n?)\|n|™®
has a similar type Euler product (see (6-7)). Then we deduce that the Rankin
convolution of the latter two Dirichlet series has an Euler product with numerator
of degree 3 and denominator of degree 4 for almost all primes p. We then deduce
(for k = 5 and a special choice of L) that there is an Euler product formula for the
partial Dirichlet series

1
§)—= 10\ (I-7)
fegnzw/rﬁ a#( )s(g) |Ql( |
0\&H=d7f?

with d’, a “fundamental discriminant” (Theorem 6-2 and Remark 6-4). Essentially
we view d’ as determining an imaginary quadratic extension Q(Vd’ ) of Q, the
rationals. It is consistent to expect (by the Andrianov theory in [1]; see also [5]) that
such a partial Dirichlet series admits an Euler product. We will make explicit the
relation of these Euler products to the Andrianov theory in a future paper.

We have given above an outline of the main results of this paper. We here thank
Shimura for his valuable advice and insight, especially in discussion of the types of
Euler products expected in the above theory. We also thank M. Vergne for very
carefully reading an earlier version of this work and pointing out certain errors.

0. Notation and terminology. We denote by Z, Q, R, and C the ring of integers,
the rational numbers, the real numbers and the complex numbers respectively. We
denote by Z, Q, and R the set of positive elements in the respective rings.

1. We let R* be a k dimensional space. Let Q be a nondegenerate quadratic form
on R* with an orthogonal basis {e,, . .., ¢} of R* where ¢, L¢ (relative to Q) if
i # j. Moreover

_ |1 ifi <a,
Qe @) = { -1 ifi>a,
where the signature of Q is (a, b) witha > b > 1. Also let
ua+j=(ej—ea+j)/\/§, 6a+j=(ej+ea+j)/\/5, 1</j<b.
Then we have a Q splitting of R* as

<Da’ ﬁa>'L<Da+l’ 6a+l>J' T J‘<Uk’ 6k>‘L<eb+l’ R ea>
where <{v;, ;) is a hyperbolic plane.
2. Let F;,=Cv,,...,0,4;_10, F¥F={8,...,0,,,_y> and L, =<e,...,e,).

We denote Q restricted to L; by Q,. Let O(Q) be the orthogonal group of Q.

Let P = {g € O(Q)|g(F,) = F;}. Then we know that every maximal parabolic
subgroup of O(Q) is O(Q) conjugate to Pr for some i. Let A(r) (j = a, . . ., k) be
the torus subgroup of O(Q) given by v, — ru;, &, — r'v; and identity on v, §;>*.
Moreover let { N,(W)|W € L,} be the unipotent subgroup of O(Q) given by the
following operations.
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N(W)(v,) = v,,  N(W)&,) =6, — Q(W, W)o,/2 + W,
N(W)(Y) = ¥ — Q(Y, W)y,
with Y € L,. Then we know that O(Q,) - A,(r) - N, determines the Langlands
decomposition of Pg .

3. Let SY,Z be the twofold cover of SL,(R) determined by the Kubota cocycle
relation as given in [I]. Let éz(Q) = .Siz X 0(Q) be the product group. Then let
7oy be the so-called “Weil representation” of G,(Q) (see [II]) in L*R¥). Let F, be
the space of C* vectors of the representation 7o,. Let

R = {k(0, £) = (( cos§ sin 0), e)

— = =+
—sin® cos#@ m<f<me _l}

be a maximal compact subgroup of S’\Lz. Let

o= (o= ({5 %))
v (= () 7))feen)

Let a, nn, and f be the infinitesimal generators of A, N, and K respectively. Let

N, =t+V-l (n + Ad(wg)n), N_=t—V-1(n+ Ad(wy)n)

w=((i o)1)=t

and Ad the adjoint representation of SL,. Let wg;, = — + a® + (n + Ad(won)?
be the Casimir element of SL,.

Then we set Fo(\) = {9 € Folmon(ws, ) = Ap), F5N) = (¢ € Folo
vanishes on £_ (&2, resp.)} with

{m = {X]Q(x. X) > 0},
Q_= {X]Q(X, X) < 0).

r>0]

and

with

Then the important properties of the spaces Fé()\) are summarized in [III]. We
recall that Fé (M) (F,(A) resp.) is nonzero if and only if A = 52— 25 withs > 1 and
s=k/2mod 1 (A = s> + 2s withs < -1 ands =k/2mod 1 and b > 1 resp.).

We let K = O(a) X O(b) be a maximal compact subgroup of O(Q). The
irreducible representations of K are parametrized by [s,], ® [s,], where s, s, are
nonnegative integers (s, = 0 or 1 if b = 1) corresponding to spherical harmonic
representations of degree s, and s, of O(a) and O(b) respectively. Let
Eou(s®> — 2s,m, 5,,5,) = {9 € F‘Q*(s2 — 25)|@ belongs to K X K isotypic compo-
nent in Fé(s2 — 2s5) transforming according to the character
(8, €) ~ (sgn €)*"e V1" of K and according to [s,], ® [s,], on K}. Again the
important properties of Eq(s> — 2s, m, s,, 5,) are summarized in [III]. We recall
that Eqy(s2 — 25, m, 5,, s,) is a nonzero space if and only if s, — s, = s — 3(a — b)
+ 2/, | a nonnegative integer, and m = s + 2j, j a nonnegative integer.
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Similarly, Eg;,,,(s2 —2s,m,s,,5,) C F'Q(s2 — 2s) is a nonzero space if and only if
s — s, =s— 3(b — a) + 2/, I’ a nonnegative integer, and m = —(s + 2j), j’ a
nonnegative integer.

4. Let L be a lattice in Q ®, {e,, . . ., ¢} which is Q integral, i.e., Q(£,, §,) € Z
for all ¢, §, € L. Let L(Q)={n€EQ®,{ey,...,e}|0mn L)CZ}, the Q
integral dual of L. Let n, be the exponent of L, i.e., the smallest positive integer n,
so that n, -m € L for all n € L (Q). Let T*(Q) = {y € O(Q)|y(L) = L}. We
know that T“(Q) is an arithmetic subgroup of O(Q). If n € L (Q), we set
I“(Q), = {y €TXQ)ly-n =n mod L}. Then if {£} is a Z-basis of L, let Dy, =
det{ O(§;, &)}, the discriminant of L relative to Q.

A lattice L is called Type II when Q(£,, &) is an even integer for all §,, §, € L.
Moreover L is said to by Type II* if L is Type II and n, Q(£, £) is even for all

£€ L,(0Q)
5. The quadratic residue symbol () is given as in [10]. Moreover
8={1 if d = 1 mod 4,
“ V1 ifd =3mod4.
6. Let

Ty(w) = {(‘; Z) € SL,(Z)|c = 0 mod w},
I%(w) = {(Z Z) € SL,(Z)lc =0mod w,a =d =1 mod w}.

Let

TY(w,, wy) = {(‘c’ z) € SL)(Z)|c = mod w,, b = 0 mod wz}

with w, dividing w,.
Let y be the covering map of SL, to SL,(R) given by {(g, ¢) = g. Then we set
A, = Y7 (Tw), 4,, = ¢7'(T82w, 2)), U, = ¢ (T%w)) and U,, = ¢~ (T52w, 2))

N U2w'
Let sé' be the multiplier on the group I(2n,, 2) (Ty(n,) when L is Type II*,

resp.) given by

— f 2¢, \¢( Dy
oz (%)

Y

for

a, b
y=(cy dy) with ¢, # 0.

Y Y
Let 54" be the multiplier on the group I9(2n,, 2) N T°(2n,) (F°(n,) when L is Type
IT* resp.) given by
sé”n(Y) = exp(ﬂ V-1 syByQ(T" "I))sé(}')'

REMARK. We note that sé‘ given above is a multiplier on the group I'((2n,) when
L is Type II.
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7. If T, is any arithmetic subgroup of SL,(Z), o any multiplier on I'; of weight d,
then [T, d, o] is the space of all f so that

(i) f is holomorphic on H, the upper half-plane,

(i) f(h - z) = (cz + d)o(h)f(z) forallh = (°%) € T,

(iii) at each parabolic cusp G ~'(0) of I, on Q U {0} (With G € GLy(Z)), f has
a Fourier expansion of the form

G+ dy )= S cnexp(Zﬂ\/—_l(nA-;; “)G(z))

n+x>0 1

where Ny is the smallest positive integer » so that

G"(l NF-)G €T,
0 1
and « is the ramification of ¢ at G ~!(o0) (see [II] for precise definition).

We say f € [T}, d, o] is a cusp form if n + xk > 0 above is replaced by n + « > 0
at each parabolic cusp of T',. Let [T}, d, o], be the linear space of such cusp forms.

Let [T}, d, a]* be the space of all f which satisfy (i), (ii), and (iii) above when H is
replaced by H, the lower half plane in (i) and n + « > 0 in (iii) is replaced by
n+ k<0

We note that via the map @(z) ~» f(2) =;(zT), the space [I'}, d, o]* maps bijec-
tively onto [T}, d, o].

8. Let ¢ € Eoy(s* — 25,5, 5,,5,) with s >k/2. Then define for n € L,(Q),
G € SL, g € 0(Q),

TL(G, 8) = 2 75x((G, ) (9)(& + m).

¢el

The properties of qun are given in Theorem 2 of [IV] (for the case n = 0) and
Theorem 2.5 of [II]. We know that for (T, v) € U,y X TrtQ) (Uy, XT LQ)if L
is a Type II lattice, respectively) that

TL(GT, g7) = c5() exp(-nV=T drbrQ(n, 1)) T4(G, 2)

b
"o &)
e dr
We note the relationship Sé(¢(r)) = cé“(l‘) (Y, the covering homomorphism of ﬁz
to SL,), where
(A
cr dp
satisfies the condition ¢ * 0.

If Z is an element of the enveloping algebra of éz(Q) = .S"Zz X O(Q), then we
have that

where

T;, (G, g)=Z+T, (G g)

7on(Z)Pm »1

where Z * denotes differentiation on the left. Hence wg; * T.5, = (s = 25) - T,
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Then we let

Titer ) =) 15 (g 0 ) 1)9)

withz = —y/x + V-1 /x? € H, the upper half-plane. Then we have that
Tk, €[T°Q2n,, 2) N T°Q2ny), s, 5], (€[T%(ny), 5, s4], if L is Type II* resp.).

Then (again for ¢ € Eqp(s® — 25, s, 5, 5,) With s > k/2) there is a decomposition
formula:
Ti(z9)= 3 r eV "Tl(g)
rex,*
where T% satisfies the functional equation T.%/(gy) = T, (g) for y € TX(Q),
(here X,* = {Q(¢ + )| + n € Q, with§ € L}).

9. We let Q have signature (a, 1) (of Lorentz type). Then let L be a Q integral
lattice in R* (k =a + 1). Let r € X = {Q(£ & € Q_|¢ € L)}. The group T'“(Q)
operates on the set L N {X € R¥|Q(X, X) = r} and we know that there exist
finitely many orbits (“finiteness of class number”). Then if X, ..., X, form a set
of representatives of I'“(Q) orbits we know that I'’2(Q)* is a finite group. We let
e, = order(I""(Q)*). Then the Siegel mass number is

t
M(Q,L,r)= 2, ei
i=1 &,
We note that this number is independent of the choice of representatives
X, ..., X, above.
10. If L is a Type II lattice then for each (2, y) € ¢ '(SLy(Z)) X TX(Q) we know
that there is a unique d, X d, unitary matrix {o,{fw( ,)} so that
Jj=d.
T, (GQ, gy) = 21 0,02 T, (G, g)
j=
where {n,,...,7,} is a set determining the distinct coset representatives of
L.(Q)/L (see Theorem 2.1 of [II]).

11. A function A on R™ satisfies the Poisson Summation formula relative to a
lattice L C R* if

(A) h is continuous and integrable (L’) on R¥,

(B) the series F(X) = Z;c, h(X + £) is absolutely convergent and defines a
continuous function on R™.

(C) the series Z;ag h(£*) is absolutely convergent with L* = {£* € R¥|[¢*, L)
C Z), where [ , ] is the bilinear form on R* given by [X, Y] = 3%_, x,y; (with
X=3 x;e;, Y=3 »;€;). Here ~ represents Fourier transform given by

h(W) = f h(Z)e™V-11W.21 4z,
Rk
Then if h satisfies (A), (B), and (C), we have the Poisson formula

S hX +H= 3 A(werV s,
teL wEL*
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1. Shimura correspondence. Our problem is to show the relationship of [II] to the
results of Shimura reported in [10]. The connection will be to view Z;?" given in §0
as a certain “kernel operator” transforming automorphic forms on SL, to automor-
phic forms on O(Q). We make this precise in the next several paragraphs.

For this we must extend the definition of quj,,. We assume that ¢ €
Eon(s? — 25,5, 51, 5)) (Eop(s® + 2s, 5, 5,, 5,), resp.) with |s| >21k. Moreover 1 €
L.(Q), the Q dual lattice to L. We let J,(n) = the group generated by 7 in
L(Q)/L.Welet

r“()y = {y €rQ)lym=a(y)nmod L}
(with a(y) € Z). Then I‘L(Q); )] I‘L(Q),, (defined in §0), and we have a representa-
tion of I"‘(Q),’;‘ on J,(n) given by yn =a(y)n mod L (where the kernel of the
representation is clearly I'“(Q),).

LEMMA 1-1. Let x be a multiplicative Dirichlet character on Z/O(J, (7)) - Z (with
O(J () = order of J,(n)). Let R € Ay and y € I‘L(Q),‘,‘. Then if @ satisfies the
hypotheses in the above paragraph, we have

> X(NT;(GR, gv) = c5(R)(x(8a(¥)))™
r€zZ/ 0. (m))Z

N2
e~VT aBia(r Yoy () Trm(G.g). (1-1)
u€Z/OMJL(n)Z

ProOF. The proof follows directly from subsection 8 of §0 and the multiplicative
properties of x. Q.E.D.
Then we let

A%, X TH(Q), = {(®, ) € &y, x TH(Q)}]
exp(-mV-1 aBv’a(y™)’Q(n,m)) = 1
forallo=1,...,0(J.(n)) — 1andy € TX(Q)}}.

It follows from Lemma 1-1 that if (', ¥') € A} X I‘L(Q); and if

7). (G g) = > x(r) T, (G, g),
r€Z/0WJL(n)Z
then
TE, (G, gv) = cH(@)[x(8a(v))] ' TE, (G, 8). (1-2)

We note that A}, X I'*(Q);, is the maximal subgroup of A N, X FL(Q),",‘ for which
(1-2) is valid.

REMARK 1-1. If L is a Type II lattice then Lemma 1-1 is valid for £ € Ay
provided we have the additional hypothesis that O(J,(n)) is even. It is then
understood in the definition of A}, X | Q), above that A ~, is replaced by A, .

ExXAMPLE. We let R® = {(x,, x5, X;)|x; € R} and Qn(X, X) = 2[x} — 4x,x,]/N.
Then we have the example of Niwa in [8]. In particular let

L = {(4Nm,, Nm,, Nmy/4)|m,, m,, my € Z}.
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Then L is a Type II lattice relative to @y, and we have

L@ = {(37mi gms 3y mi)imi € 2).
Then N, = 8N. If we choose 7 = (1, 0, 0) as in [8], then J,(n) is a cyclic group of
order 4N. Moreover since Qy(n, n) = 0, we see that A}, = A, in this case (recall
L is Type II and the convention stated in Remark 1-1).
REMARK 1-2. We deduce from (1-2) and arguments similar to those in Lemma 3.3
of [II] that the map
x:Q;:sQL(x)(x(d)) for x =[ “ 3] € y(ay)
is a projective representation of weight %k for Y(A}, ). Moreover we note that in the
z variable qumx(z, 8) € [¥(A}), s, séj’(]0 by arguments similar to those in Proposi-
tion 3.4 of [II].
Then for any arithmetic subgroup I'; in SL,(Z) we denote by GDF‘ the fundamen-
tal domain of T, in H.
We say that the pair (I'}, 8), with I'; an arithmetic subgroup of SL,(Z) and 8 a
projective repEesentation of Ty, has the (L, n) (L, m, x) resp.) property if
(D) Ty € YUy XTI, C Y(83,) resp.)
(ii) B = 55" restricted to T, (B = g, restricted to T')).
Then we let f € [T, |s|, B] where (T',, B) has the (L, m, x) property. We define

Flglg, L,m, x T)) = f@ TL (2,8 J@) (Im )" 2axdy.  (1-3)

We note that (1-3) represents the inner product of f( ) and T"‘;j,,,x( , 8&) in the
Petersson metric on Dy (note that fvﬁn,x is a cusp form but f is only an integral
form).

We note immediately from Lemma 1-1 and (1-2) that

Ef(gYI(p’ L’ > Xs I1]) = (X(a(‘Y)))_lFf(glq)’ L’ 7 Xs I‘l) (]'4)
for all y € TH(Q),.

We call the correspondence given in (1-3) the abstract Shimura correspondence.
We shall see shortly that our notation is well chosen in that the correspondence
given in [8] will be a special case of our theory.

Our problem is to make a thorough study of the map (1-3). For this we examine
what happens if f is an Eisenstein- Poincaré series for T',.

We recall that for an arbitrary arithmetic subgroup I' C SL,(Z), an Eisenstein-
Poincar¢ series given by

curnrm= 3 enlaev Oy m (g )

YETNP\I o1+ d,,
(1-5)

defines an element of [T, d, B8],, where m > 1,

a'Y b’l
Y=

b

c, d

Y Y
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ey %)

P= {(g ’{l) € SLy(R)|a ER% b € R}.
a

Moreover we know that {G (7, 8, T, m)im > 1} forms a spanning set of the
finite-dimensional vector space [T, d, B],.

We now interpret the functions in (1-5) in terms of the group S"Iz and the
representation mop. Again we assume that

and d > 2. Here

and

@ € Eq(s* — 2s,5,5,,5,) (Eon(s® + 25,5, 5, 5,) resp.),
where |s| >3 k.
Let " be an arithmetic subgroup of SL,(Z) and p; some unitary character on
/(T with the compatibility condition mey(M)™(f)X) = pp(M)f(X) for all M €
¢~ '() N P and for each f € S(R*). Then we define

UL(G, T, pr) = > Ten (GM) ™ (@)(X)pp(M)™! (1-6)
Mey /Yy TN P

=)
ey dy
We show in the next lemma the relationship between U;jx and the series defined in
(1-5).
LemMA 1-2. Let (T, B) have the (L, m) or (L, n, x) property. Let
¢ € Eq(s® —25,5,5,5,) (Eq(s*+ 2s,5,5),5,) resp.)

(where P = y'(P) and

be given by
Q(X, X)' ™ lem@XX| x ||k 2t =D p (X )P, (X ) on O,
(Q(x, x)HI~emex- (| x ||y I+ E2 0t s=D B (x )P, (X ) on Q_resp.),
(1-7)

where P, and P (1";l and f’;z resp.) are harmonic polynomials of degree s, and s, in

R and R®. Then let Z € Q, (Q_ resp.) so that
0(Z,Z)=2(n+ «k)/Nr- >0 (2(n+ k)/Np < Oresp.).

aiel((o Sop ) e -

(Im 2)*2G (2, B, T, n)(| Z . ||) CH*/2*9*27Dp (Z,)P (Z),
(Im 2)"V2G(z, B, T, n)(| Z_||) BI**/2*5+97Dp (Z,)P,(Z)), (1-8)

We have

2n + x) "7

Nr
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where z = —y /x + x>V =1 and where py. is the homomorphism of y~\(T') given by

cé‘(ﬂ)e"’v‘_' 8e(m  if (T, B) satisfies (L, 1) condition,
cQ’“(Q)x(S)'l if (T, B) satisfies (L, m, x) condition, (1-9)

o= ((; 4}

ProOF. We let B (G) = 7mor(G)(@)XZ). Then by hypothesis on ¢ we have
B, (Gk(8, ¢)) = ev_“’(sgn e)"B (G). Then it follows from Remark 3.1 of [II] that
(W1thz-x2\/ —y/x)

i[5t 7))

= a,0(Z,Z) "V RED|Z, ||fCHIArar9mDP (Z,)P(Z)).
Hence again by Remark 3.1 of [II], for any (M, 1) € 5‘742 with M = [2 9], we have

; ( 4 — )( ez + @) (4,(M))*(Im 2)"V2 = B (([; i_] ]M, 1)—1).

Pr(g) =

where

-z + a
(1.10)
Thus we have from (1-10)
s—1
X )y _ s/2 2(n + K)
Uqﬁz(([ O x__] :l7 1)9 r’ pl") - (Im Z) N[‘

NZ | er*2raraDPp (Z VP (Z) X (~cyz + ap)”
MET/TAP

exp(w\/_ M7\(z )2(n + K))

I‘

Cé'((M’ l))_l[‘l’z(M)] exp('rr\/j bydp Q(m, "7))
for

M=[a” b eT.

cn Ay

We note that T /T n P =y '(I)/y~'(T) N P. Moreover the inverse map X — X ™!
carries I'/T' N P onto ' 1 P \T. Finally we note that since (T, 8) has the (L, 7)
property, then

B(M) = sF(M) = ck((M, 1)) [yo(M)] eV " budwinn>

by definition. Q E.D.
Then given this interpretation of U, z( T, pr) as “Elsenstem-Pomcare series
(<p, as in Lemma 1 2) we can compute the inner product (on SLZ/ v (@) of

z( T, pp) with T, M x» Where pis a K X K finite function in

Exn(s® — 2s,5,5,,5) (Eq(s®+2s,s,5,,5,) resp.)
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when s >3 k (s < ——k resp.). We let do be an SL2 invariant measure on
SL,/v" '(F )-
LEMMA 1-3. Let @, be given by (1-7) in Lemma 1-2. Let (T, By) satisfy the (L, n, x)

property. Then
1 Nr)
= 1.
Br(o 1

Let Z €Q, (R resp.) so that Q(Z,Z)=2n/N >0 (XZ,Z)=2n/N:. <0

resp.).
Then there exists a suitably normalized SL2 invariant measure du, on SL2 /N-8

with 3 = Center(SLz) so that

G, T, G, do(G
fs12/¢~--(r) L AG. T, pr) TL, (G, g) do(G)

- 3 x|

rez/0J.(n))Z (¢€EL|Q(E+mé+m)=2n/Nr}

: fs S 7en((G, £)) (@) + )

~W%(G)—l(q’|)(z) dl‘o(G)} > (1-11)

where py. is given by (1-9).

ProOF. By definition of U, z( I, pr) we deduce (using essentially the Rankin
convolution trick) that

I UL (G, T, o) TE, (G, g) do(G)
SLy/y7'(T)

[ { S (M) (@)Z)EM) X (dM)}
SLATO meyymy/vimn f
TE(G.8) dol(G)
- L 7n(6) (@)(2) T (G 8) di(G), (1-12)

SLy/v™\(T)n
where dé is an SL2 invariant measure on ﬁz /¥7'(T) N P. But we observe that
v!@) N P =3 -{n(k-Nplk €Z). Thus
SL,/¥7(T) n P = SLo/8 - {n(kNp)|k € Z)
and we have that

/. _1o(G) (@)(Z) TE, (G, 8) d6(G)
SLy/yN(T)NP

=f§i,z/3-1v{f m exp( 27V-1 —x) dx}

F
“Tor (G ™) (@)(Z)dpo( G). (1-13)
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But in the inner integral of (1-13) we can switch the order of integration and
summation (by using the estimates in (1-15) of [II]:

fONr m CXp( 27V-1 ;—xr) dx

= > x() T (G g) 7 (@)E + )

r&(zZ/0(JL(m)Z) {§eL)

. {j(; cxp(w\/_ x[ o+ mt¢+m) — —;]) dx} (1-14)

But then since (I, B) has the (L, 0, x) property, we deduce that I' C ¥(A} ), and
then using the paragraphs following Lemma 1-1, we have eV~ "Vr@mn) — | Thus

fON m CXP(—‘TI\/_ x—)

I‘

-3 x(r>{ w%«c,g»-‘w)(um)}.

rez/0(JL(n)Z (£€ L|Q(+ rm.+rm)=2n/Nr)
(1-15)
But then, by adapting the arguments in the proof of Lemma 1.4 of [II],
| \Ttk/2-2
[f(r-X)| < M're=*2Q(X, X)'~" exp( -3 7r°Q(X, X))(nx—n)
+

for all X € R* (where f = ¢ or ¢,) and M’ some positive constant independent of
X.
Thus we have the estimates

[ I (GN@)(2)]
SL,/N-3
: { » 7o (G, )" (9)(& + m)l} d(G)

{§6L|Q(5+m,£+rn)=2n/Nl-}

+ o0
< M/“g—lns+k/2—2{j; Ir—se—ﬁ/r1|2r dr}

1 s+k/2-2 ( )
: > (——————) 1-16
{ (e 1o+ merm=2n/Npy \NE+ )4 |

(here we have used the fact duy(G) = dK ® rdr in the Iwasawa deomposition of
ﬂz). But we know from the arguments used in the proof of Theorem 1.5 of [II]
that the series on the right-hand side of (1-16) is absolutely convergent. Moreover
the integral on the right-hand side of (1-16) is clearly convergent. Thus we can
switch the order of integration and summation in (1-13) and deduce the desired
result. Q.E.D.
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COROLLARY | TO LEMMA 1-3. Let ¢ = @, in Lemma 1-3. Then with the same
hypotheses in effect as in Lemma 1-3,
U:Z(G’ rv pl‘) TL (G’ g) dO(G)

*.MX

fﬂw-‘m

=, - QZ, Zy "z, |k/2*e*ata=Dp (Z VP,(Z)) Z/OEJ Z x(r)
re (M)

: { 1 8(E + rm), [/ s+o+n2)
{(¢€L|Q(¢+ mt+m)=2n/Nr)

P (gE+ ) P eE+ ) } (1-17)

with ¢, a positive constant which depends only on the normalization of certain
measures and the number s.

PRrROOF. If we let duy(G) = dK ® rdr, then, using (1-11),

B2 e 1 4mn
exp|-— —— |r' "= ar},
{j(; p( r? Nr) }

where ¢, arises from the normalization of the measures above in (1-13). Q.E.D.
REMARK 1-3. Using the notation of (3-20) of [II] we see from Corollary 1 to
Lemma 1-3 that (with ¢} a nonzero constant)

2n

c(s) = ¢ Fr

U;Z(G’ r’ pI‘) qu:n,x(G’ g) dO(G)

- GemNy(Z) S XNTER ()
r€Z/0[ ()2

= ™ Mp(Z) T M (). (1-18)

fsiz/-p-'(r)

The basic idea in the work of Niwa [8] in explicating the Shimura correspon-
dence is to compute the inner product of U;jz( , T, pr) (with ¢ as in Lemma 1-3)
with T in L¥(SL,/y\(T)) when f is a Schwartz function on R* which transforms
according to a unitary character of K. In Lemma 1-3 we computed such an inner
product when f € Eom(s2 — 25,5, 5, ;). Our next problem is to give a precise
relationship between Lemma 1-3 and the main theorem of [8].

Let P* (P resp.) be the G~2(Q) intertwining projection map of F, into
Fj(s* — 2s) (Fy(s® + 2s) resp.). In particular P,* is obtained by taking the
orthogonal projection of L*(R¥) to cls(F}(s*> — 25)), i.e., with cls(F§(s*> — 2s)), the
closure of F}(s* — 2s) in L*(R¥).

We let

D =[ ® Fi(s* - 2s)] ea[ ® Fo(s* +25)),

s>1 Is|>1

where s =3k mod 1.
Then D isa Gz(Q) stable subspace in F,.
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We set F; = {¢ € Fglmm(k(O €))p = e\/_’"o(sgn e)’"p} with m € Z Then
from §0 (see Theorem 1.3 of [H]) we deduce that F;, N D=0 if m=0 or

1
= +=
m= =3.

LEMMA 1-4. Let m =0orm = *3. Let B be the closed subspace in F, generated
by all linear translates of mop(G)@ as G varies in SL2 and o varies in Fg. Then B is
a GZ(Q) stable module in F, (relative to meyp) and Fy = B & D.

PrROOF. It suffices to show in L%(R¥) that L*R*) = cls(%®) @ cls(D) is an
orthogonal splitting. The splitting is orthogonal for if y € F; and ¢ € D, then
(Tor(G)|P)2 = (Y|7Tor(G)'p)2 = 0 for G € SL2 Then let H be the wm(SL,_)
stable subspace in L% (R¥) so that L*R*) = cls(®) @D cls(D) ® H with H =
[cls(B)® cls(D)]*. Then if H_ # O, there exists an integer w so that H_ N Fz/ 2
# (0). This implies that there exists an integer g so that 7e(N1)(¥) € Fo(m=0
or m= _2) for y € H. Hence if me(N91)(y) # O, then H_ N B #—-0 a con-
tradiction. This means that Ton(N ")(4/) 0. Assuming that 7oy (N,)?"'(¢) # 0,
this implies that 7o (N9~ ')(y) is an SL, extreme vector in F,. Thus mee(N{~ )y €
D, which again is a contradiction. Q.E.D.

We recall from §5 of [I] that S(R) is dense in F, (in the F, topology). Hence it
follows that S(R*) N F} is dense in F for all m € ;Z.

THEOREM 1-1. Let ¢ € Eo(s* — 25,5, 51, 5,) (Eaq(s® + 25,5, 5, 5,) resp.) with
|s| >3k + 1 be given by (1-7). Let (T, B) satisfy the (L,n, x) condition (with pr
given by (1-9)). Let Z € Q, (2_ resp.) so that Q(Z,Z) =2n/N; > 0(Q(Z, Z) =
2n/Nr < Oresp.). Let f € S(R*) N Fy, and K finite. Then

I UG, T, pr) T, (G, 8) do(G)
SL,/y7(T)

=] U‘;:Z(G’ F, pr) TPL"-&(!)’.,,,X(G, g) do(G). (1‘19)
SLy/47(T)

PRrOOF. By using the fact that f € S(R¥), an easy adaptation of the argument of
Lemma 1-3 shows that (for s >3k + 1)

G, T, T% (G, g) do(G
St g vy Uiel G T ) TE(G8) do(G)

= 2 x(r){

r€z/0(J.(m)Z

[ () (e)2)
(¢€ELIQ(¢+mE+m)y=2n/Nr) "SLy/N3

7oe((G, 2)) ()E + rm) d#o(c)}.

(1-20)
Note we can majorize f(X) by || X, ||' % and then use an argument similar to that
in (1-16).
We may write
f= 2 PXH+ T P(NH+M,

u=k/2 u=k/2
u>1 u<-1
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where M; € B . Then noting the K eigenvalue behavior of P,*(f) and PJ(f) in
Theorem 1.3 of [II], we deduce that

[ 7m(GY@NZ) mn (G, )) (W) + ) dug(G) =0, (1-21)
SLy/N-3
when h = P (f) withu > s or h = P_(f) for all u. Thus it suffices to show that
fs~ LN 7o (G N PN Z) 7en (G, £)) " (M)(E + ) du(G) =0.  (1-22)

Butif m =0or = 5, we note that 'mm(u(SLz))(F N S(R¥)) is dense in B (where
6lL(SLz) is the universal enveloping algebra of ﬂ,z) Hence it suffices to prove
(1-22) where M, is replaced by all 7or(N?)(¢), where ¢ € F and p + m = 5. But

then we note that

Ton(G W7o (Z)WY)NT) = Z » H(G, T), (1-23)
where H, (G, T) = 7on(G YY)T) with T € @, and * represents differentiation
on the left in the variable G (for Z € AU (SL,)). Thus

[ mm(GN@NZ) N7 5 {7 (G, 2)) (W)E + rm)} dino(G)
SLy/y7(T)

=J. N {am(G)Ne)2)} (G, £))"(V)(E + ) duy(G)
SLy/v7\(D)

=J. Ton(G ™) men (N, Y (@))(Z) 7er (G, £)) ' (WNE + rm) diuo(G)-
SLy/y™(1)

(1-24)

But @ is an “extreme vector”, which means that 7o (N, )(p) = 0.

On the other hand, if A = P (f) with 1 <u <s, then we may assume that
h = (N_Y(h) with p > 0 and h, € Eog(u® — 2u, 2, 5, 5,) for some s,, s,. By the
same reasoning as above the result follows immediately. Q.E.D.

REMARK 1-4. We know that in the Weil representation 73 of S‘VL2 in L%(R™)
relative to the positive definite quadratic form || ||> on R™, P, (X)e™¥ I (with P a
harmonic polynomial on R™ of degree s, if m > 2 and

P(X) = e™(d/dx)"e™,
a Hermite polynomial if m = 1) transforms according to the character of K:
k(8, €) ~» eV~ G1+m/D(son eym Then it follows by the tensor product properties of
the Weil representation (see §2) that P, (X, )P, (X )e ¥ I+ (where Q(X, X)
= ||X,|*> = |IX_||>) transforms accordmg to the character of K: k(0, €) ~
eV-1@i—52+@=b/2%  Finally we note that there exists f € S(R¥) N Fy, (where
s, — 8, + (a — b)/2 = s)so that

Pr(f) =cp, c#0, (1-25)

where ¢ € Eqy(s* — 25, 5, 5,, 5,). Indeed if ¢ is given by (1-7), then choose

FX) = P (X )P (X eI 1] (1-26)
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where we assume that P, and P, are the unique, up to scalar multiple, spherical
harmonics of degree s, and s, on R* and R’ invariant by O(R*)* and O(R®)%,
respectively (note here that if b = 1, then P, L_-—l or x, which are the first two
Hermite polynomials). Then we have [g« f(X)p(X) dX > 0. Hence, noting that f
transforms according to the tensor representation [s,], ® [s,], of K, we deduce that
(fl@)z = (PF(N)|@) with P*(f) € Eqy(s® — 2s, 5, 5,, 5,). Then using the specific
form of ¢ in (1-7) the result (1-25) follows.

2. Zagier correspondence. Let Q be a nondegenerate quadratic form on R*.
Moreover let Q = O, ® Q,, where R = R” ® R” and Q|g~ = 0, and Q|g- = O,
Then the representation mo, is functorial relative to this splitting in the following
way. Let F| = L*(R™) and F, = L*[R") and form the Hilbert space tensor product
Fl ® F2 We define in the usual way the unltary representation of the product
SL2 X SL2 on F, ® F, by (G, Gz)mw%(G )® 7on(G,). Then we know from
[I, §1] that the representation of mqy of SL2 in L*R*) (relative to the quadratic
form Q) is unitarily equivalent to the restriction of the tensor product representa-
tion gy ® wéy to the diagonal subgroup of the product SL2 X SL2

REMARK 2-1. Let kK = 2 and Q be the hyperbolic plane (v, ) with Q(v, v) =
Q(é’, ©) = 0 and Q(v, 6) = 1. The group SL,(R) operates on (v, &) as follows. ¢ =
4 5] has the effect o(v) = av + cv and o(6) = bv + di. Then it is possible to
linearize the representation oy of SL2 in the following manner. Let

F(p)(ro + s6) = f o(uv + s6)e2™V ¥ dy (2-1)
R

(for ¢ € L'(R*») N L*R?). Then F, extends uniquely to a unitary operator on
L?*(R?), and we deduce from Theorem 1.1 of [II] that

Flnon (M, e)) F(9)(X) = 9(M (X)) (2-2)

with M € SL,(R).

Let L, ., be the lattice in R? given by Zu,v ® Zu,, where u, - u, € Z*. Thus
L, ., is a Q integral lattice in R% Moreover the Q integral dual L (Q) of L uyls
Z(1/u)o ® Z(1/u,)b.

We say that the function f on R? which is both integrable and continuous
satisfies the *-Poisson Summation Formula Property relative to L, ,, , if

(a) f satisfies (A) and (B) of the Poisson Summation Formula Property relative to
L, ., (see 11 of §0).

(b) For every n € L, uy * (Q), the function g,(x) = f(xu,- v + n) satisfies the
Poisson Summation Formula Property relative to Z.

(c) For any y € SL,(Z) the function x — F;'(¢)[y(xv)/u,] is continuous and
integrable. Moreover the series

)

(1,n)EZ?

Fv"(f)(uiv + nu, + n)‘ < o0
1

withn € L, ., * (Q)
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(d) For every M € SL,(Z), the function h(x, M) = n3,((M, e))(f)(xv/u,) satis-
fies the Poisson Summation Formula Property relative to Z.
(e) The series

w%m(v“)(f)(uizv) < oo.

YE SLy(Z)/ P N SLy(Z)
JEZ
It may seem that these conditions are rather technical and arbitrary. However,
their importance is seen in the following lemma.

LEMMA 2-1. Let f be a continuous L' function on R Suppose for each (G, g) €

G~2(Q) the function satisfies the *-Poisson Summation Formula Property relative to
L .
(uy,u2) ~ -

Also suppose that for each (G, g) € G,(Q) we have F,(m((G, g)™))(/)(0) = 0.

Then if n = v/ u,,

Tfy(G, 8) =
y ETg(u1u3) /To(ui1u2) N Y(P)

SEZ
a mod uu,

{ 2 7x((G(y, 1), 8)_1)(f)[(su, + au—(:')v]x(a)}' (2-3)

PrROOF. By hypothesis on f we have that (with X = av/u,)

> f(muo + nuyd +X)

(m,n)€Z?

ui > F"-l(f)(uil v+ nuzﬁ) exp(2w\/—_l (at/u,uz)). (2-4)

1 (,nyez?

The argument inside F,'(f) on the right-hand side of (2-4) is of the form
[tv + nu,u,6)/u, with (¢, n) € Z2

Then the correspondence y — y(v) for y € SL,(Z) determines a bijection of
SLy(Z)/SLyZ) N {(} D)} to the set {mv + nd|(m, n) € Z* — (0, 0) and m, n rela-
tively prime}. This implies that the set 4 = {xv + yd|(x,y) € Z? — (0, 0) with x, y
relatively prime and y = 0 mod u,u, and if y # 0 then y > 0 and if y = O then
x = 1} is in one-one correspondence with Ty(u,u,)/To(u,u,) N Y(P). (Note here
that Y(P) = (*5 .%).) Then we partition the lattice Zv @ Zu,u,6 into two sets, i.e.,
T = U ez-(0JA4 and the complement T of T in Zv & Zu,u,6. Now if w € T*,
we assert that w = f,v + wu,3,06 has the property that ¢, and wu, are not
relatively prime. Indeed if gcd(s,, u,u,) = 1, then let a, = ged(z,, u,u53,). This
means that a,, divides 3,. Moreover, ¢, /a, and 3,u,u,/«, are relatively prime.
Hence w = o, (1, 0/, + uuy3,6/a,) € T, which is a contradiction.

Thus taking the right-hand side of (2-4), we sum over a mod u,u,. We consider
only those terms in the sum where tv + nu,u,6 € T°. However, fixing one such
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term, we see that the inner sum becomes

t
2 ’ Fv_l(f)( 7 v+ nuzﬁ)x(a)eZﬂ\/-_l (at/uyuy)
1

a mod uu,

= Fv"(f)(iv + nu26) S x(a)erV-l@/mm), (2-5)
u a mod uu,
But we know that the last sum in (2-5) is a Gauss sum G(x, ?, u,u,) which is zero
when ¢ and u,u, are not relatively prime.
Thus it suffices to consider only the sum of the form
2 x(a)

a mod u,u,

e PR

A S £ Ore(2rvT )
12

Jj>0
“ 1)} (2:6)

uu,

+ E2 () (r(v)) exp(—zwv——n

We note that the inner sum is invariant under left multiplication of y by an element
of the form (*| .%). Moreover we have used here the fact that F( /)(6) =0.

Then using the hypothesis on f again (specifically the integrability of f on R? and
the integrability and continuity of x ~ F,(f)[y(xv)/u,] for all y € SLy(Z)), we
deduce that F, o y o F'(f)(xv/u,) = 7eq(y)(f)(xv/u,) for all x € R and all y €
SL,(Z). Then we have

3 F;'(f)[uiln(v)} expl 20V ;‘%j)

—w S Ryl F.;'(f)[(nu. +3"—)u} @7)

nezZ

Then using (2-7) we deduce that the left-hand side of (2-3) equals

)y

¥ €lo(u12) / To(1u2) N {((-): ‘ Zi')}

S Foye F.:‘(f)-[(jul +%)v}x(a) - (29

a mod u,u,
JjEZ

Then if we replace f by 7oz ((G, g)")(f), the above reasoning remains valid because
of the hypothesis on 7o ((G, g)")(f) in the lemma. Finally we use (2-2). Q.E D.

We can extend Lemma 2-1 to higher dimensional spaces in the following way.
First we need the analogue of the *-Poisson Summation Property for R* space.

Let L be a Q integral lattice in R*. Assume that L has a Q orthogonal splitting of
the form L = £ ® L, ., where £ is a Type II lattice in R*"? and L, ,, is as
before.
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Then let f be a continuous and integrable function on R*. We say that f satisfies
the *- Poisson Summation Property relative to L if
(a’) f satisfies the Poisson Summation Property relative to L (see §2 of [II]).
(b’) For each n € £,(Q), the Q integral dual lattice to £ in R*~2, the function
0,(X) = f(n+ X)with X € R? satisfies properties (a), (b) and (d) above.
(c') Forany V € £,(Q) ® L, .
2 IR NDE+p+ V) < oo
¢epr
BE Luyuy
Also if y € SLy(Z), then the function x ~» F,;'(f)[y(xv)/u, + W]is continuous
and integrable (for any W € R¥2),
(d) For each y € SL,(Z) and each Z € R*~? the function

Z s wli (v )INZ + po/uy)  (with p € Z)
is continuous and square integrable on R*~2, and the series (with V', € £ (Q))

)

tepr
LEZ

(¢') For each y € SL,(Z) and p € Z the function Z — 7on(y "W NZ + pv/uy)
with Z € R*~2 satisfies the Poisson Summation formula relative to the lattice £.
Again these conditions seem unmotivated but become essential in the following.

wm(y")(f)( + —v + V) < co.

PROPOSITION 2-1. Let L be a Q integral lattice in R*. Assume that L has a Q
orthogonal splitting in the form L = £ @ L, ., where £ is a Type 11 lattice in R*~2
and L, ,., is as above. Let f be a continuous and integrable function on R*. Assume
that for each (G, g) € GZ(Q) the function woy((G, g)')(f) satisfies the *-Poisson
Summation formula relative to L. Also assume that F(7mox((G', 8) )W NT) = 0 for
all T € R*"? and for (G', g') € G2(Q) Let n € £ (Q). Let {o; X )} be the matrix
defined in §0 relative to the lattice © (where, with an abuse of notation, the pair of
vectors (x, y) index an entry of {of( )}). Then we have

(p(,+-qx(G, g) = 2
Y €ETo(u113) /To(u u2) N Y(P)

S 3 e )@ D))
ter tnet @yt
a mod uu,

.[§+,,,.+(,u,+—) } (a>} - @9)

(Note: The order of summation above is critical in that the series on the right-hand
side of (2-9) may not be absolutely convergent.)

PROOF. Let ¢ = 7oy ((G, g)~")(f)- Then by using properties (b"), (¢’), and (d'), we
deduce by following similar reasoning as in Lemma 2-1 that
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> q)(§ +n+ (mul + i)o + nuzﬁ)x(a)
tee Uy

(m,n)eZ?

a mod u u,

= > 2 mum((n D)) (e)
¥ €To(uyu3) /To(uyuz) N Y(P) §€C
JEZ

a mod uu,
aay
. §+n+(jul+—u—)v x(a)t.
2

(2-10)
We note here that the order of taking the summation on the right-hand side of
(2-10) is important. We essentially are using the argument of Lemma 2-1 where the
Poisson Summation formula is applied two times. We know that the series on the
left-hand side of (2-10) is absolutely convergent. Also we know that

- <o
Y ETo(u112) /To(u1u2) NY(P) :
(from (c’) above) and that the series in { - - - } is absolutely convergent (from (d’)
above).

Then using (¢’) above, we deduce that for y € I'y(u,u,) (here we use 10 of §0)
with A € £,(Q) and

7o ((G, DN@NZ, + Z,) = 75 (G, 1)) ® 75((G, D)(e)(Z, + Z)
where Z, € R*72, Z, € R? (here ¢ € L'(R*)), we have

2 75((y 1)_')(‘17)[& +A+ iv}

tel U,

- S (o 1)"){%e mon((r, 1)-')(qo)[g+ni+uizo]]. @11)

€ E.(Q)/E
We note here that

7&7 (v, D)o (v DN @[ X + wo/uy] = 73 ((v, D)W@) [ X + no/u,)
is valid because of the continuity and L? assumptions in (d’).

Then we substitute (2-11) on the right-hand side of (2-10). Q.E.D.

At this point we make precise the relationship between the lattice £ ® L, .., and
the Q orthobasis defined in 1 of §0. Namely we assume that £ C Q ®
(€. s byypr--.re) (ie. é,,, denotes e,,, is omitted) and that v = V2 v, and
6=14,/V2.

The main problem is to find functions f so that 7o (G, g)™')(f) satisfies the
*.Poisson Summation formula relative to L. However this is satisfied by functions
given in the following lemma.
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LEMMA 2-2. Let |s| > 2k. Let ¢ € F*(s —28)gxx (Fp (52 + 25) g x resp.). Then
for every (G, g) € GZ(Q) the function X ~» noy((G, g)~ l)(tp)(X ) for X € R* satisfies
the *- Poisson Summation Property relative to L.

PROOF. See Appendix.

THEOREM 2-1 (ZAGIER IDENTITY). Let L be a Q integral lattice having the form
£E®L,,,, where £ and L, ., are as given in Proposition 2-1. Let ¢ €
Equ(s* — 25, 5,5, 5) (Eog(s® + 25,5, 5,, 5,) resp.) with |s| > 2k be given by (1-7).
Then assume that

LAREC) =j; 7o (87 N@)[ Y + 10,] dt =0 (2-12)

for each Y € L,. Let np be the exponent of £ (Q)/E. Then the exponent n; of
L, (Q)/ L is the least common multiple of ne and u,u,.

Assume that 2ng|uu, (so that n, = uyu,). Then we have (valid for g as given in
(2-17yand any z € H)

1
q)ox(z g) = 23
v € To(u1u2) N Y(P)\Lo(u1142)

. { > |r|s—l{ > x(IM,(g L, v)} 5 (¥) ( i+ d ) e2V-1 ry(z)}’

rex* v mod u,u;
(2-13)
where
Mg, L, r,v)= > h+(g(§ + (jul + ui)v)) (2-14)
{¢€L|Q¢8=2r) 2
JjEZ
and where X * = {(Q(£, £))/2} N R, and
ho(X) = ||X | Cr&D*a*a=Dp (X )P, (X)) (2-15)
with X € Q,.

PrOOF. We apply Lemma 2-2 and Proposition 2-1. We note that if 2n|u,u,, then
05, ((v, 1)) = 0 if 7, # 0 for y € To(u uy). Next it suffices to observe that a,d, =
1 mod u,u, implies that aa, ranges over a complete set of representatives of
integers mod u,u, when a does the same. Thus we deduce that 7. wox( D> 8) equals

> ) [ 2 of(( D)7 ((G(x. 1), 8) " )(9)
JE

y ETo(u1u2)/To(uyuz) NY(P) | v mod uyuy
tel

-[ﬁ + (jul + ulz)v]x(l')x(d,)}

(2-16)
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Then we let G = (((§ %-1), 1)) and using an argument similar to Lemma 1-2, we
obtain

o5((v. D)) 7o ((G(v, 1), &) )@)€ + Gy + v/up)v]
= (Im 2)*?|r = *h, (g(€ + (u, + v/up)0)) ¢,z + a,)”
eV OG (o T[] (2-17)
with z = —~(y/x) + x2V-1 and r = Q(£ £). But then

g (v, D)) [¥2(N]*x(d,) = 55,,(7)

for y € Ty(u,u,). Finally we note that séx(y) = S(E?.,x(Y) by using the explicit form
of s given in §0.

We note here that if ¢ € E%(s2 — 2s, 5, 5, 5,) and if (2-12) is satisfied, then for
any G € ﬁz

[ 7en((G, &Y @)X + 10,] dt =0
forall X € L,. Indeed

70 ((G, 8) W@NW) = c)lrg|*/%eV = 5rde MWy (g7)(9)[ r5' W]

Then using change of variables in (2-12), we deduce the above statement. Q.E.D.
REMARK 2-la. At this point we can make certain preliminary remarks about the
behavior of the function (with ¢ = u, and u, = 1)

0
Mg L, rv)= > h (g(£+(jt+v) = )),
Y (tcel0@H=2) V2
JEZ

where 4, is defined by (2-15). Then we have
M (gy, L, r,v) = M/g L, r, v)

forally € TX(Q) n O(Q| 1) - U(F}). Moreover there is another elementary way to
write the function M. Indeed let &, .. ., &, be a set of representatives of the
0(Q|,) N TH(Q) orbits in {§ € L|Q(£€) = 2r). Then we have

h(r)

Mg L,r,v)=3 >

i=1 JEZ o
yETHQ)N O(21L)/(TH2)NO(QIL)) "

.h+(gyN,((j’2’: ") : £,’)(—§,’)). (2-18)

REMARK 2-2. The order of summation on the right-hand side of (2-13) is
important. In general the series is not absolutely convergent. However we note that
by “formally” changing the order of summation in the right-hand side of (2-13) we
can deduce from Lemma 1-2 the formal identity
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Tl (2.8)=2"" 2 |r|""'{ > x(v) >

rex* v mod u,u, {¢€Ljo¢f)=2r)
JEZ
. v
h+(g(£ + (/ul + —)v))}
U
“Gy(2, 5§, To(uyu,), r). (2-19)

REMARK 2-3. The condition that <I>£" (Y)=0(forall Y € L)) is called the Second
Cusp Vanishing Condition for y € Eqy(s* — 2s, 5, 5,, 5,) in [II}. We recall from [II]
that the map ¢ — CDF ' is an ﬁ,z X O(Q,) infinitesimal intertwining map of
F5(s* — 28)gxx tO FQ (s* = 29)gxk, (K, = K N O(Q))). Thus if ®L(Y) = 0 (for
all Y € L)), it follows that tD"m((th) we(Y) =O0forall Y € L, all G e SL2 and
all g € pr. However if b =2 with ¢ € FQ(s +25)ixxk (5| >3k) and if a =2
with 9 € FQ(s 25)g xx (s >3k), then (I),,m«cg)- oY) =0 for all Y € L, all
G e SL2 and all g € 0(Q). The latter cases are precisely the cases when

q)Lv x(2,8) 1s a cusp form in the O(Q) variable (see [II, §5]). Thus in the “cusp”
cases, (2-13) is valid for all z € H and all g € O(Q).
The main point of (2-13) (and the formal formula (2-19)) is to prove that

(TE poxC ONADa, e is given by the formula

S S w3 hsfer (o 2)o))i0. @0

reX* | vmod uu, ((€L|QE8)=2r) 2

JEZ
where a,(f) is the rth Fourier coefficient of f at {00}, i.e. f(z) =2,5 a,(f)ez"\/j =,
Here we wuse the reproducing formula {G/( , sQ o Lo(ugu), NI ) =

- a,(f)r’**! ¢ a nonzero constant depending only on s.

We can prove, by the methods of §§4 and 5, the equality between (2.20) and
(T, (I )y, fOr the cases when Tk, (,) is a cusp form in the O(Q)
variable (see Remark 2 3 above).

We may ask what sort of modification is required to obtain an analog of this
formula for general T, x( ). One possible way is to decompose g = k- p with
k € KN O(Q,) and p € pr. Then for ¢ € Eey(s® — 25, 5, 5, 5,), we know that
there exist linearly independent elements ¢, in Eoy(s® — 2s,s,s,,s,) so that
7o( g @) X) = =, a,(k)g,(pX), with g, certain analytic functions on K. Moreover
the ¢, can be chosen in a special way. Namely let ¢, ..., ¢, span the unique
subspace of Eqy(s> — 2s, s, s,, 5,) which, via the map ¢ — tbf, is mapped bijec-
tively onto EA %(s® — 2s,s,s,,5,) (the corresponding K X K, eigenspace in
L*(R*~?). Then let @, ..., @, span the kernel of the map y — ®i7 (y €
Eq(s® — 25,5, 5,, 5,)).

Let f be a holomorphic cusp form which satisfies (7. Iy vx( DI )>®ro(.....,) =0 for
allp € pp andi = 1, ..., m. Then for such f we have

M

Tgox OO = 2 a(kX T, (PO

i>m+1
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Then we can try to apply (2-20) to each summand <va:u,x( ,PIf()) withp € p,.
Hence it should be possible to derive a formula similar to (2-20) for general
g € 0(Q) provided f satisfies certain orthogonality conditions given above.

3. Dirichlet series attached to automorphic forms on % , . First we summarize the
results of §7 in [II]. Here b =2, ie., the signature of Q is (a,2). Let
A, ={X+V-1Y|X, Y EL, and Q(Y, Y) <0 and Q(Y,e,,,) <O} be the
tube domain associated to the forward light cone, W = {Y € L,|Q(Y, Y) < 0 and
Q(Y, e,,,) < 0}. We recall that the group O(Q), the connected component of
O(Q), operates as analytic automorphisms on R, . Thus if g € O(Q), we let
0(g, Z) = det(d(g- Z)/9(Z)) where 3(gZ)/d(Z) is the Jacobian matrix of the
analytic map Z — g(Z) of R, to itself. We note that d(g, Z) is a holomorphic
automorphy factor on R, . Moreover there exists a unique automorphy factor d on
R, so that p*~% = b (see §7 of [II] for relevant definitions, etc.).

We note here that for g € Pr, N O(Q), having the form hA4,(r)N,(Y) with
h, € 0(Q,),r € R*and Y € L, we have that

g(U+V=1V)=r[h(U+ Y)+V-Th(V)]

(with U + V-1 ¥V € R,). Then d(hA,(r)N\(Y), Z) = r™".
Also let ¢, be the element in O(Q), so that
1
QUU+V-1V,U+V-1YV)

c,(U+V-1V)= (U+V-1V). (31

Then we deduce easily that d(c,, Z) = Q(Z, Z).

We recall that a holomorphic function for R, is an integral automorphic form of
weight v for an arithmetic subgroup I', of O(Q), if

O)f(y-2)=0d(y, ZYf(Z)forallZ € R, and ally €T,.

(ii) For each ¢ € C(T',), the commensurability group of I', in O(Q),, there is a
positive number d(o) so that (f|o)(Z) = f(o(Z))d(e, Z)™ is bounded on the
subdomain R, (c(0)) = {X + V-1 Y| |Q(Y, Y)| > c(a)).

We note that C(I',) is exactly the set of Q rational points in O(Q),, i.e.,
C(T,) = 0(Q), N O(Q)q. Moreover we say that an integral automorphic form is a
parabolic or cusp form if f(o(Z))d(o, Z)™ -0 as |Q(Y, Y)| > + o« in R, (c(0))
(for each o € C(T'))).

We recall from §7 in [II] that for any y € C(T',) there exists a lattice (y) C L,
so that U(F}) N T,v™" = {N,) € UFDIE € R(y)}. Then let N(y)* = {n €
L,|Q(n, R(y)) C Z}.

ExampLE 3-1. If T, = T*(Q), the stabilizer of the lattice L = £ & L, in R¥
then as an easy exercise we see that R(e) = V2 {¢£ € L|QE £ = 0mod 2¢, Q(E, £)
= 0 mod ¢} for e, the identity element of O(Q),.

Then using the invariance of f relative to U(F}) N yT',y~' we deduce that

U@ = 3 aglflyetoen (3-2)
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where

%mw=L

with the series in (3-2) being absolutely and uniformly convergent on R,. We
recall that ag(f]y) = O for all & € N(y)* satisfying Q(R, ) > 0 (if f is a cusp form
then ag(f|y) = O for all @ € N(y)* satisfying Q(2, ) > 0).

Furthermore, for y € C(T',), we know that yI',y™' n O(Q)), is an arithmetic
subgroup of O(Q,), and we have that a qo(f|y) = ag(f|y) for all g € yr,y'n
2 ()

We then observe that the subgroup {g € yI',y™'0(Q))o|g(®) = 2} (for @ €
RN(y)* and O, ) < 0) of yI‘*y" N 0(Q,), is a finite subgroup. Indeed since
0(®, 2) < 0 we deduce that O(Q,)¥ is a compact group. Then we let (for Q €
R(y)* so that Q(2, ) < 0)

e(@ly) = #{g €[,y N 0(Q),l2(@) = 2}. (3-4)

Then following [6] we can associate a Dirichlet series to a cusp form of weight »
(with respect to the arithmetic group I',) by

1 . ]
D(3,f,y) = 96{9%)%. aa(f|Y)€—(QW)‘|Q(Q, Q)| (3-5)

(FIY)(X + V=1 Y)2mVTe(X+V-1v®) gy (3.3)
Y)*

k—Z/SR(

where {%(y)*}r. represents a complete set of representatives of the orbit space

{2 € R()* /1T,y N 0(2)),0(2, 2) < 0}.
Then following the ideas in [6] we can prove

THEOREM 3-1. D(8, f, v) is an absolutely convergent series for Re(8) > v /2 (with
v > k — 4). Then we let

D*(3,f,v) = {7*I(8 — 3k + 2)[(3)} D(5, £, v). (3-6)

Then D*(8, f, v) can be analytically continued to the whole 3-plane. Moreover it
satisfies a functional equation

D*(3, f,v) = D*(» — 3, f, vc,)- (3-7)
ProOF. We let F(T'}) be a fundamental domain for yI',y™' N O(Q)), in W. Let
d*(Y) be the measure on W given by d¥/|Q(Y, Y)|*~?/2, Then we decompose
d(Y) = dr/r ® do_, where do_, is an O(Q,), invariant measure on the + hyper-
boloid T, n L, = {X € L|O(X, X) = -1, Q(X,¢) <0}. Then we can also
write F(I'Y) = R, X F_(I'}) where F_,(T%) is a fundamental domain for yI',y™' N
O(Q)oinI_ N L,
First we need an auxiliary lemma.

LEMMA 3-1. Let 8 € C so that Re(8) > k/2 — 2. Then for T € W,
f 10(Z, Z)[*eT2)gq*(Z)
w

=3 {7 ECTY20(s - k/2 + 2T(8)}|Q(T, T)I™ (3-8)
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ProoOF. We refer to Hilfsatz 1 of [13]. Q.E.D.
Then we define for f, a cusp form of weight » relative to the group T',,

RESw) = [, DOV VI d(Y). (3-9)

But using the comments above

RGsn = [T [

m(f”)(\/*_‘ r-§) do_.(g)] dr.  (3-10)

The first problem is to determine the convergence of (3-10). Following the usual
method we write the integral in (3-10) as

flr”_'{u- }dr+foor25"{~ - ) dr.
0 1
Since f is a cusp form of weight » we have that

|(fIN(V-1r-§)| < r'”seiu% WI(fIY)(\/—_l £)|-

However (fly) (V-1 - §) is bounded on F_(T'}); but F_(I'}) has finite volume
relative to the measure do_,. Hence

Ty

<{ sup )|j(\/—_l-g)l}{vol(F_,(I“;))}{Ll,ZB—v—ldr}. 3-11)

§eF (7

dr

UV ) do 0

The latter integral in (3-11) converges if Re(3) > v/2. On the other hand we note
that
|ID(V-Tr-8|< 3 |ag(fly)|e* 2@, (3-12)

QERN(y)*
But since f is a cusp form on R, of weight » we know from [6] that |ag(f|y)| <
GO, )]/ for all € N(y)* (C;, a positive constant depending only on f). Thus
the series on the right-hand side of (3-12) is majorized by

2 10(Q, @)/ %ePmeed (3-13)
QEN(y)*

with § € F_(T'}).
But we know that (see [II, §5]) there is a positive scalar ¢, so that ¢, R(y)* C
(Ly)z (with (L)), the Z span of a basis {U,} of L, so that Q, on L, becomes

Ul + - +oy_3UZ 3 — U2, = ||U,|> = ||UJ? with a, ..., a_, positive
rational numbers). Hence it suffices to study (4, some positive constant)
2 -
S (n - QL) ek ) (3-14)
Q,ezk3
nezZ,
1R+ll<n

where £ =§, + § ¢ with §, €Ee,, ..., ¢_,> and £ € F_(T)). But (3-14) is
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majorized by the series

2 2 nve2WAr[Q+yf--] e_Z"A’e-". (3'15)
n>0|qQ, ez+3
12411<n
But then
2 nve21rAr[Q*.f+] < 2 1 nve21rAm||€¢||. (3_16)
Q,ezk3 Q,ez+3
124 1l<n 12411 <n

Then noting [II, Appendix] we find that (3-16) is majorized by
2 nk—3+ve-2nArlé £, |l]n (3-17)
n>0

(where £_> ||£, || by hypothesis). But using the classical Maclaurin integral test we
deduce that (3-17) is majorized by

k—340p \<73Y[  emarle-lg (3.18)

mAr[§_— 1§, 11] 1 — e-mArlé—né.m | )
But we recall that e /(1 — e™) < e™*/?/x for x > 0. Hence (3-18) is majorized by
(mAr[&_— 1|, 11]) TP e/ Dl (3-19)

But then

f+°° 28— 1= p—(k=2) g—nArE.~ €. 11/2 gy
1

_ {w }'”””'"”r((m/z)[&-—n£+||], 28— v — (k- 2))
(3-20)

where I'(, ) is the incomplete gamma function. We note that the above identity
holds for all 8 € C.

On the other hand we recall from [3] that F_(I'}) is contained in a set of the
following form (for some ¢ and C positive numbers).

i=j
U v(S.0) (3-21)
i=1
where
Sir={Aas 1 (NIN(S)[e]lr <tand S € T, .}

with 7, . = {U € Ly| ||U|| <r-C} and where {y,,..., v} is a finite set in
0(Q,), having the property that

U (vTur™ 1 0020} 7+ (0020 1 Po}g = (0(0)0e
i=1
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We note here that
Aa+l(r)Nl(S)[ek] = Aa+l(r)Nl(S)[(l/\/§)(6a+l - Da+l)]

=(1/V2 )[r"iia_,,l —[—1+—Q2(§’—-S—)]rva+l + S].
If §¢=A,, (r)N,(S)[e,] then & = e*|lw||?/4 + cosh(x) and |£,|| =\/§3 -1
withr = e*and w = S.
We note that O(Q,) invariant measure do_, on S,  is given by dr/r ® dS.
Then we let u(x, R) = e*R%/4 + cosh x. Using the change of variables r — r!,
then there exist positive constants ¢, and T, so that (8, = Re(8))

S, TE e S g0 25 — v = K +2) doLy©

T

< j::)T' Rk_s{fx::g:. I‘(%(u(x, R) —-vu(x, R} -1 ), 28— v — k + 2)
{u(x, R) —Vu(x, RP =1 )7 dx} dR.

(3-22)
An easy argument shows that for fixed x the function
R > V(x, R) = u(x, R) —\/u(x, R? -1
for R € [0, T,]is a decreasing function. Thus
+ o0 ‘ITA 28,
flog’ I‘(T V(x, T,), 28 — v — k +.2)H(x) dx (3-23)
with
H(x) = V(x, T}) ?f 8, > 0,
V(x,0) ifg, <0,

majorizes the inner integral on the right-hand side of (3-22). However for fixed R,
the function x — u(x, R) achieves its minimum at x, when R? = 2(e™** — 1).
Then decomposing the interval [log ¢,, oc) into at most two parts consisting of
[log ¢, xo] and [x, +o0) and making the change of variables x — V(x, T}) in
(3-23) we deduce that (3-23) is majorized by an integral of the form

+ o0
) r(fzi V,28,— v — k + 2)4/%(V)
M

-1/2
1., o T? + 1 14V
‘4(V + V) ( : ‘ V||V| (3-24)
where
[ V| 2% if 8, > 0,
‘l’so( V)= 1 A .
'T/—l—— if 50 < 0,

with M a positive constant depending only on ¢.
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Then we recall that for v > M’ > 0 there exists a constant C,,. so that |T'(v, a)|
< C,pe™v* . Hence (3-24) is majorized by
-1/2

V2= 1]aV (3-25)

+o 1 T + 1 1
AV /2, I 72 1 2 . 2
fM e ng(V)'4V (——2 )V +3

with

v+ if 8, > 0,

[V [#-C+(p2 4+ 1) jfg < 0.

But the factoring ¥* — 2(T? + 1)¥? + 1 into a product of four terms and noting
the local integrability of each term (in V') we deduce that the integral in (3-25) is
finite. Moreover for 8, > M” (3-25) is bounded by a constant depending only on
M"” and M.

Thus using (3-12), (3-20) and the immediately preceding arguments we deduce
that the function

5 fl+°° rzg_ll fs "T(flv)(\/-_n r-£) do_,(g)} dr (3-26)

is bounded uniformly in every half space {8 € C|Re(8) > M”}. Moreover the
function defined by (3-26) is holomorphic in the complex 8-plane.

On the other hand if we replace (f|y) by (f]yy;) (with y; given by (3-21) and note
that d(y,, Z) = 1 (v; € O(Q,),) then by using the same arguments as above

§—>f1+°°r2§—'{f

Yi(Si.1

Qso( V)= {

)(f|y)(\/-_1 ré) do_,(§)} dr (3-27)

is holomorphic in the complex 3-plane. Thus

3 ——)'/;+°° r25—|{./;: 7Z)(fl')/)(\/--—l r- g) do—l(g)J dr (3-28)

-1(
defines a holomorphic function in 3.

Then starting with (3-19) and adapting easily the above arguments we also show
that in

Lo S amerens) o (3-29)
F(TY)

QEN(7)*

the summation and integration can be interchanged. Thus (3-29) equals

S aln]

2 2ED dg (£) ] . (3-30)
LEN(y)*

-1 t)

Then we integrate (3-30) against r2*~'dr over [0, c0) (this is possible by the
arguments above) and deduce immediately from Lemma 3-1 that for Re(3) >
max(v/2, k/2 — 2)

R(3, f,y) =378+ &=9/21(5 — k/2 + 2)[(3)

I . _
: {Qe(%)‘)r‘ aﬂ(fIY)e(—QIy;lQ(Q’ )| ] (3-31)
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where the series is absolutely convergent for Re(8) > max(v/2, k/2 — 2).
Then to prove the functional equation and analytic continuation of R(3, f, y) we
let h = (f|yc,)- Then by change of variables

fol rzé_l[fp (r‘v)(fh)(\/__l r-§) do-l(g)} dr

-1

= f o r2"-23-’{ f h(V-1r-§) do_,(g)} dr (3-32)
1 F_(TY)

and

VA

_ ! r2,,_2g—l{f h(V-1r-¢) do_l(E)} dr.
0 F(T%)

LUMVT g da-.(z)} dr

Thus we deduce easily the analytic continuation and functional equation of
R@, f,v). QE.D.

We recall that if f is an integral form of weight » on ®, that we can define f*:
0(Q), — Cby

F#(g™) = f(g(V=T V2o, ))[2(g VT &)]™ (3-33)

Then we observe that f*((gg(6))™") = f*(g")e¥~' " (where g(8) is the rotation
group of the plane (e, _,, ¢,>). Then for 8 so that Re(8) > »/2,

R, f,y) = 2§f0+°° r”‘”[fo( F*(8A4,(r™)y™) dX( g)} -qrf

(3-34)
where dA is some O(Q,), invariant measure on O(Q,),/ 0(Q1)o N YL,y ' and dr/r
is the Haar measure on A4,(r).

We are going to determine R(3, f, v) for special choices of f, i.e., for those given
by (1-3). For such a computation we use (3-34) as the starting point.

EXAMPLE 3-2. We consider a special case of the Dirichlet series defined above.
We know that if k = 5 then O(Q), is isomorphic to the symplectic group in two
variables, i.e., Sp,(R). We make this correspondence explicit. We recall that Sp,(R)
is defined as the subgroup of ¢ € SL,(R) satisfying gJg‘ = J, where J is the 4 X 4
skew symmetric matrix

0|
(=t

with I,, the 2 X 2 identity matrix. This implies that relative to the standard basis
€, ..., & of R* the alternating form &, A\ €, + &, A €, (an element of A%R?)) is
invariant by g € Sp,(R) when the natural linear action of SL,(R) is extended to a
linear action in A’R*. We know that for any two elements a, 8 of A?R* the product
a A B is a multiple of &, = €, N\ €, A\ €5 A €, in A*R®). Thus a A\ B = ¢(a, B)e,
and it is easy to see that ¢ defines a nondegenerate quadratic form in A%(RY).

Q1)o/ O(@1oN YTy
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Moreover for g € SL,(R) we deduce that ¢(ga, gB) = det(g)¢(a, B). Hence
SL,(R) (modulo its center) via the representation 6, on A*(R*) is a subgroup of
O(¢),- But by dimensional considerations (i.e., dim SL,(R) = dim O(¢),) we have
that o,(SLy(R)) = O(¢)o-

By simple computation we deduce that {&, A\ &, & N €,), <€, A\ €, & N &)
and (€, A\ &, €; /\ €,> span hyperbolic planes relative to ¢. Thus ¢ has signature
type (3, 3). On the other hand since o,(Sp,) leaves €, A €, + €, A\ €, invariant we
deduce that a,(Sp,(R)) operates on (€, A\ €, + & A €)' in A (R*) as orthogonal
transformations relative to ¢. Again by dimensional considerations we deduce that
0,(Sp,(R)) (restricted to (€, A\ €; + & A €,)*) equals O(¢*), where ¢* is ¢ re-
stricted to (€, A\ €; + €, A\ €)*. Thus Sp,(R) modulo =+ I, is isomorphic to O(¢*),
where ¢* has signature type (3, 2).

Then following the notation used in §0 we let v; = €, A\ €, 0; = (€, N\ &),
v, =€ N\ &, 6, = (& N\ €)and e; = (1/V2 )€, N & — & A &,). Then by com-
putation we deduce that

oz(é 1\14) = Nl(av3 + (-¢)o; + (—b\/f )e3)
where M = [2 %], a 2 X 2 real symmetric matrix. Thus it follows that det(M) =
—20*(Xa» Xyy) With X, = avy — cfy + (-bV2 )e; (With M as above). Moreover

we have that
02(( I| eMg’ )) = Nl(oz(g) . (XM))
0 1

with g € SL,(R) being identified with the matrix

g 0
0| (g }
in Sp,(R).

Let L be the lattice in (&, A\ & + & A\ €)* given by V2 (Zv, ® Zi5, D Zv, B
25, Ze,/ V2 }. Then it is easy to see that a,(Sp,(Z)) leaves L stable.

Then we recall from {1} that a modular parabolic form of genus 2 and degree »
is a holomorphic function f on H, = {X + V-1 Y|X, Y real symmetric 2 X 2
matrices with Y > 0} so that forall Z € H,

AZ + B
CZ+ D

(£42)cwim

The associated Fourier expansion of f is given by

f(z) = N2>0 sf(N)ezw\/j TH(N-Z) (3-35)

where N in the summation above runs over all symmetric matrices N = (4 %) so

) = {det(CZ + D)}*"A(Z)

with
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thata,c € Zand b € %Z. And in [6] the associated Dirichlet series to f is given by

1
{%) &(N)
where the summation is over SL,(Z) equivalence classes of semi-integral symmetric
matrices (via the action N ~» gNg‘) and &(N) = the number of elements U €
SLy(Z) satisfying UNU’ = N.

Then via the identification U + V-1 ¥V —» X, + V-1 X, with U+ V-1 V €
H,, we have an analytic isomorphism of H, onto ®, which commutes with the
Spy(R) action in the following manner. If g € Sp,(R) then o,(gX Xy, v y) =
Xew+ V-1 vy
Moreover we deduce by an easy computation (see Example 3-1) that R = (£ €
LiIN((§(L) = L} = Zv; ® 25, ® ZV2 e;. Thus R* = Zo, D Zi5, D Ze,/ V2 .

Then via the identification of a holomorphic f on R, satisfying (3-1) with a
holomorphic f* on H, (i.e. f*(U + V-1 V) = f(X, v+ V-1 X, ), we deduce that
5p(N) = ay (f). Indeed we note here the relationship Tr(W - M) = -Q(X,,, X,,)

with
(-1 0 -1 0)
M ( 0 I)M( 0o 1/

Then we equate (3-36) to (3-2) and use the invariance of s{ ) under the action of
GLy(Z).

s{N)(det N)™* (3-36)

4. Mellin transform of F;. In this section we are going to determine R(3, f, e) for
f¥ given by (1-3) (see (3-34)). We first recall the following data in the problem.

Let Q, be a quadratic form on R*"2 and £ a Q, integral lattice in R*~2, Let ¢ be
a positive integer so that 4|¢. Let L, ) be the lattice in R? constructed in §2. Then
we consider the lattice in R* = R*~? @ R given by the direct sum £ @ L, Here
£ & L, isa Q integral lattice, where Q = Q, @ 2xy and

2xy = Q(xv + yo, xv + y0)

(see §2). Let N, = lem(z, Np).

Also recall here that £ CQ ® {e,,...,6,,,,...,¢]) (e, é,,, denotes e, , is
omitted) and thatv =V2 v,, 6 = 6,/ V2.

Let f € [To(N,), |s], séx]g (see §0 for this definition). Noting that 4|z, then the
space [[o(N,), |s], sg, s coincides with Sy, (N, Ag,y ® x)*, which consists of all
holomorphic cusp forms f: H — C satisfying f(v(z)) = (}‘QL,IsI ® x)(d,)j(7, 2)?MIf(2)

with
2 k DQ(L) _1 |.\'|-—k/2
L =1 = —
0= (3) (=52)(F)

and x a Dirichlet character mod N, and y € T(N,).! We note here that
Sas(Ny» >‘(5.ls| ® x)* is the isomorphic image of the space

L -1 2|s|
S2|.v| NL’ AQvl-‘l ® X (T)

via the map g(w) ~»g(w) (see 7 of §0).
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Thus if h € Sy (N,, B) (for any Dirichlet character 8 mod N;) then
hy(w) = h(w) belongs to S, (N., AJ}s ® xp)*, with

xo(x) = O (%)k( DQX(L))' (.__l).v+k/2.

p o

In particular we note that
D ) 3
xs(-1) = B-D( 42 )1

(here 5, = s + 3k — 2). But we note here that S, (N, B) = {0} if B(-1) = -1.
Hence we can assume that B(-1) = 1. Also sgn(Dy,)) = (-1)® (b = number of —
signs = 2). Hence xz(-1) = (-1)™.

Let ¢ be given by (1-7) with |s| > 1 k. Then we consider (1-3).

Fj(gh’, L,my, x> To(Ny)) = <7¥jm,x(z, g)‘f(z»@,rd,,l_) (4-1)

where { | > represents the Petersson inner product over the fundamental domain
Dty in H.
To be consistent with the notation set forth in Proposition 2-1, we see that n, = v.
Thus the problem is to give an explicit determination of

+ oo dr
r2B—sz{ F{A,(r'Y)m|e, L, v, x, To(N,) d)\(m)} =
f" fc)(Q.)o/O(Q.)oan(c.)) A4, o(NL) ~

@2)

for 8 so that Re(8) > 3s,. We note here F{g|- - - ) has weight s, relative to R,
(see [II, §7)).

The computation of (4-2) will be accomplished in a series of steps starting with
(2-19). Then substituting in (4-2) and assuming that we can change the various
orders of integration, we deduce that (4-2) equals

6=y lrl"'_'{ 2 x(ne(r, s, ’)}<G|s|( 3G To(NL: ) dap i,y (4-3)

rex- v mod ¢
with

+
¢(V, 5, r) =f pZS—Jz f 2
0 O(Q1)0/ O(21)oNTHQ) (€ L|Q(6£) =2r)
JEZ

h (mA,(p7)[E+ (it + v)o]) dk(m)} % (44)

The procedure is first to evaluate (4-4) and then to show that the various changes

in order of integration can be done.
We recall that 4_(X) = O(X, e,,., + V-1 ¢,,,)™°> (on Q) is used in Theorem
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2-1. Then we have

h_(mA,(p)[¢ + (jt + »)v])
(EeL10@8H =2r)
jez

~pr S (v VT ot en)] @)
(§eEI0EH=2r) P
JE

But then we recall the formula

S ( 1 )m - @rV-1)" +2°° rm—lezw\/:iwr, (4-6)

fez \w+! (m-1! =5
with w € C so that Im(w) > 0. Hence we deduce from (4-5) and (4-6) that (4-5)
equals
Q2aV-1)*

(p1)™ {
(52 = D! S geriowsn=2r. 0 <0)

o 2/PDIMQ (mte, ) }

. Isz—l(eZ'rr\/j v/t 4 (_l)Sze—Zw\/—_l Iv/t)' (4_7)

At this point we make precise the normalization of measures used in the ensuing
discussion. First we fix a Haar measure do on O(Q,),. Then we choose O(Q),),
invariant measures on the hyperboloid

L, n L =(Z € L|Q(Z Z) = w, Q(Z, &) < 0} = 0(Q\)e/ 0(Q1);",
with 7,, = §,,, + swv,,,, in the following manner. We recall from [I, §5] that the
map
(P, ¥) > A i (PINY(Y)[ 8,41 + 3w0041 ]

is a diffeomorphism from R} X R*~*to T, N L,. Then we let dy, be the O(Q,),
invariant measure on ', N L, so that du, = dp/p ® dY (see [I, §5]). Then for T,
we let dv, be the Haar measure on O(Q))s~ so that do = dv, ® du,,

Let d\ be the O(Q,), invariant measure on O(Q,),/ O(Q,)o N T*(Q) deduced
from do and the counting measure on O(Q,), N T'*(Q).

LEMMA 4-1. Let

G, (p,m) =2 {
131\ ((€L|Q(48)=w, Q(f.e) <0)

form € O(Q))pandp > 0.Ifp > D > 0, then

G, (p, m)d\(m)

e2mp/NQ (mé.e,.2) } J52-1

fO(Qn)o/O(Qn)oﬁ r4(Q)
< Cvol(0(Q))g)M(Q,, £, w)p~:* VS, (p, w)e ", (4-8)
where

w(k—5_~‘2)/2 Ifk > 6,

S.(p,w) =
(. w) Aw™/Sp + Bw:/2+1/2 ifk =5,
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with vol( ) taken relative to the measure v,, M(Q,, £, w) the Siegel mass number
defined in §0, and A, B, a and C certain positive constants depending only on D.

Proor. For fixed ¢ € £ we consider the sum
SV [ lg2nip/0Q(mteer), (4-9)
I>1
But by using classical arguments (Maclaurin integral test), we deduce that (4-9) is
g g
majorized by
P2 Q(mé, ea+2)|-sze(—1/2)w(p/t)IQ('n£,ea+z)I‘
Then we consider the sum
p‘-"z 2 IQ(mg, ea+2)|_SIe(_l/2)"’(p/’)|Q(m€’ea4-2)l. (4_10)
{£€L|Q(E8) =w, O(£,e) <0}
Then we deduce

[ G,(p, m) dN(m)
O(Q1)o/ O(21)oNTHQ)

h(w)
< p{ 3 vol(0(Q)E /0@ N rL«z»}

i=1

. { f |Q(mTw, ea+2)|-Sze(—1/2)vr(p/l)lQ(mTw,e.n)I dll-w(m) }, (4_1 1)
O(Q1)o/ O(Q1)5”

where vol( /) is taken relative to the measure induced on the homogeneous space

0(0)); /0(2)5 N THQ) = 0(Q))5/0(Q)g” N 8,I ()8!
(with 8, € O(Q,), so that § (") = T,) by dv, and the counting measure on

0(Q)5- N 8,T(Q)s,".
We then note that

vol(0(Q)) /02 N TH(Q)) = vol(0(Q,)¥) '

#{o(Q)f nTHQ)}
Thus we deduce that the right-hand side of (4-11) equals
M(Q,, £, wivol(0())7") [ o UQ(m - T,, €,,5)) du(m), (4-12)
O(Q21)o/ O(Q1)o”

where Y(x) = x=V/D7/9% for x > 0.
Then the integral in (4-12) equals

o l }—’l $2 ix_
flt*—4xn+{s(w’ W, x)} exp(—zwt xlS(W’ w, x)|)x aw pat (4-13)

with S(w, W, x) =1(w — Q(W, W))x? — 1. But since Q is positive definite on
R*~4 (= L,), we obtain, by using polar coordinates in R* ™%, that (4-13) equals
f (zx* + 1)™ exp(—lvr-e l(zx2 + 1))x‘2(z + w)*=9/2 4, ‘-15 (4-14)
z2>-w 2t x x
x»0
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Then, letting v = zx? above, we have that (4-14) is majorized by

J

zZ2-w
v>0

(v + 1) 2%/ exp(—%w’%z'/z(u'/2 + v"/z))z“Z/z(z + w)(k_G)/z% dz.

(4-15)
Then since v'/2 + v™1/2 > 1, (4-15) is majorized by

[f exp(~%ﬂ1—’zl/2)z"‘2/2(z + w)(k—G)/2 dz}
zZ2-w t

. { [ (o4 pon dv]. (4-16)

However s, > 0 and k£ > 5. Thus both integrals above are convergent. By using the
asymptotic properties of the incomplete gamma function, we deduce that the first
integral in (4-16) is majorized by
wk=5=52)/2p 1 -apw'/? for a some positive constant if k > 6,
(Aw™/%p + Bw=2/2*1/2)p-le=p»'  (if k = 5) with A, B, a constants.
(4-17)
Thus we deduce (4-8). Q.E.D.

PROPOSITION 4-1. Let the same hypotheses hold as in Theorem 2-1. Then for each
p>0

fo  Tguu(z A(p")m) dA(m)
(@1)o/ O(21)oNTHQ)

(B EED 1 (e

. { { Ezzl . |FH+1=42G, (2, 5L, To(N,), r)M(Q,, €, 27)
r r<

A2 rroovern}) ) @

131

where G(x, [, t) is the Gauss sum, given after (2-11), and
+
whpn =2 " k(2VZ a2 Vi \w - n* 9 (4-19)
0 t

in terms of the K, Bessel function.

PrROOF. To show that the integral in (4-1) exists, we must prove from (4-8) with
p = D > 0 that

LoE L G s T, M2 .20
r W<

-vol(0(Q,)™)e 1S, (p, 2r) < oo. (4-20)
But for z € H, the lower half-plane, we know that Gz, séx, To(NL), r) is
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majorized by a series of the form
0z, |s) = 2> lmyz + my| ¥
(m,my)) €22 — (0,0}
Hence (4-20) is majorized by the product
[ = m=m(0, £, -m) vol(0(Q);)e ™ Su(m. p) | Oz, Is). (4-21)

m>1
As a simple application of the definition of v_, we can show easily that
vol(O(Q))F=) = |m|>~*/? vol(O(Q,)3). With this in mind we deduce that the
series in (4-21) is convergent. It is also evident that Q(z, |s|) is a convergent series.
Thus the integral in (4-18) is finite. Then we deduce that the left-hand side of (4-18)
equals
() %’ﬂ_/%) {1+ (=1)x(-1))2" !

times

+ 00
3 177Gz, 5§ To(N1): 1)
r>1

. [ > 127 G(x, 1 1)

1>1 O(Q1)o/ O(21)oNTHQ)

{ [ exp(z'anp Q(mé, ea+2))} } d\(m) } (4-22)
{EELIQ(48)=2r, Q4 &) <0)

However using an argument similar to the one in (4-11), we deduce that the
integral in (4-22) has the form

M(Q, 2,27 (0@ |, exp(27L. QT 3, ,.) iy ) .
(4-23)

Thus it suffices to evaluate the integral in (4-23). By using an argument similar to
the one in Lemma 4-1, we deduce that the integral in (4-23) equals

(Q1)o/ O(QE->

+ +
f * {f * exp(— V2 w%(x + u"x))d—;C }(u - r)("“s)/2 du. (4-24)
r 0

By using the integral representation of the K, Bessel function we have the desired
result. Q.E.D.

THEOREM 4-1. Let k > 5. Suppose the same hypotheses hold as in Proposition 4-1.
Let f € Sy (N, Aé.lsl ® x)* (with x a Dirichlet character mod t). Then consider the
Fourier expansion at oo of f given by

fD)=3 a(f)emV

n<-1
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Then there exists a positive number p, ;. (depending only on s, and k) so that for
Re(g) > p’k,sz

+ 0

28—s. -1 @
p 2 F(A,(p")m|o, L, v, x, To(N, d}\m}—
fo {f0<Q.)o/0(Q.)oan(Q) AAalp™)m| o(NL)) dN\(m) P

= o, {# 7 T(BI(8 + 2 — 3k)7172*} G(x, 1, )L(X, 28 + 1 — )
> a,(f) M(Q,, £, 2n)|n|™, (4-25)

{n€Z,n< -1}
where c, is a nonzero constant independent of 8 and t.

Proor. Forp > D > 0, we deduce from (4-8) and (4-18) that

+
fD w{ 2 |rllsl.'-l_kﬂ'(;lﬂ(z’ sé:x’ I‘O(NL)’ ’)'

(r€Z,r<-1}

-M(Q,, £, 2r)e-aPlr|I/sz(p, 2r)} pzso—(l+:1)£

p
< 0z, |s|){j:°°{ ORI LA

{r€Z,r<-1}

"M(Q,, £, 2r)e 1S, (p, 2r)}p2§°-<'+s=>% } (4-26)

where 8, = Re(8). Then using the explicit form of S,(p, 2r), we deduce that there is
a positive constant § ; so that

S MR 2M(Q,, £, 2r)

rezZr<-1

+ o0 12
([ e st e )
D p

<[ 3 e, 20|T0s -~ s @)

{r€Z,r<-1}

Then the series above converges if 8, > §; , (5, some positive constant), and the
T function is defined if 8, > 3(1 + s,).

On the other hand if 0 < p < D, then we cannot apply (4-8) directly. However
adapting the argument in Lemma 4-1, it suffices to study

fo"{ S b, e, 20 3 1‘=-'¢(1,p,r)}}p”°£.

(r€zZ,r<-1) 1>1 p
(4-28)
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Moreover from [7] we know that for Re(3) > k — 4

+ o0 a_d£
fo (I, p, r)p -

- 2j;+°°(u - r)<"‘6’/2{f0 (2\/5 Vi ) %] du

- za—l(iﬁl’) {r(: )}2{f w2 — N

- 23—1(@)“@(;5)}2. B(33 +2 — 1k, Lk = 2)(r) V24272, (4-29)

where B is the usual Beta function.
Then using (4-29) we deduce that (4-28) is majorized by

s S b, B,zr)}{z pieel - @30)

{r€Z,r<-1} 151
where g is a function dependent only on 8,. However as above, we see that there
exists &', , a positive number, so that if 8, > §; , the series in (4-30) are conver-
gent.
Summarizing the arguments above, it follows that there exists a positive number
P s, SO that if 8, = Re(8) > p, , then

f+°°{f (2, A(p™)m)] dX( )} 201 &
ol 2> P )m m 0~ 52 T
0 O(Qn)o/O(Qu)oﬁI"“(Q) Toox p

< 0(z Is| - B3o), (4-31)
where B is a function which depends only on 8§,
It is well known that for f a cusp form of weight |s|

[ 120G, Ishl tm 22 dx dy < oo (4-32)

(Ve
where D, | is the fundamental domain of To(N,) in H.
Thus (4-31) and (4-32) allow us to conclude that integration of the function

@) T2, A7 )m) (4-33)
can be done in any order over the domains in question.
Then we let 3 = 28 in (4-29). Finally we note that

<G|s]( ’ S(lj,x’ To(Ny), ")If( )>"")1’0(N:.) =d- |’|l_lsl_ar(_f), (4-34)

with d a nonzero constant independent of f and r.
Thus from the above arguments, (4-25) is a valid formula. Q.E.D.

S. Fourier coefficient of F;. Using Theorem 2-1 we can also determine certain
Fourier coefficients of the function F{( |g, L, v, x, To(N,)). We again have the
same hypotheses in effect as in §4. Then if F( |, L, v, x, ) is given by (4-1) we let
T, be the corresponding function on the tube domain R, given by the relationship
in (3-33). Then we know that for 2 € N(e)*
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ag(T/je) = V270 fF E(N(S)|@, L, v, x, To(N,))e V-1 2@5) 45
Nn

(5-1)
where Fy, is a fundamental domain for the lattice 9t in L,. As in §4 we start with
(2-13) and substitute in (5-1). Then assuming integration can be interchanged with
summation we deduce that

ag(Tle) = AN

rex-

{ S 0¥ 2D KGO TN Moy 5D

v mod ¢

where

Y(r,Q,r) = e V20 Rerd) h (N(S)[¢+ (e + ")U])}

Fw{ (¢€L|QE)=2r)
. e—2w\/j o@.Ss) g9 (5-3)

with A (X) = Q(X,e,,; + V-1 ¢,,,)"2(on ).
Recall the explicit form of 9 given in Example 3-1. Then an easy argument
shows that for fixed £ € £ the set

{&+ (jt + »)o|j EZ)

= {(M((E )V e+ w)iglnemp =0 4 - 1

r

where Q(¢, §) = r < 0 and d; is the smallest positive integer such that (¢ d,)Z =
{(Q(u, &) € N/ V2 }. We note at this point that the number d, also represents
the number of N; N T'“(Q) orbits in the set (¢ + (jt + »)v|j € Z).

Then following the discussion in [II, §5] we let /; = £/ Q(¢, £). We recall that
Nf = {N,(W)|Q(W, § = 0). Then we choose Haar measure dW, on Nf so that
s =dW, _, ouo-o ® d Then it follows by the discussion in [II, §5] that
volume(Fy) = ¢ - volume(Nf|Nf N TX(Q)) - d,, where the first volume is taken
relative to the measure dS on Fy and the second volume is taken relative to dW,
discussed above (here counting measure is used on discrete groups).

Hence we have that

me{ > h_(Nl(S + (fﬁ_”)(_\/j )%+ ,u)[E])}‘e‘z"\/‘-' (59 4g

r

0 if V2 - ¢is not a rational multiple of £;
volume(N§{/N§ N TH(Q))

=] 4~

-2 {f_;w h_(N,(ule + (P’ :' P)(_\/E)g)[g])e-Zw\/—_luQ(le,n) du]

p=0

if V2 ¢is a rational multiple of Q. (5-4)
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Then if V2 - £ is a rational multiple of © we make the change of variables
w=u— V2(t+ ») in each summand in (5-4) and deduce that (with
¢ = aQ/V2) the right-hand side of (5-4) equals

dg—1 .
volume(Nf/Nf N TH(Q)) - { > exp(—271\/_——l (ﬂ :' ”)\/5 0o, SZ))}
j=0
{J TP b+ ue o)V @/00ED du . (5-5)
However if £ = a®/V2 with « € Q then the summation in (5-5) becomes
di—1 .
exp(—-Zw\/—_l V%Q(sz, sz)){ S exp(—2w\/j %{iQ(Q, 92)})} (5-6)
Jj=0 (3

where Q(2, R) is the smallest positive integer so that Q(Q, N) - Z = {Q(u, Q)| p €
N}.

Then the sum in (5-6) is 0 if d; does not divide Q(£2, ) and is equal to d; if d,
divides Q(2, R).

We know that every element & € * can be expressed in the form 8- @, with
B € Z and Q, a primitive element in N* (i.e., if L,/ m € N*, then m = = 1). Then
let £=(a/V2)-(BR) with « €Q and ¢€ L. If a = m/n with m and n
relatively prime integers then, since £, is primitive, it follows that n divides 8. On
the other hand we recall that

(t-dg,va)Z={Q(p afQ)p€N/V2 Y} =a- {Q(p BU)IprERN/V2};
if d,g,v3 divides O( By, N) then m divides 2¢.
LEMMA 5-1. Let @ € N*. Let £ € £ with Q(&, £) = r. Also assume that V2 - £ =
mS/n with m, n relatively prime integers. If d, divides Q(Q, R), then
(v, Q1) = c,(m/n)' " dge(Ly)
. [exp(—2w\/ -1 (mv/nr)Q(2, Q) + (=1) exp(27V-1 (mv/nr)Q(%, 9))]
(5-7)
where c(L;) = volume(N §/N& N TE(Q)) and where c, is a nonzero constant depend-
ing only on s,.

PrOOF. The argument follows from the considerations above and a statement
identical to (5-7) in [II, §7]. Q.E.D.

COROLLARY TO LEMMA 5-1. Let the same conditions hold as in Lemma 5-1. Then

e 0 ifm+#2,
S x()¥(, 9 r) =1 x(n) G(x 1, e {x(-1) + (-1)"}
r=0 (LR/V2 n)2t/n)' "dQ/NV2n ifm =21
(5-8)
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Proof. We essentially evaluate a Gauss sum and use the comments preceding
Lemma 5-1. Q.E.D.

We note here that from comments in the beginning of §4, x(-1) = xz(-1) =
(=1)’2. Hence x(-1) + (-1)> = +2 % 0 above.

Since every p € R/ V2 satisfies Q(p, £) = 0 mod 7 (see Example 4-1) it follows
that the lattice £ /¢ is a subset of V2 R*.

THEOREM 5-1. (i) Let @ € N* N W and assume that @ & £ /V2 t. Then ag(T/le)
- 81) Let @ = m§/ V2 t with £ a primitive element in the lattice £. Then
a(Tje) = G 10| S X0 araeon(D | (59
where ¢} is a nonzero constant independent of , t, x, and m.

PrOOF. Part (i) follows directly from the Corollary to Lemma 5-1. Then in (ii)
with @ = (m/ V2 t) - ¢ with ¢ primitive in £, it follows that & = 2:Q/ V2 rerRif
and only if »|m. Then we apply (5-8) and the comments preceding this theorem.

In order to justify changing orders of integration above, we must show that

>

w&To(uyteg) N Y(P)\To(u112)

[ 2z | { > x(v)Mw(N.(S),B,r,V)}

rex- v mod u u,

Fy,

- Isl
T () e os <
(5-10)

But we can use (4-6) again and substitute the right-hand side of (4-5) for
M_(N,(S), £, r, v) and deduce that (5-10) is majorized by

1 Is|
52 2 2 Ir'|-"|_|{ lsz—le—lﬂlQ(€,9a+2)|] - ds.
chR wE - reXx- ((€L|Q(£8)=2r) ¢,z +d,
I>1
(5-11)
Thus we have by the same reasoning as in (4-9) that (5-11) is majorized by
t=1vol(Fyp) Q(z, |s]) > |,|Isl—l{ | e—a'lQ(fvf-’a+z)|}‘
rex- {¢€EL|Q(8)=2r) Q(g’ea-l—Z)
(5-12)

Thus we can consider the double series in (5-12). However we may assume that
0%, 8 = |I£, |1 — ||£|% with ||£, ||* a positive definite diagonal form with positive
rational entries and ||£_||> a positive square. Hence we have that the inner series of
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(5-12) is majorized by

1 % ~a’||§_
2 (m) e Il (5_13)

(¢€Z 2 gL 1P 6P =r)

Hence (5-13) is majorized by
[ 1 $5/2

(geeze-2y [ 4117 + 7]
But (5-14) in turn is majorized by
, 1 /2
/%" + (———) exp(-a'V|| X | + |r] ) dX. 5-15
I S R p(-aVIXIZ+1r] ) (5-15)
Then the integral in (5-15) is dominated by
2 e 52/2
e~ f (——l—) wk=4 gw, (5-16)
0

w? + |r|

exp(—alIgL 1P + |7] ). (5-14)

which, in turn, is majorized by

r(2==0/2 exp(~a’ V]r| ). (5-17)

Thus in any case, (5-13) is dominated by

|r|? exp(—a’\/m ),

for ¢ some number independent of r. Finally the double series in (5-12) is
majorized by

S qrjett exp(—a’\/m ),
reXx._
which is clearly convergent.

Then following the same type of arguments as in §4, we deduce that summation
and integration can be changed in (5-1). Q.E.D.

REMARK 5-1. If @, = (m/V2 )¢, and Q, = (m/ V2 1), with £, and £,, TX(Q) N
O(Q,) inequivalent primitive lattice points in £ with Q(§,, £,) = Q(&,, &,), we have
that ag = (T/e) = ag (T/le).

REMARK 5-2. By using the expression for ag(T/|e) in (5-9) we deduce that

1
2 aﬂ(Tfle)_ o(%, Q)_g
€ (R*}rt0)nocen) e(Qe)

=7 Gl LOL(x, 28+ 1 —5) X a,(f) M(Qy, £, 2n)|n|™
(n€Z|n< -1}

(5-18)
This verifies the computation made in Theorem 4-1.

6. Examples of Euler products associated with Dirichlet series. We have con-
structed in Theorem 4-1 a Dirichlet series of the type discussed in [10]. The special
feature of this series, aside from the I factors, is that it has the form of the product
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of an L function and a Dirichlet series, which can be expressed essentially as the
Rankin convolution of two other Dirichlet series. That is
2 a,(f) M(Q,, £, 2n)|n|*
n<-1

is the Rankin convolution of X, _; a,(f)|n|™, the Dirichlet series D(s, f) associa-
ted to f, and of =, ., M(Q,, £, 2n)|n|™® Siegel’s zeta function, { (Q,, £, 3) associa-
ted to the quadratic form Q, and lattice £.

A very basic question is to determine what type of Euler product property the
series

2 a,(f) M(Qy, £, 2n)|n|*
n<-1
has, given certain Euler product properties of D(3, f) and § (Q,, £, 3).

The dimension of the space R ® £ is critical at this point. The reason is that
D(3, f) has an Euler product when the weight of f is even, i.e., the number |s| is
integral or s = k /2 mod 1 for k even. However if |s| is an odd integer divided by 2
then f corresponds to a half integral automorphic form; then we must use the
modified theory of Euler products developed in [10]. It is interesting to note that
the parity of k is reflected in the functional equation of { (Q,, £, 8). For instance
when k is odd and k > 5 (recall dim(R ® £) = k — 2) then { (Q,, £, 8) satisfies a
functional equation of the following form. Let ¢(Q,, £, 8) = 7#*T'(3)¢ (Q,, £, 8).
Then

@(Q1, £,8) = (-D* 2D, )| %p(Q), £*, k/2 — 1 — 3).

However if k is even, the functional equation is more complicated involving the
zeta function {, on the hyperbolic lattice points (see Satz 2 of [13]).

The first point to investigate is what sort of Euler product property the Dirichlet
series {_(Q,, £, 8) has. We start with the example in the case k = 5 (see Example
3-2).

We then consider the space R®, the orthogonal complement to €, A €; + &, A\ &,
in A2(R?) relative to the quadratic form ¢ defined in Example 3-2. We then let Q be
the quadratic form on R® defined by Q(a, 8) = ¢*(a, B), i.e., $* is ¢ restricted to
(E,NE+ e NeEYt.

Then we consider in R® the lattice given by Ly, =£ & L, with £
=V2 M[Zv, ® L6, ® Ze,/V2 ] and Ly, = ZNv ® Z5 (where 6 = 6,/ V2 and
v =V2 v,), and where M, N are positive integers such that M divides N. Then
Ly 5, is always a Q integral lattice and is a Type II lattice if and only if M is even.
Then we note that

o({y € Spx(Z)ly =1, mod R})(Ly ) = Ly if N|R.
Also we note by direct computation that

Jete

(LN,M) = LN,M'

g € SLz(Z)}
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In fact we know that the symmetric matrix

g = ( a b/ 2)

b/2 c
with (a, b, ¢) € Z> can be identified to the lattice element
Xg= {a02 — ¢y + bey/ V2 }
in such a way that via this identification
a b/2

g(b/z ! )g'

(with g € SL,(Z)) goes to

gl 0
e

Thus we can classify the o,(SL,(Z)) orbits in
L =V2 M[Zo,®Z5, ® Ze,/ V2 |.

The question just reduces to a classical problem in the theory of binary quadratic
forms.

First we know that the discriminant of the matrix

a b/2
X =
(b/ 2 ¢ )

is given by b, — 4ac = 8(X). Then if (a, b, c) € Z? it follows that §(X) =0 or
8(X) = 1 mod 4. Moreover such an X is called primitive if the greatest common
divisor of a, b and ¢ equals 1. Then the classical theory of binary quadratic forms
says that for X primitive and 8(X) < 0, SL,(Z)* = the isotropy group of X in
SLL(Z) is

{a02 — By + bey/ V2 }}

a group of order 6 if 6(X) = -3
a group of order 4 if §(X) = -4
a group of order 2 if 8(X) # -3, -4.

PROPOSITION 6-1. (i) Let N be divisible by 4. Let L = Ly ,,. Then n,, the exponent
of Ly p, equals the least common multiple of 2M 2 and N. Also the discriminant Dy,
of Ly py is AMSN?. If M is even and 2M?|N, then Ly, ,, is a Type 11* lattice.

(ii) Let M be even and 2M?|N so that n, = N.

Let f € Sy,(n, Gy @ x)* with s > 2k (see §4) and with x a Dirichlet character
mod n,. Let F, be given by (4-1) and let F}(U + V-1 V) = T(X, + V-1 X,)) =
F( g")[g( g V-1 e, )f'? where the point U + V-1 Vin H,, the Siegel space of genus
2, corresponds to the point X, + V-1 X y = g(V-=1 e,) in R (where the symmetric

matrix
roor
1 2
U =
r, r;

corresponds to the vector Xy, = ryv; — ry6; — r,V2 e;). Then F} satisfies the func-
tional equation
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F}((AZ + B)(CZ + D)) = (det(CZ + D))F}Z) (6-1)

([&ts)

C|D

belonging to the group in Sp,(Z) generated by Sp,(Z) (with N|R) and
0

for any

g
Sl ={ o] (&)

PrOOF. The proof is direct from the remarks in Example 3-2 and (3-33). Q.E.D.
REMARK 6-1. The Dirichlet character (mod n,)

geE SL2(Z)} (withs, = s + 1/2).

el —1\IsI-5/2
Ass(8) = (-1)@D/® 5(—)

6
(see the beginning of §4).

From Proposition 6-1 we also deduce that F}(Z + N-U) = F}(Z) for any
Z € H,, U=(, %), a symmetric matrix with (a, b, ¢) € Z. Thus we have the
expansion

FW) =3 Sp(U) exp(277\/—1 % THU- W)) (6-2)
U>0
where U runs over all symmetric positive semidefinite matrices

(b;2 biz)

THEOREM 6-1. (i) Let Ff* be given as in (ii) of Proposition 6-1. Then S,;.( U)y=0if
det(U) = 0. Thus F} is a cusp form on H, relative to the group Sp,(Z)p (discussed in
(ii) of Proposition 6-1).

(ii) Let

with (a, b, c) € 7°.

U= (b‘/12 biz)

with det(U) > 0. If either a Z 0mod M or ¢ Z0mod M or b 2 0 mod M, then
sF;.( U) = 0. On the other hand, suppose that U = MjU,, where

U, = ) by/2
by/2 ¢
with gcd(ay, by, co) = 1 and j a positive integer. Then (up to a nonzero scalar)
_s s3—1
S5(U) = NG 1, M) S X0 a e J 6
{»|»|/}
PRrROOF. The first observation is that if

W, Wy a b/2
W= G'=
(Wz W3) € Hy I (b/2 c )
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(a semi-integral symmetric matrix), then Tr(W - 9) = -Q(X,, Xg.), where

7= )= (et 9)

Then equating (6-2) to (3-2) and using Theorem 5-1, we deduce the results of
Theorem 6-1.
REMARK 6-2. We note thatif M = 2 and N = 8§, then

A (x) = ( % )( —Tl )M—S/z.

If we let g € S,(T'o(8)), then

- _1\2lsI\ *
fw) = 5@ € sz.s.(r()(s), () )

(see the beginning of §4). Then we apply Theorem 6-1 to f. We see that
—1\2lsl 2\/ =1 \IsI+5/2
x0=(5) er=(5)5)

xJ\ x
hence G(x, 1, 8) # 0. Moreover S,,(I'((8)) is a nonzero space (for almost all
positive odd integers 2|s|). Thus there is a nontrivial example satisfying Theorem
6-1.

We recall that a number d is called a fundamental discriminant if d is nonsquare,
is = 0 or 1 mod 4, is not divisible by the square of any odd prime and is either odd
or = 8 or 12 mod 16. We know then that any number, which is not a square and
=0 or 1 mod 4, can be written uniquely in the form dm? with m > 0 and d a
fundamental discriminant.

We let h(m) = the number of SL,(Z) equivalence classes of primitive semi-in-
tegral symmetric matrices with discriminant m.

Let

3 ifd=-3,
w(d) =42 ifd= 4,
1 ifd+# -3, -4
PROPOSITION 6-2. Let Ly , be given where 2 and N satisfy the hypotheses in (ii) of
Theorem 6-1. Let d be a fundamental discriminant and define for Re(3) sufficiently
large

1
A(f. d, Ly, 8) = > Sg(2 U)mw( o) (6-4)
(U) with 8(U)=dm? €
m>1

where { } is over all SL,(Z) equivalence classes of semi-integral symmetric matrices
(via the action U — gUg") satisfying 8(U) = df>.
Then for Re(3) sufficiently large we have the equality

A(f.d, Ly 8) = G(x, 1, N)| d|*N - L(X,28 + 1 — s5,)
c 2 @ () M(Q,, £, 4dn?)|n|*  (6-5)

(n€Z, n<-1}
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where M(Q,, £, 4dn?) is the Siegel mass number given by

1
> h(dg?) :
{4.9In) W(dqz)

PrOOF. We apply (5-8). It then becomes a matter of explicitly determining
M(Q,, £, 4dn?) in this case. Then we note that the number of distinct SL,(Z) orbits
in the quadric of semi-integral symmetric matrices of discriminant equal to dn? is
2(qlq,") h(dg®. However we must assign a mass number 1/w(dq?) to those belong-
ing to the partition determined by h(dg?). Hence the result follows. Q.E.D.

We now investigate the Euler product property of A(f, d, Ly ,, 8) in (6-5). For
this we need an explicit representation of Siegel’s zeta function.

$ (0 LN,Z’ g) = 2 M(Qv Ly, ’)|’|-€- (6-6)
(rezZ,r<-1)
Let

R(QI’ LN,Z’ d’ §) = 2 M(QI’ LN,2’ 4dm2)m-é'
m>1

However we recall the relationship

M=M.q 11 {1—(5)1}.
p

w(dqz) W(d) { p prime, p|q} p

M(Qy, Ly, 4an?) = D) 2{ il (1—(5)1)}4.

w(d) {g:qln} \ {p prime, p|q} p)p
Thus we have the following Euler product formula for R(Q,, Ly ,, d, 8)

o (- ()

wd) p (1-p®(1-p'%’

Hence

R(Ql» LN,2> d, g) = (6-7)

Hence we have that
RQu Lz d.9) = (@) /@)@ = 1{1/2{(2). )

THEOREM 6-2. Let f € Sy (N, 0)* with ¢ = )‘(lf.lsl ® x. Then f(w) =h(w) with
hf € S2|s](N , w), where
—1 2
w=0® (——) .

*

Suppose that (d a fundamental discriminant)

I
’21 ay42(f) n7° = ay,(f) I;[ {1 _ Upp_g + w(p)2p2|s|—2—2s}

(6-8)
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where N\ = |s| — 3, w, is the Dirichlet series given by

() = o0 )™

Then for Re(3) sufficiently large, the function A(f, d, Ly ,, 3) has the following
Euler product.

A(f, d, Ly, 8) = ay(f) (h(d)/w(d))G(x, 1, N)N~|d|™
| (1 hp + w24
P {] _ Upl 28 4 w(p)2 2|s|— 45}{1 _ UP—ZB + w(p)2p2|_‘-|_2_4g}

P

= () o of(£) 1) ()

PrOOF. From (6-5) we know that A(f, d, Ly,, 8) is, aside from L functions, the
Rankin convolution of the Dirichlet series given by the left-hand side of (6-8) and
by R(Q,, Ly, d, 3). Thus the problem is purely an algebraic one. Namely suppose

(1= }%)
g‘(X)=1,_,I(1 —m,-X)(1 —n,-X)

lsl

(6-9)

where

and

(1-g,-X)
8X) = 1,,1 (1 -rx)(1—1-X)

and g,(X) is the Hadamard product of g, and g,, i.e., g3(X) = 5, ¢,d,X" with
gl(X) = 2 CnX"’ g2(X) = 2 an"'
n>0 n>1

The algebraic problem is to express g5 as a product.
By following the same arguments as in [11] we deduce that

N R N | L R
iy = m,—n _l”m—n PRSI
P I4 /4 /4 p I4 P 4
Using this remark we then deduce easily that
N,(X)
2 cd.X =
Jj>»0 P"dP" p(X)
where
N(X) =1+ {[pqp q,(m, + n,) — (rp tp)}X
+ { mPnP P P + quP (rl’ + IP) tP(’nP + nP)}X2
+ {—IpqpmpnprptP}X
and

D,(X)=(1=rmX)(1 = r,nX)(1-tmX)(1 - 1,nX).
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Then substituting the required values of r,, ¢,, m, and n,, we have that N,(X) = 1
+ a,X + b,X* + ¢, X with
d ( ‘Zd) Isl-G/2) ( ‘2‘1) l-G3/2) ( d)
a, ==}, (p) === |p — w(p)| == |p* +D-U(=),
= (5) (57 o 22)p-0ra(p 4 1)y £

= —w(p)’p?I~' + w.(ﬁ)(%’) =02y, + (g)w(p)zpz""z(p + 1),

IS
I

& =~ (2 Japratp)pH-cr2,

Then by a simple and long computation we show that

—1\*
w0 = (1= (3)(5) st 0mx (1 = x + wtorp207)
with A, as given above. Q.E.D.

REMARK 6-3. The hypothesis on f in Theorem 6-2 is very important. Indeed we
refer to Theorem 1.9 of [10] when (6-8) expresses the fact that A, is an eigenfunction
of the Hecke operator T, ( p?) with eigenvalue U, (for each prime p). We consider
this matter more carefully in a future paper.

REMARK 6-4. In the Main Theorem of [10] it is shown that the Euler product

[{1 - U + alpyipt-2-2)"

p
is the Mellin transform D(8, F) of a cusp form F of integral weight (relative to an
appropriate subgroup of SL,(Z)). Thus it follows, with (6-8) holding, that

A(f, 4, Ly, 3) = ay,(f) (h(d)/w(d))G(x, 1, N)| dl_g
-N=D(28, F)D(2s — 1, F)]] {1 = A7+ o p)zpzisl*z-“}. (6-10)
/4

Appendix.
(PrROOF OF LEMMA 2-2). We give the proof in steps (I) to (V).
(I) We let

I(x, 1, Z) = 7ox((G, 8) ' )@)(xv + 15 + Z).
By the continuity property of ¢ we see that / is a continuous function. Moreover we

know from [II, §1] that
v
N1Z)*+ x>+ 2
with 0 = 5/2 + k/4 — | and a a constant which depends only on (G, g) (here we
recall that X = xv + 16 + Z €, and that 3||X,| < [|X|| < 2||X,])). Thus we
easily deduce that / is an integrable function on R*.
Also we know from Lemma 1-4 of [II] that
[i(x, 2, Z)| < (e} + x*+ 2+ Z|P)° (A-1")

with «, a constant depending only on (G, g).

li(x, 1, Z)| < 2xt + Q(Z, z))""'e-«lzx'w(zzn( ) (A-1)
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From Theorem (1-5) of [II], we recall that I/(x,t, Z) satisfies the Poisson
Summation formula (see 11 of §0) for the lattice L if s > %k.

Moreover using (A-1") we see that for fixed Z, the function (x, t) ~ I(x, t, Z) is
integrable when s >3k + 1.

Thus (a’) of *-Poisson Summation Property is satisfied. Moreover for n €
£,(Q), the function Q (X) = I(x,t, 1) (with X = xv + y¥) satisfies (a) of the
*-Poisson Summmation Property relative to L, ,, .

(IT) On the other hand we know that G = w,'G’w, in SL,. By assuming that
@ € Eop(s? — 25, 5, 5,, 5,) We see that

7o ((G, g)_')((p)[uv +ro+Z] = c,[w%((G’, g)_l)(q))]‘[rv + ub +MQ(Z)]
for a nonzero ¢. By Fubini’s Theorem
i(x,1,Z) = [ ™2y, 1, Z) &y (A-2)
R

where

Jjr, t, Z) =f Ten((G', 8) " )(@)[uv + yi + W]ez"\/‘_”“‘*Q(W'Z)] du dw.

Thus /(, ¢, Z) is the Fourier transform of j( , ¢, Z). From the preceding material it
is clear that /(, ¢, Z) is integrable in x (when s > k /2) and hence we deduce that

F(mon((G. &) ")) (@)[uo + r6 +2Z] = fk Ux,r, Z)e*™V 1% dx = j(u, r, Z)

(A-3)

at all points 4 € R where j( , r, Z) is a continuous function. But using (1-13) of
[II, §1] we see that for x > 0

li(x, r, Z)|
1
((V)ERXR2xy + 0(v,Y)>0}| || Y]* + y* + x?

< °e«x(2xy+ o gy

oe-a[2xy+Q(Y,Y)] ‘b’} dY

f+°° 1
R-2 | y=—oeryvy2x| || Y12+ p2 + X2
(A-4)

But the inner integral above by the change of variables y = y'~Q(Y, Y)/2x
becomes (m = Q(Y, Y))

f+co
0

Hence |j(x, r, Z)| is majorized by

O axy p 1 °
AN ay}{f-t“[||¥||2+x2]dy}' (A5)

Then by the change of variable u = 2axy’ in the first integral and Y = xZ in the

1
1Y)+ x2 + (» — m/2x)°

} e dy. (A-5)
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second integral it follows that (A-6) is majorized by C,x~***/27! (where C,
depends only on (G, g)). Thus
lj(x, r, Z)| < C)|x[**/2! (A-7)

for x away from zero.
Thus we deduce that j(, r, Z) is continuous away from the origin. By the growth
property in (A-7) and (A-1) we deduce that the function

x ~> 7or (G, 8)” ) @)((xuy + 8)v + W)
with W € L, ® R6 and with § € Q satisfies (b) of the *-Poisson Summation
Formula Property relative to L, .
(IIT) But by using (A-1) and (A-3) we deduce that if |s| > k /2, then
v
NZ|> + ¢ + x?

(4

[F7\(- - - Wuo + 16 + 2Z)| <f dx
R

1 (s/2+k/4)—3/2
_ . A-8
[||z||2+t2] 49
Thus we deduce from (A-7) and (A-8) that (for |x| > 1)
1 (s/2+k/8)~3/2
F(- - )xo+ 5 +Z) < g(x)| ———— A-9
FC ) P < & )[ S (A9)

where g is a continuous function of x, equal to |x|***/2~! when |x| > 3. Then
taking square roots of both sides of (A-9), we find that (aside from a finite number
of terms)

2 IFC ) E+ e+ o) (A-10)

¢el
BE Liuyuy)

is majorized by a series of the form

zm['

nez=(0) m? + ||g
(m£)€eZk~1- (0,0}

+ )

(mg) €z~ - (0,0}

](:+k/2—3)/4

> gln).  (A-1D)

m* + || n€Z-(0)

] ](Hk/z—s)/z

However (A-11) is a convergent series when s > 3k/2 + 1.

Then if
a, b
=7 V| e SL(Z),
Y [Cy d-, Sz()

we see that g(x) = F,'(N)[(1/u,)y ' (xv) + W]is integrable with W € R*~2 (using
(A-7) if a, # 0 and (A-8) if a, = 0 with s > %k + 1). Also using (A-1"), (A-3), and
an argument similar to that in (A-8), we see that g is a continuous function.

Thus (¢’) of the *-Poisson Summation Formula Property holds for
7on((G, £)")(f) (When's > 3k/2 + 1).
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(IV) Then we consider the function (Z € R¥2)
(Y N 7or((G, )" W@INZ + po/uy)

’
= a7 G, -1 to+ ut +7Z
o] ™G 8N ]
dy P’
cexpl2aV-l | -2 2 | drau  (A-12)
¢ U G
where
a, b
y' =] dy € SLy(Z)
Y Y

with 7., a number of modulus 1 depending only on y (¢, # O here).
Then using (A-1") we deduce that the left-hand side of (A-12) is majorized by
(whens > k/2 + 2)

1
el e

The latter integral is convergent when s > k /2 + 1. Moreover using the majoration
given by (A-13) we see that Z ~» 73(Yy ) (7er((G, 8) " N®)IZ + pv/u,] is a con-
tinuous function in Z. Also by applying (A-13) we deduce that

_ - 2—(s+k/2)/2
|75 (v N7 (G, &) W @) [ Z + po/u]| < (1/1e,)(1/ () + 11Z1%)) :
(A-14)
Thus the function Z ~ 72 (y "W 7o((G, 8) " W@)Z + pv/uy) is an L? function
on R*~%(whens > k/2 + 1).
On the other hand we note that the integral in (A-12) can also be written in the
form

d 2d
exp(—Zw\/——l —Cl o(z, Z))Lz mm(n(c—y)(G, g)‘l)

Y

(s+k/2-2)/2

! dt du. (A-13)

a + || Z|? + 2+ u?

“(@)[tv + ut +Z] exp(—2w\/—_l uu/uzcy) dt du. (A-15)
The integral expression in (A-15) is simply the Fourier transform of the function
(£, u) (- - - W@)[to + ut +Z] at (0, —p/ux,).
Then using the same argument as above we note that

ﬂm(n(2dy/cy)(G, g)_l)(qa)[tv + ut +Z]

= CI”?’K(((_zdi/cy (l))’ l)(G’, g)_')(tp)‘[uv + 16+ My(Z)]

with ¢, some nonzero constant. Then we let

wor ([, ) o)

. ((p)[xv + yo + W]ez"\f;l ow.2) gw
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and observe that
'rrm(n(2dy/c,,)(G, g)_')((p)[ to+ ub +Z|
= f U(xo + y& + Z)e2™V-Tlwsr gy g (A-16)

Thus if
x0+yb+Z=—pd/uc, + Z

is a point of continuity of U(, , ) it follows that
U(O’ _l“‘/uZCy’ Z) = jl;z ”%(”(2dy/cy)(c’ g)—l)
(@10 + ub +Z]e VN Wl dr dy. (A-17)
However we note from (A-1") that for [s| > k/2

|U(x, y, Z)| < fk[ ' " aw (A-18)

a, + x2+ 2+ |W)?

with ¢ = 5s/2 + k/4 — 1. This argument also shows that U(x, y, Z) is continuous
at all points (x, y, Z). Moreover we deduce if s > k /2 that

U0, y, Z)| < Co(1/ (o + 1¥P))* ™, (A-19)

with C, a positive constant.

Then using (A-12), (A-17) and (A-19), we deduce that (for |s| > 3k/2 + 1)
property (d) of *-Poisson Summation formula (relative to L, ,,) is satisfied.
Moreover we have that

2 |rH(y N 7en((G, g)")(qv))(ﬁ + uﬁv + V.)’ (A-20)
{1 2
MLEZ

is majorized by a series of the form

Zz Vai(n) Vha) (A-21)
rE

5 ezZk- 2
where

gi(w) = (1/ (e + [uP)) 7% and (&) = (o, + [1&17)* T2
The series in (A-21) is convergent when s > 3k /2. Thus property (d’) is valid in
*-Poisson Summation Property relative to L. (We note here that if y € SL,(Z) and
¢, = 0 then (d') works trivially in such a case.)
(V) Then to prove (¢') we consider the function 7o ((G, 8)"' NN Z + pv/uy) =
A(Z) (with p € Z) and must show that A satisfies the Poisson Summation formula
relative to £. First A is continuous in Z and using (A-1’) we deduce that for

|s| > k/2
N(Z)| < ||Z 2~ *72ee, (A-22)
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Again by using arguments as above, the function
T~ f 7o ((G, &) " W@)[ T + xv + y§]e?V 17/ dx dy (A-23)
RZ
is a continuous function in T (if |s| > k/2 + 1) and hence we have

AW) = ¢, fR 7o (G &))@ Mo(W) + xv + y6]emVImn dx dy

(A-24)
with ¢, a nonzero constant. Hence (for |s| > k/2 + 1)
AW < W= errr (A-25)

for W away from zero. Hence A satisfies the Poisson Summation formula relative to
£. Q.E.D.
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