
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 263, Number 1, January 1981

ON A RELATION BETWEEN SL2 CUSP FORMS

AND CUSP FORMS ON TUBE DOMAINS ASSOCIATED

TO ORTHOGONAL GROUPS

BY

S. RALLIS AND G. SCHIFFMANN

Abstract. We use the decomposition of the discrete spectrum of the Weil repre-

sentation of the dual reductive pair (SL2, 0(0)) to construct a generalized Shimura

correspondence between automorphic forms on 0(Q) and SL^. We prove a

generalized Zagier identity which gives the relation between Fourier coefficients of

modular forms on SL2 and O(Q). We give an explicit form of the lifting between

SL2 and 0(n, 2) in terms of Dirichlet series associated to modular forms. For the

special case n = 3, we construct certain Euler products associated to the lifting

between SL-, and Sp, » 0(3, 2) (locally).

Introduction. Let Qx be a nondegenerate quadratic form on R*~2 having signa-

ture (k - 3, 1). Let £ be a lattice in R*~2 so that ß,(£, £) Ç 2 • Z, i.e., g, is

even-integer-valued on £. (Also £ must satisfy certain other technical assumptions

relative to £>,.) Let / be a holomorphic modular cusp form of weight s for the

Hecke congruence group TQ(t N¿), where N£ is the exponent of £ and / is a certain

positive integer. Suppose that

/(z)=   2   aMe2'^'
«>]

(z e H, the upper half plane) is the corresponding Fourier development of /at 00.

Then let £ e £ so that ö,(£, |) < 0. We may write £ = m£Q with £0 a primitive

element in £ and m E Z, the integers. Then define

.2,,

»#(0-   S   x(p>'+k/2-34\
{»\r\m) \   V

jOiUo-Éo) (1-1)

where x is a Dirichlet character mod ,/Ve. Then a# is defined on the set of all £

lattice points in the self-dual cone W = {X G R*-2^),^, *) < 0}. It is easy to

see ö# is invariant by the arithmetic group Te = (gE 0(o,)|g(£) = £}, i.e.,

a#(g- O = fl#(ö for g e re and £ e £ n W.

Then we can define a Dirichlet series

2       Mö4dßitt.ör (1-2)
táw/r* ew

where  the  summation  is  over  Te  equivalence  classes  in   £ n W and  e(£) =

order(rei) (where T£,i is the stabilizer in Te of £). This Dirichlet series has several
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2 S. RALLIS AND G. SCHIFFMANN

features. First, after being suitably normalized by T factors, (1-2) admits an analytic

continuation to the whole complex plane. Second (with the same normalization)

(1-2) satisfies a functional equation in 3. Third, (1-2) admits (in a certain sense) a

type of Euler product when the Dirichlet series

n> 1

has the same properties.

The three properties of (1-2) above are the standard type of properties exhibited

by Dirichlet series attached to automorphic forms. Thus we must look for a cusp

form on some reductive group so that (1-2) is the Dirichlet series "associated" to

this cusp form. We start by noting that there is a natural tube domain in the above

considerations. Namely we let <3l+ = R*"2 + V^T W and we consider the con-

nected component of the full group of analytic automorphisms of <3L+. We know

that this group is isomorphic to the connected component of O(Q), the orthogonal

group of the quadratic form Qx ® x ■ y, where x ■ y denotes a "hyperbolic plane".

Following the well-known theory of automorphic forms in tube domains, we ask

whether there is a cusp form F on "3l+, automorphic relative to O(Q) and a

suitable arithmetic subgroup TL(Q) of O(Q), so that (1-2) is the Mellin transform

of F along the direction of the cone.

The answer to the above question is in the affirmative. The main idea behind

such a result is to use the correspondence between automorphic forms on SL2 and

automorphic forms on O(Q) given by the Weil representation of SL2 X O(Q) in

[II], [III] and [IV].

This paper is the sequel to [II]. It is part of our program to show that the

so-called Shimura correspondence given in [8], [10] and [12] can be interpreted in

terms of the theory developed in [II]. We now work with an arbitrary quadratic

form Q on R* (no restriction on the signature except that sgn Q = (a, b) satisfies

a > b > 1).
In [8] and [10] a correspondence is set up between SL2 cusp forms and O(Q)

cusp forms (see also [2], [4]). Essentially starting with a Schwartz function <p, which

transforms according to a finite dimensional representation of a maximal compact

subgroup of SL2 X O(Q), we form the 0 series T^{G, g) with G 6E SL2 and

g e O(Q) (where L is a lattice in R* so that £ is a direct summand of L). Then

if / is a cusp form in the SL2 variable we form the Petersson inner product

(TH , g)\f( )> (note here we view/ simultaneously as a function on H and SL^.

Thus the map/~» (T£{ , g)\f{ )) gives a correspondence between SL2 cusp forms

and O(Q) automorphic forms. However in the different cases ([4] and [8]) it must

be shown directly that g ~*(Ty{, g)\f( )> is a cusp form, etc. On the other hand if

we start with <pD, a function belonging to the discrete spectrum of the Weil

representation of SL2 X O(Q), then we can also define T^d{G, g). In a similar

fashion we consider (T¿( , g)|/( )>. Then we have another correspondence

between SL2 cusp forms and O(Q) automorphic forms. However the cuspidal

properties of

g~*<TH ,g)|/( )>
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are evident from the cuspidal properties of 7r(, ), which are set forth in §§3 and 5
<tov

of [II]. We recall from [II] that

\\U       X     !      I        n<_l

with z = -y/x + V^T / x2 G //, " denotes complex conjugation, and

ßnie) =        2        «pdU"1*).
{XeZ.|£?(X,A) = n}

We know for the special case when Q has signature (k — 2, 2) that each ßn is a cusp

form on 0(<2). Thus <7^(, g)|/( )) is a cusp form in the O(Q) variable. Moreover

if / corresponds to an Eisenstein-Poincaré series Gn for general Q, then

<T^(,g)\Gn()} = ßn(g).

The first question is the relation between the two types of correspondences

defined above. We show in Theorem 1-1 that given <p a Schwartz function, as

above, there exists an SL2 X O(Q) intertwining projection operator Ps+ onto the

discrete spectrum (of the Weil representation of SL2 X O(QJ) so that the dif-

ference T¡¿ — TP^{<p) is orthogonal to all holomorphic SL2 cusp forms of weight

> \ k + 1 (relative to the Petersson inner product). Thus the two correspondences

given above are essentially the same.

On the other hand the functions ßn have a highly transcendental nature.

Specifically in [II, §7] a formula for the Fourier coefficients of ßn is given which

involves an infinite sum of Bessel functions and certain types of trigonometric sums

(such a sum is reminiscent of the Fourier coefficients of Eisenstein-Poincaré series).

However we can express T£ in another way (this idea originated in [14] for the

special case Q having type (2, 2) and is extended to (k, 2) for k > 4 in [9]). Namely

we can write (valid for any G G SL2 and certain g described below)

T¿D(G,g)=   2    ßX(g)Gn(G) (1-4)
n<-l

where

Ai(e?)= 2  ^(s-'a)
\ex„

with Xn the subset of all lattice points X in {X G R*|ö(Ar, X) = n} n L satisfying

Q(\, v) = 0 (where v is a given nonzero isotropic vector in L). Although ß* is not

an automorphic form relative to O(Q), it is invariant under the discrete group

TL n 0(Q)lv], where 0(Q)[v] is the parabolic subgroup of O(Q) stabilizing the line

determined by the vector v. The important point is that the validity of (1-4)

depends on the "cuspidal" behavior of we(g~')<P£, in the Weil representation. That

is, if 7re(g~')<pD is a cusp form in the Weil representation (which means that

7re(g"')<pD satisfies the first and second Cusp Vanishing Theorems in [II] relative to

the parabolic 0(Q)lc]) then the formula in (1-4) holds. Thus in §2 we have set up a

rather elaborate technical machinery to deduce (1-4). We have adopted this point

of view in order to prove a more general formula than in [14] and [9] and to show

the dependence of the formula on the cuspidal properties of the Weil representa-

tion.
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Using (1-4) we deduce that (when Q has signature (k — 2, 2))

<Tl(,g)\f()>=   2    af(\n\)ß;(g)\n\1-*.
n<-l

Thus we can compute the Fourier coefficient of <7^( , g)|/( )> and obtain (1-1)

(modulo certain constants and a Gauss sum, see Theorem 5-1). Then we consider

the Dirichlet series (1-2) associated with (,T£( , g)|/( )>• At this point we must

however make the correspondence between modular forms and Dirichlet series

more precise. Indeed in §3 we define a "Dirichlet series" associated to automorphic

cusp forms on the tube domain <3l+. Following the ideas in [6] we prove the

analytic continuation and functional equation for such Dirichlet series. We note

here that such results are of a fairly standard nature, but we could not find any

reference in the literature for the particular case of the tube domain <3l+ ; so we

have included proofs of these statements in §3.

On the other hand we can determine the "Dirichlet series" of

2 a/|n|)^*(g)|«|'~ä as a type of Mellin transform

2    a/\n\)\n\l-( ß*n{mA{r))r-* d*(r) d\{m) (1-5)
«<-i •/o(e,)/rexR'+

where dX is an 0{Q) invariant measure on 0(Q)/Te and A(r) is the group of

positive dilations in iR,+ with d*(r) = dr/r as invariant measure (on A(r)). Then in

§4 we compute each inner integral as a function of 8. As a result (Theorem 4-1) we

deduce that (1-5) is given by the product of two Dirichlet series (aside from

normalizing T functions and elementary functions like a-*),

L(X, 2» + 1 - /•)• {   2    af(\n\)M(Qv £, n)\n\-*) (1-6)

where r = s + 2 — k/2, where L(x, ) is the usual L function with Dirichlet

character x> and where M(QX, £, ) are the Siegel mass numbers. The second term

of (1-6) is the Rankin convolution of the SL2 Dirichlet series of/and the Siegel zeta

function

Ußi.ß.*)-   2    M(Qv £. n)\n[*.
n<-l

This then allows us to make certain statements about the Euler product properties

of (1-6).

From purely algebraic considerations (using Hadamard products of power series,

see [11]) we know that if k is even and if both the Dirichlet series of / and

f-(ôi> £> 3) admit the usual Euler product of the GL2 theory, then the second term

in (1-6) can be expressed as an Euler product with numerator of degree 2 and

denominator of degree 4 for almost all primes p. On the other hand if k is odd then

/and f_(öi> £> ê) do not have the usual GL2 type Euler product. However in [10] a

modified theory of Euler products is set forth for SL2 automorphic forms of half

integral weight. In particular we know that for d' a "fundamental discriminant",

the series (having a Hecke eigenfunction property) 2m>1 a^d'm2)m^ has an Euler

product with numerator of degree 1 and denominator of degree 2 for almost all
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primes p (see Theorem 6-2). In the special case k = 5 we know from the theory of

binary quadratic forms that

2 A/(ß„ £, d'n2)\n\-*

has a similar type Euler product (see (6-7)). Then we deduce that the Rankin

convolution of the latter two Dirichlet series has an Euler product with numerator

of degree 3 and denominator of degree 4 for almost all primes/). We then deduce

(for k = 5 and a special choice of L) that there is an Euler product formula for the

partial Dirichlet series

2        a#(£)-¿do,(^)r (1-7)
£een»f/re ew

with d', a "fundamental discriminant" (Theorem 6-2 and Remark 6-4). Essentially

we view d' as determining an imaginary quadratic extension Q^Vd7 ) of Q, the

rationals. It is consistent to expect (by the Andrianov theory in [1]; see also [5]) that

such a partial Dirichlet series admits an Euler product. We will make explicit the

relation of these Euler products to the Andrianov theory in a future paper.

We have given above an outline of the main results of this paper. We here thank

Shimura for his valuable advice and insight, especially in discussion of the types of

Euler products expected in the above theory. We also thank M. Vergne for very

carefully reading an earlier version of this work and pointing out certain errors.

0. Notation and terminology. We denote by Z, Q, R, and C the ring of integers,

the rational numbers, the real numbers and the complex numbers respectively. We

denote by Z+, Q+ and R+ the set of positive elements in the respective rings.

1. We let R* be a k dimensional space. Let Q be a nondegenerate quadratic form

on R* with an orthogonal basis {e,, . . . , ek) of R* where ft-Lft (relative to Q) if

/' =£j- Moreover

Oie. ft)- f1        if/ <ö'
yK " e,}      1-1     if(>fl,

where the signature of Q is (a, b) with a > b > 1. Also let

va+J = (ft - ea+J)/V2 ,       va+J = (ft + ea+J)/V2 ,        \ < j < b.

Then we have a Q splitting of R* as

Oa. ûa>-L<ua+„ ûa+i>-L • • • ±<vk, vk}±(eb+i, . . . ,eay

where <ü,, t5,> is a hyperbolic plane.

2. Let F, = (va, . . . , ua + /_,>, F* = <i3„, . . . , t5a+/_,> and L¡ = <e,., . . . , ea).

We denote Q restricted to L, by Q¡. Let O(Q) be the orthogonal group of Q.

Let PF = {g G 0(Q)\ g(Ft) = F¡). Then we know that every maximal parabolic

subgroup of O(Q) is 0(Q) conjugate to PF for some i. Let Aj(r) (j = a, . . . , k) be

the torus subgroup of O(Q) given by u, —> rv¡, & —» r~xVj and identity on <t%, vpx.

Moreover let {NX(W)\ W G L,} be the unipotent subgroup of O(Q) given by the

following operations.
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Nx{W){va) = va,        Nx(W)(üa) = va- Q{W, W)vJ2 + W,

Nt(W)(Y)= Y- Q(Y,W)va

with  Y G L,. Then we know that 0{QX) ■ Aa(r) ■ A/, determines the Langlands

decomposition of PF.

3. Let SL2 be the twofold cover of 5L2(R) determined by the Kubota cocycle

relation as given in [I]. Let G2{Q) — SL2 X O(Q) be the product group. Then let

irgn be the so-called "Weil representation" of G2(Q) (see [II]) in L2(R*). Let FQ be

the space of C °° vectors of the representation ir^. Let

K=lk(9,e) = ((   cos¡¡     sin¡¡),£)U<0<,7,£=±l
{ \\-sm9    cosö/    }\

be a maximal compact subgroup of SL2. Let

and

*-{*•>-((; ^«)'>•}

^{-«-((„ *)•>) x G R   .

Let a, n, and f be the infinitesimal generators of A, N, and Â respectively. Let

N+ = f + V^T (n + Ad(w0)n),        7V_= í - V^T (n + Ad(w0)n)

with

«=((? ¡¡'M«*
and Ad the adjoint representation of SL2. Let toSL = -f2 + a2 + (n + Ad(w0)n)2

be the Casimir element of SL2.

Then   we   set   Fß(A) = {<p G F^wg^w^íp = A<p},   F|(A) = {<p G Fß(A)|<p

vanishes on Í2  (S2+ resp.)} with

S2+ = {X\Q(X,X)>0},

ß-- {A'IßiA', A") <0}.

Then the important properties of the spaces Fß(A) are summarized in [III]. We

recall that Fß(A) (Fß(A) resp.) is nonzero if and only if A = s2 — 2s with s > 1 and

s = k/2 mod 1 (A = s2 + 2s with j < -1 and 5 = k/2 mod 1 and b > 1 resp.).

We let K = 0(a) X 0(b) be a maximal compact subgroup of 0(0). The

irreducible representations of K are parametrized by [sx]a ® [s2]b where sv s2 are

nonnegative integers (s2 = 0 or 1 if b = 1) corresponding to spherical harmonic

representations of degree sx and s2 of O(a) and 0(6) respectively. Let

Faj^s2 — 2s, m, st, s2) = {<jp G Fg(í2 — 2s)|<p belongs to K X /T isotypic compo-

nent in Fg(j2 — 2s) transforming according to the character

k(0, £)~»(sgne)2meVZÏ*m of £ and according to [s,]a ® [s2]b on A"}. Again the

important properties of E^s2 — 2s, m, sv s2) are summarized in [III]. We recall

that Eg^s2 — 2s, m, sv s2) is a nonzero space if and only if s, — s2 = s — ^(a — b)

+ 21, l a nonnegative integer, and m = s + 2j,j a nonnegative integer.
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Similarly, E^s2 — 2s, m, $,, î2) Ç Fß(i2 — 2s) is a nonzero space if and only if

s2 — í, = s — \{b — a) + 2V, V a nonnegative integer, and m = -(s + 2f), f a

nonnegative integer.

4. Let L be a lattice in Q <8>z {ev . . . , ek} which is ß integral, i.e., ß(£„ £2) G Z

for ail #,, £2 G L. Let L,(ß) = {t, G ß <8>z {e„ . . . , ftjlßfa L) ç Z}, the ß

integral dual of L. Let n¿ be the exponent of L, i.e., the smallest positive integer nL

so that nL-t) G L for all t/ G L„(ß). Let TL(ß) = {y G 0(ß)|y(L) = L}. We

know that TL(Q) is an arithmetic subgroup of 0(ß). If tj G L„(ß), we set

rL(Q\ = {y e rL(ß)|y • tj = tj mod L}. Then if {£,} is a Z-basis of L, let Z)^ =

det{ ß(£„ £)}, the discriminant of L relative to ß.

A lattice L is called Type II when ß(£,, £2) is an even integer for all £„ £2 G L.

Moreover L is said to by Type II* if L is Type II and «Lß(£, £) is even for all

t g £.«2).
5. The quadratic residue symbol (-) is given as in [10]. Moreover

1 if d = 1 mod 4,

V^T     if d s= 3 mod 4.

6. Let

r°(>v)={(c     ¿)e5L2(Z)|c = 0mod>v},

r°(w) = l(a     M G SL2(Z)|c = 0modn/,fl = d = 1 modwj.

r0(w., w2) = {( ü     b,) G SL2(Z)|c = mod w„ b = 0 mod w2)

with w2 dividing w,.

Let \p be the covering map of SL2 to SL2(R) given by \p( g, e) = g. Then we set

K = <r'(r0(w)), À2lv = r\r°0(2w, 2)), Uw = r\r°(w)) and Ü2w = rl(^ßw, 2))

n u2w.

Let sß be the multiplier on the group T%(2nL, 2) (T0(nL) when L is Type II*,

resp.) given by

Let

^-^m'r
for

-c
Let Sq™ be the multiplier on the group T%2nL, 2) n T°(2nL) (T°(nL) when L is Type

II* resp.) given by

s£"(y) = exp(*V^T SyßyQ(% r,))s¿(y).

Remark. We note that Sq given above is a multiplier on the group T0(2nL) when

L is Type II.
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7. If T, is any arithmetic subgroup of SL2(Z), a any multiplier on T, of weight d,

then [r„ d, a] is the space of all/so that

(i)/is holomorphic on H, the upper half-plane,

(ii)f(h • z) = (cz + d)da(h)f(z) for all h = Ç ») G T,,

(iii) at each parabolic cusp G~\<x>) of T, on Q u {00} (with G G GL2(Z)),/has

a Fourier expansion of the form

(cz + d)df(z) =     2     c„exp(2wV^(-^Wz)

where Nr is the smallest positive integer v so that

G1 r'   GET,

\0     1     /

and K is the ramification of a at G"'(oo) (see [II] for precise definition).

We say/ G [r,, d, a] is a cusp form if « + k > 0 above is replaced by n + k > 0

at each parabolic cusp of T,. Let [r„ d, a]0 be the linear space of such cusp forms.

Let [r,, d, a]* be the space of all/ which satisfy (i), (ii), and (iii) above when H is

replaced by H, the lower half plane in (i) and n + k > 0 in (iii) is replaced by

n + k < 0. _

We note that via the map <p(z)~*f(z) =y(z), the space [T,, d, a]* maps bijec-

tively onto [r,, d, 5].

8. Let <tj G Es^is2 — 2s, s, sv s2) with s > k/2. Then define for n G L#(ß),

G G SL2,gG 0(ß),

7£,(G,g) =  2   ^((C.^r'ív)« + rj).

The properties of T¿ are given in Theorem 2 of [IV] (for the case tj = 0) and

Theorem 2.5 of [II]. We know that for (I\ y) G Ü2Nl X TL(Q) (UNl X TL(Q) if L

is a Type II lattice, respectively) that

T^(GT, gy) = 4(r) exp(-w\^T rfr6rß(7,, v))T^(G, g)

where

We note the relationship sß(i^(r)) = c¿(T) (</>, the covering homomorphism of 5L2

to SL2), where

satisfies the condition cr ^= 0.

If Z is an element of the enveloping algebra of G2(Q) = SL2 X 0(ß), then we

have that

r4,z),,,(G,g) = z.r;(c,g)

where Z *  denotes differentiation on the left. Hence Uc,   * T^„ = (s2 — 2s) ■ TL .0JL2 <p,T) v * <p,17
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Then we let

f^g)=[lrn(z)y/2T^({(X0    ^l^g)

with z = -y/x + Y^A / x2 G H, the upper half-plane. Then we have that

f¿, G [r°(2/iL, 2) n r°(2«J, s, ,¿"]0   ( G [r°(«L), 5, ̂ ]0 if L is Type II* resp.).

Then (again for (¡9 G E^s2 — 2s,s,sv s2) with í > k/2) there is a decomposition

formula:

r(EA,+

where 7^ satisfies the functional equation T^(gy) = T^(g) for y G TL(ß)^

(here X+ = {ßß + tj)|£ + tj G fi + with f G L})'.

9. We let ß have signature (a, 1) (of Lorentz type). Then let L be a ß integral

lattice in R* (£ = a + 1). Let r G X= {ß(|, £) G B_|£ G L). The group TL(ß)

operates on the set L n {X G R^lß^, A) = r} and we know that there exist

finitely many orbits ("finiteness of class number"). Then if Xv . . . , Xt form a set

of representatives of T^ß) orbits we know that TL(Q)Xi is a finite group. We let

ex = order(rL(ß )"*■'). Then the Siegel mass number is

M(Q,L,r)= 2   — •
1" = 1     eA-,

We  note   that   this   number   is  independent  of   the  choice  of  representatives

Xv . . . , Xt above.

10. If L is a Type II lattice then for each (ß, y) G t//"1(SL2(Z)) X TL(ß) we know

that there is a unique dL X dL unitary matrix [a^(, )} so that

J-dL

T^(GÜ,gy)=   2   o^,y)T^G,g)
y=i

where  {tjj, . . . , Tjrf }  is a set determining the distinct coset representatives of

LJ&ML (see Theorem 2.1 of [II]).

ILA function h on Rm satisfies the Poisson Summation formula relative to a

lattice L ç R* if

(A) h is continuous and integrable (U) on R*,

(B) the series F(X) — "ZiBL h(X + £) is absolutely convergent and defines a

continuous function on Rm.

(C) the series 2(»eL, h(£*) is absolutely convergent with L* = {£* G R*|[|*, L]

C Z}, where [ , ] is the bilinear form on R* given by [X, Y] = 2*=1 x¡y{ (with

X = 2 x¡e¡, Y = 2 Vvft). Here " represents Fourier transform given by

h(W)=(   h(Z)e2vVr^w-zUZ.

Then if h satisfies (A), (B), and (C), we have the Poisson formula

2   h(X + t)-   2    /í(M)e2Wr™.
îez. nef
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1. Shiimira correspondence. Our problem is to show the relationship of [II] to the

results of Shimura reported in [10]. The connection will be to view T^ given in §0

as a certain "kernel operator" transforming automorphic forms on SL2 to automor-

phic forms on O(Q). We make this precise in the next several paragraphs.

For this we must extend the definition of 7Í_. We assume that <p G

E^s2 — 2s, s, Sj, s2) (E^s2 + 2s, s, sv s2), resp.) with |i| >^k. Moreover tj G

¿*(ß)> the ß dual lattice to L. We let /l(tj) = the group generated by tj in

LJ(Q)/L. We let

TL(ß)*     = {y GrL(ß)|yT,=a(y)T,modL}

(with a(y) G Z). Then TL(Q)* D ^(ß) (defined in §0), and we have a representa-

tion of r£(ß)* on /¿(tj) given by yrj = a(y)i) mod L (where the kernel of the

representation is clearly rL(ß) ).

Lemma 1-1. Let x be a multiplicative Dirichlet character on Z/0(JL(r))) ■ Z (with

0(JL(v¡)) = order of JL(r\)). Let fl G Â^ and y G TL(Q)*. Then if <p satisfies the

hypotheses in the above paragraph, we have

2 x(r)T^(GQ, gy) = c£(Q)(X(8a(y))yl
r£Z/0(JL(V))Z

2 e^^ ^2<y'^^x(u)T^(G, g).   (1-1)
uez/0(jL(V))Z

Proof. The proof follows directly from subsection 8 of §0 and the multiplicative

properties of x-    Q.E.D.

Then we let

*\ x r£(ß); - {(a, y) g àNl x tl(q);\

exp(-7rV^T aßv2a(y-l)2Q(v,-n)) = 1

for all v = 1, . . . , 0(JL(r))) - 1 and y G TL(Q)*}.

It follows from Lemma 1-1 that if (ñ\ y') êAJ   X TL(Q)' and if

T^x(G,g)= 2 x(r)T^(G, g),
r&Z/0(JL(r,))Z

then

T^x(GÜ,gy) = c¿(ü)[X(Sa(y))YlT^x(G,g). (1-2)

We note that &% X TL(Q)'V is the maximal subgroup of ANl X T^ß)* for which

(1-2) is valid.

Remark 1-1. If L is a Type II lattice then Lemma 1-1 is valid for Í2 G A^

provided we have the additional hypothesis that 0(JL(r¡)) is even. It is then

understood in the definition of A\  X rL(ß)^ above that A^  is replaced by A^ .

Example. We let R3 = {(xv x2, x0\x¡ G R} and ß^A", A') = 2[x| - 4xxx3]/N.

Then we have the example of Niwa in [8]. In particular let

L = {(4Nmu Nm2, Nm3/4)\mv m2, m3 G Z}.
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Then L is a Type II lattice relative to QN, and we have

E+ÍQn) = ((2 w'" 4 w2' 32m3)'W' e Zj'

Then NL = SN. If we choose tj = (1, 0, 0) as in [8], then /l(tj) is a cyclic group of

order 4N. Moreover since QN(-q, tj) = 0, we see that A^, = A^ in this case (recall

L is Type II and the convention stated in Remark 1-1).

Remark 1-2. We deduce from (1-2) and arguments similar to those in Lemma 3.3

of [II] that the map

x ~ s¿(x)(X(d))    forx=\a     ¡le +(&„ )
sq.x led] '

is a projective representation of weight \k for ^(A^ ). Moreover we note that in the

z variable T¿ (z, g) G [^(A^), |j|, Jßx]0 by arguments similar to those in Proposi-

tion 3.4 of [II].

Then for any arithmetic subgroup T, in SL2(Z) we denote by ^ the fundamen-

tal domain of T, in H.

We say that the pair (r,, ß), with F, an arithmetic subgroup of SL2(Z) and ß a

projective representation of T,, has the (L, tj) ((L, tj, x) resp.)property if

(i)r, Ç.KLVXr, ç«KA^)resp.)
(ii) ß = Sq'*1 restricted to T, (ß = ißx restricted to T,).

Then we let/ G [r,, |i|, ß] where (r,, ß) has the (L, tj, x)property. We define

F/g^, L, t,, x, r,) = f      f^x(z, g)fjz)(lm z)]s¡~2 dx dy. (1-3)

We note that (1-3) represents the inner product of /( ) and 7^; ( , g) in the

Petersson metric on 6i)ri (note that T^ is a cusp form but / is only an integral

form).

We note immediately from Lemma 1-1 and (1-2) that

Fj(gy\q>, L, t,, x, T,) = (x(«(y)))"'F/(g|<p, L, tj, X, T.) (1-4)

for all y G TL(Q)'V.

We call the correspondence given in (1-3) the abstract Shimura correspondence.

We shall see shortly that our notation is well chosen in that the correspondence

given in [8] will be a special case of our theory.

Our problem is to make a thorough study of the map (1-3). For this we examine

what happens if/is an Eisenstein-Poincaré series for T,.

We recall that for an arbitrary arithmetic subgroup T <Z SL2(Z), an Eisenstein-

Poincaré series given by

Gd(r,ß,T,m)=      2       eJ2vV^^^y(T))fJ(ïïl—-1—-)

(1-5)

defines an element of [I\ d, ß]0, where m > 1,

ay     by

7 "     c7     dy   '
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and d > 2. Here

,2*rV^Ï

-€ ?))

and

P={(o     a6,)eSL2(R)l«eR*,¿GR}.

Moreover we know that  [Gd(r, ß, T, m)\m > 1}  forms a spanning set of the

finite-dimensional vector space [r, d, /?]0.

We now interpret the functions in (1-5) in terms of the group SL2 and the

representation Wgj, Again we assume that

<p G Euyi(s2 — 2s, s, í,, s2)    (E^s2 + 2s, s, sx, s2) resp.),

where \s\ >\k.

Let F be an arithmetic subgroup of SL2(Z) and pr some unitary character on

t//-'(r) with the compatibility condition w<3t(M)-1(/)(Ar) = pr(M)lf(X) for all M G

t/r'(r) n P and for each/ G S(Rk). Then we define

UvLx(G,T,pr)= 2 ir^(GM)-\<p)(X)pr(M)-1 (1-6)
MefVf'irjnP

(where P = ^"'(P) and

M = (C; íH
We show in the next lemma the relationship between U£x and the series defined in

(1-5).

Lemma 1-2. Let (Y, ß) have the (L, tj) or (L, tj, x)Pr0Perty- Let

(p G £,g|L(í2 — 2s, s, Sj, s2)    (£g^(i2 + 2s, s, Sj, s2) resp.)

¿>e g/ue« 6y

ß(A", A-)f^'e-'ö(^)||A'+||-(^*/2+„ + ,2-2)^|(A-+:)/,^A-j 0/| Q+>

(ß(A\ A')W~,e,r0(*-Jf)(ll*_||r(|í| + */2 + í| + Í2_2)PJi(A'+)JPÍ2(A'J o« 8_ resp.),

(1-7)

tvAere /^  and Ps (Ps and Ps  resp.) are harmonic polynomials of degree sx and s2 in

R" and R*. Then let Z £ßt (fi_ rap.) so that

Q(Z, Z) = 2(/i + ic)/JVr > 0    (2(/i + ic)/tfr < 0 resp).

We have

«¡4(i :-H^)-2(n + k)

Nr

l-i

(Im z)W2Gs(z, ß, T, n)(\\Z+\\)^ + k/2+^-»PSi(Z+)PS2(Z_),

(Im z-)W2Gs(i-, ß, T, «)(||ZJir(|f| + V2+í' + í2-2)/>í,(Z+)PÍ2(Z_),       (1-8)
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where z = -y/x + x~2V^\   and where pr is the homomorphism of\p~l(T) given by

c^(n)e-,rVrï ««""■">     //(r, ß) satisfies (L, tj) condition,
Pr(8)

^(ö)x(fi)" if(T, ß) satisfies (L, tj, x) condition,    (1-9)

where

fl -((; íh
Proof. We let ßv(G) = 7rgIL(C)((p)(Z). Then by hypothesis on ç> we have

ßy(Gk(0, e)) = eVZTj*(sgn e)kßv(G). Then it follows from Remark 3.1 of [II] that

(with z = x_2V^T — y/x)

%" rl-'M
- a„ß(Z, Z)*" V^iß<z-z>||Z.J-<*+*/2+*'+*»-2>P,i(Z+)P,2(Z_).

Hence again by Remark 3.1 of [II], for any (M, 1) G 5L2 with M = [° ¿], we have

4(^^)(-^ + «n^(^
0     x-

M, l) ').

(1.10)

u.

Thus we have from (1-10)

M([i :-,].')'r-)=<im2>"2
2(n + k)

tf,

|Z+||-(5 + ,/2 + Jl + l!-2)p(z+)/)(Z_) 2 (_v   +   auy

Mer/rni

i   »Y-i/ \ 2(i + k)
•exp 77-V-l M   (z) —)j 77^

A7,

•c¿((A/, 1))-'[^2(A/)]* exp(*V^T bMdMQ(ii, tj))

for

M
CM       dM

er.

We note that T/T n P = ^_1(r)/^_,(r) n P. Moreover the inverse map X -+ X'1

carries T/T n P onto T n P \T. Finally we note that since (I\ ß) has the (L, tj)

property, then

ß(M) = s^(M) = c¿((M, l))-'[^2(A/)]A:e"Vrï*«d«ß<™>

by definition.    Q E.D.

Then given this interpretation of U¿ z( , T, pr) as "Eisenstein-Poincaré" series

(<p, as in Lemma 1-2), we can compute the inner product (on SL2/\p~ (T)) of

U£t z(, T, pT) with T^x, where <p is a K X # finite function in

E^s2 — 2s, s, s„ s2)    (¿^(s2 + 2s, s, s{, s2) resp.)



14 S. RALLIS AND G. SCHIFFMANN

when s >2k  (s < -2k   resp.).  We  let  da  be  an  SL2  invariant  measure  on

si2/r\n

Lemma 1-3. Let (p, be given by (1-7) in Lemma 1-2. Let (T, ßT) satisfy the (L, tj, x)

property. Then

< rr)=i.
Let Z G £2+   (ß_ resp.) so that  Q(Z, Z) = 2n/NT > 0 (Q(Z, Z) = 2n/NT < 0

resp.).

Then there exists a suitably normalized SL2 invariant measure i//x0 on SL2/ N ■ 3

with 3 = Center(SX2) so that

f U^z(G, T, pr) T^X(G, g) do(G)

2 X(r){ 2
r£Z/0(JL(r,))Z l {ieZ.|ß(i+n,,i+n,) = 2n/Nr}

• f ^((G, g)y\<p){ï + rn)
JSL1/'S-N

■tr^(G)-\^)(Z)dN(G)^,  (Ml)

where pr is given by (1-9).

Proof. By definition of U^z( , T, pT) we deduce (using essentially the Rankin

convolution trick) that

f U^z(G, T, Pv) T^x(G,g) da(G)

( 2 ^(GMY\^)(Z)c^(M)-'x(dM)
JSL2/r\T){ Mer,(r)/fl(r)ni J

• T^x(G,g) do(G)

-L .^(G)"Vi)(Z) T^jG.g) MG), (1-12)

where ¿/a is an SL2 invariant measure on SL2/\p~ (T) n P. But we observe that

xP~\T) n P = 3 • {"(A: • tfr)|* G Z}. Thus

SL2/«/r'(r) n P = sl2/3 ■ {n(kNr)\k G z}

and we have that

L ."*x\G)-\<px)(Z)TL   {G,g) dö(G)
JSL2/^'(r)nP

■^{C-'){<f,)(.Z)dH(G).   (1-13)
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But in the inner integral of (1-13) we can switch the order of integration and

summation (by using the estimates in (1-15) of [II]:

jTr  T^x(Gn(x),g) exp(-2*V^Ï —^ dx

2 X(r)     2       *«*((C *))-'(*)(€+"!)
l(Z/0(JL(r,))Z) {íliei}

I        expl 7TV-1  X Q(t + nj,£ + rq)--^ dx (1-14)

But then since (T, ß) has the (L, tj, x) property, we deduce that T c v//(A^, ), and

then using the paragraphs following Lemma 1-1, we have e"     ' ^rßii.i) = i  Thus

I"*  Cx(C"W>s) exp(-*V=T x-j^-) dx

2       x(r)\ 2 %((c.«)r'W({ + m)).
r<=Z/0(JL(n))Z l {ieZ.|ß(i+rr),i+rr,) = 2n//Vr} J

(1-15)

But then, by adapting the arguments in the proof of Lemma 1.4 of [II],

\f(r-X)\ < M'r^k'2Q(X, X)'-1 exp(->2ß(A-,A-))(pyi +

for all X G R* (where/ = <p or (p,) and M' some positive constant independent of

X.

Thus we have the estimates

L      1»*(<?_iX?»iKZ)|

2 WÍG.írtíi+ni)!^)
{íeZ.|e(í+n),Í+n)) = 2«/A'r} -1

<A/'||g-'ir + /c/2~2( r+00k-V^|2rdr)
wo J

,i + */2-21

(«'

2       (_i_y
iL\Q(î + rn,i+rq) = 2n/Nr} V IKs + ")) + II /

(1-16)

(here we have used the fact d^G) = dK ® rdr in the Iwasawa deomposition of

SL2). But we know from the arguments used in the proof of Theorem 1.5 of [II]

that the series on the right-hand side of (1-16) is absolutely convergent. Moreover

the integral on the right-hand side of (1-16) is clearly convergent. Thus we can

switch the order of integration and summation in (1-13) and deduce the desired

result.    Q.E.D.
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Corollary 1 to Lemma 1-3. Let <p = <p, in Lemma 1-3. Then with the same

hypotheses in effect as in Lemma 1-3,

f t/¿z(G, T, pT) T^x(G,g) da(G)

= c, • Q(Z, Zr-1[|Z+ir(*/2+,+í'+Ií-2)PÍI(Z+)P,i(Z_) 2 X(r)
rez/0(JL(v))Z

•( 2 ||g(l+rr,)+|r<*/2 + J + "^-2>
l {te /.|ß(i + n,,í + n,) = 2n/Nr)

■ Ps¡(g(e + rr,) + ) PS2(g(è + nj)_) J,     (1-17)

with  cx   a positive constant  which  depends only  on  the normalization  of certain

measures and the number s.

Proof. If we let d¡x0(G) = dK ® rdr, then, using (1-11),

c(s) = c,
In

AY

2j-2

r exp(-1    *™\.\-2s

*'

dr   ,

where c, arises from the normalization of the measures above in (1-13).    Q.E.D.

Remark 1-3. Using the notation of (3-20) of [II] we see from Corollary 1 to

Lemma 1 -3 that (with c\ a nonzero constant)

L       ,      UUG> r> Pr) T^X(G, g) da(G)

= c\e*»'NMZ) 2 x(r)T^"r(g)
reZ/0(JL(v))Z

=   c\e2-/^(Z)TL:2n/ST{g)
(1-18)

The basic idea in the work of Niwa [8] in explicating the Shimura correspon-

dence is to compute the inner product of U£z( , T, pr) (with (p as in Lemma 1-3)

with Tfa in L2(SL2/\p\T)) when f is a Schwartz function on R* which transforms

according to a unitary character of K. In Lemma 1-3 we computed such an inner

product when / G Eùyt(s2 — 2s, s, s,, s2). Our next problem is to give a precise

relationship between Lemma 1-3 and the main theorem of [8].

Let Ps+ (Ps resp.) be the G2(Q) intertwining projection map of Fß into

Fß(s2 - 2s) (Fß(s2 4- 2s) resp.). In particular Ps+ is obtained by taking the

orthogonal projection of L2(R*) to cls(Fß(s2 - 2s)), i.e., with cls(Fß(s2 - 2s)), the

closure of F^(s2 - 2s) in L2(R*).

We let

D =

where s = 2 k mod 1.

©   F+(s2-2s)
j>i

©    Fß(s2 + 2s)

Then D is a G2(Q) stable subspace in Fß.
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We set F£ = [<p G FQ\ir^(k(9, e))«p = ev"' m*(sgn e)2m<p} with m G \Z. Then

from §0 (see Theorem   1.3  of [II]) we deduce that Fß n D = 0 if m = 0 or

Lemma 1-4. Let m = 0 or m = ±|. Lei ?B be the closedsubspace in Fß generated

by all linear translates of tto^G)^ as G varies in SL2 and <p varies in Fß. Then $ is

a G2(Q) stable module in Fß (relative to tr^ and Fß = ® © D.

Proof. It suffices to show in L2(R*) that L2(R*) = cls(® ) 0 cls(O) is an

orthogonal splitting. The splitting is orthogonal; for if \p Ç F5¡ and <p G D, then

(wgt(G')^|()p)L2 = (^Itt^G)" (p)L2 = 0 for G G SL2. Then let // be the tt^SL^

stable subspace in L2(R*) so that L2(R*) = cls(iB) ® cls(Z>) © H with //=

[cls(<& )© cls(Z))]-*-. Then if //^ ¥= 0, there exists an integer w so that i/«, n F£/2

7^= (0). This implies that there exists an integer q so that it^(N%)(■$/) G Fß (m = 0

or w = ±j) for <// G Hx. Hence if ^(A/*)^) ^ 0, then Hx n © ^ 0, a con-

tradiction. This means that ^^(A^Xi//) = 0. Assuming that WgR{A'+),~ '(»/') ̂  0,

this implies that n^NI )(\p) is an SL2 extreme vector in Fß. Thus "n^Nq+~ ')\p G

D, which again is a contradiction.    Q.E.D.

We recall from §5 of [I] that 5(R*) is dense in Fß (in the Fß topology). Hence it

follows that S(Rk) n F^ is dense in F^ for all m G \Z.

Theorem 1-1. Let <p G ¿^(s2 - 2s, s, sx, s2) (E^s2 + 2s, s, sx, s2) resp.) with

\s\ >jk + 1 be given by (1-7). Let (T, ß) satisfy the (L, tj, x) condition (with pr

given by (1-9)). Let Z G fi+ (fi_ resp.) so that Q(Z, Z) = 2n/Nr > 0 (Q(Z, Z) =

2n/Nr < 0 resp.). Let f G S(Rk) n Fß and K finite. Then

L U¿z(G,T,pr)T^x(G,g) do(G)
SL2/r\T)

f< U^Z(G, T, pr) T^UhvjG, g) da(G).       (1-19)
SL2/*-\T)

Proof. By using the fact that/ G S(R*), an easy adaptation of the argument of

Lemma 1-3 shows that (for s > \ k + 1)

J CI
UvLz(G,T,Pv)T^x(G,g) do(G)

SL2/^'(V)

2 X(r)\ 2 f ^(G)-'(V)(Z)
r<EZ/0(JLCl))Z V  {i^L\Q((+rn,i+rr,) = 2n/Nr)JSL2/N3

■ vvt((G,g)r(f)(H + rq) dp.0(G)   .

(1-20)
Note we can majonze/(A') by ||A"+||'   * and then use an argument similar to that

in (1-16).

We may write

/=  2   C(/)+  2   pu-(f) + Mf,
u=k/2 u=k/2

«>1 u<-\
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where Mf G ©. Then noting the K eigenvalue behavior of Pu+(f) and P~(f) in

Theorem 1.3 of [II], we deduce that

f ^(G-'XçXZ) ^((G, g)y\h)(t + rrj) dH(G) = 0,     (1-21)
JSLi/N%

when h = Pu+(f) with u > s or h = P~(f) for all w. Thus it suffices to show that

L ^(G-')(«P)(Z) »Ä((G, g))-l(Mf)(t + rn) dN(G) = 0.     (1-22)
JSL2/NS

But if m = 0 or ± {, we note that ^^(«(SL^XFg n S(Rk)) is dense in <$ (where

sll(SL2) is the universal enveloping algebra of SL2). Hence it suffices to prove

(1-22) where Mf is replaced by all ■nmlNp)(\p), where \p G Fß and p + m = s. But

then we note that

TT^(G~l)MZ)(t))(T) = Z * H¿G, T), (1-23)

where HAG, T) = 7r„3)l(G_1)(v/')(7') with IeS]+ and * represents differentiation

on the left in the variable G (for Z G %(5L2)). Thus

L «vl(G~1)(<p)(Z) N' * {»»((«.»»-'(♦Kf' + 'ni)} 4*o(G)

= f A"+ * {^(G-'XvXZ)}  ^((G,g))-'(^)(f + nj) rfpo(G)

= L ^(G1)(7rgil(7V+r(«p))(Z) ^((G, *))-'(*)« + nj) rf/x0(G).
•'sVr'tr)

(1-24)

But <p is an "extreme vector", which means that n^N+)(<p) = 0.

On the other hand, if h — P*(f) with 1 < u < s, then we may assume that

h = (N_Y(hx) with p > 0 and hx G E^u2 — 2u, 2, sx, s2) for some s,, s2. By the

same reasoning as above the result follows immediately.    Q.E.D.

Remark 1-4. We know that in the Weil representation irà^ of SL2 in L2(Rm)

relative to the positive definite quadratic form || ||2 on Rm, Ps (X)e^nx" (with P a

harmonic polynomial on Rm of degree s, if m > 2 and

P(X) = e-"x\d/dx)Sie^x\

a Hermite polynomial if m = 1) transforms according to the character of K:

k(9, e) ~* e "' (í' + m/2)*(sgn e)m. Then it follows by the tensor product properties of

the Weil representation (see §2) that PS¡(X+ )PS2(X_)e^KX^2+"x-lñ (where ß(A\ X)

= \\X+ \\2 — ||A"_||2) transforms according to the character of K: k(9, e) ~»

eVA(Si-s2 + (a~b)/2)e_ Finaiiy we note that there exists / G 5(R*) n Fß (where

s, — s2 + (a — b)/2 = s) so that

Ps+(f) = c<p,       c^O, (1-25)

where <p G Ey^s2 — 2s, s, s,, s2). Indeed if (p is given by (1-7), then choose

f(X) = PSi(X + )PS2(X_)e-<"x+"2+"x^ (1-26)
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where we assume that Ps and Ps are the unique, up to scalar multiple, spherical

harmonics of degree s, and s2 on R° and R* invariant by 0(Ra)e' and 0(Rb)ek,

respectively (note here that if b = 1, then Ps = 1 or x, which are the first two

Hermite polynomials). Then we have fRk f(X)<p(X) dX > 0. Hence, noting that/

transforms according to the tensor representation [s,]a <8> [s2]b of K, we deduce that

UW)l2 = (Ps+(f)\<P) witn Ps+(f) G EyJ^s2 — 2s, s, s,, s2). Then using the specific

form of <p in (1-7) the result (1-25) follows.

2. Zagier correspondence. Let ß be a nondegenerate quadratic form on R*.

Moreover let ß = ß, © ß2, where R* = Rm © R" and ß|Rm = ß, and ß|R„ = ß2.

Then the representation ir^ is functorial relative to this splitting in the following

way. Let Fx = L2(Rm) and F2 = L2(R") and form the Hubert space tensor product

Fx <8> F2. We define in the usual way the unitary representation of the product

SL2 X SL2 on Fx ® F2 by (G„ G2)-»tt^(G,) ® tr^¿G2). Then we know from

[I, §1] that the representation of tto^ of SL2 in L2(R*) (relative to the quadratic

form Q) is unitarily equivalent to the restriction of the tensor product representa-

tion 77^ ® vTg^ to the diagonal subgroup of the product SL2 X SL2.

Remark 2-1. Let k = 2 and ß be the hyperbolic plane <u, v") with Q(v, v) =

Q(v, v) = 0 and Q(v, v) — 1. The group SL2(R) operates on <(t>, t3> as follows, a =

[" d] has the effect a(ü) = av + cv and a(t5) = bv + dv. Then it is possible to

linearize the representation 77^ of SL2 in the following manner. Let

Ev(<p)(rv + sv) = f <p(uv + sv)elWZx ur du (2-1)

(for <p G L'(R2) n L2(R2)). Then Fv extends uniquely to a unitary operator on

L2(R2), and we deduce from Theorem 1.1 of [II] that

Fv-l^((M, e))Fü(<p)(A-) - <p(M-\X)) (2-2)

with M G 5L2(R).

Let L(u u j be the lattice in R2 given by Zuxv ffi Zu2v, where ux ■ u2 G Z*. Thus

L(Mi Uj) is a ß integral lattice in R2. Moreover the ß integral dual L+(ß) of L(u u, is

Z(l/«2)t3 © Z(1/«,)Ö.
We say that the function / on R2 which is both integrable and continuous

satisfies the *-Poisson Summation Formula Property relative to L(u u. if

(a) / satisfies (A) and (B) of the Poisson Summation Formula Property relative to

¿(„„„¿(seelloffO).

(b) For every tj G L(u u ) * (Q), the function gv(x) = f(xux ■ v + tj) satisfies the

Poisson Summation Formula Property relative to Z.

(c) For any y G SL2(Z) the function x —> Ft)"1(<p)[y(xu)/w2] is continuous and

integrable. Moreover the series

2
(/,n)6Z2

with t, G L(u¡ „2) * (ß).

\ Mi /
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(d) For every M G SL2(Z), the function h(x, M) = ^((M, e))(f)(xv/u2) satis-

fies the Poisson Summation Formula Property relative to Z.

(e) The series

2
lSL2(Z)/PnSL2(Z)

jeZ

<(y'l)(f)
(*•)

< oo.

It may seem that these conditions are rather technical and arbitrary. However,

their importance is seen in the following lemma.

Lemma 2-1. Let f be a continuous Ll function on R2. Suppose for each (G, g) G

G2(Q) the function satisfies the "-Poisson Summation Formula Property relative to

Also suppose that for each (G, g) G G2(ß) we have F^tt^^G, g)~'))(/)(0) = 0.

Then ifi) = v/u2,

Tfag»(G,g)- 2
Yero(«l«2)/ro(«i»2)nV'(^)

2       ^((G(y, l),gr')(/)i(sMl + ^U

- a mod UjU2

x(«) •   (2-3)

Proof. By hypothesis on/we have that (with X = av/u2)

2      f(muxv + nu2v + X)
(m,n)eZ2

= —2      F-\f)( — v + nu2v)txp(2wV^\(at/uxu2)). (2-
"'   (M)EZ! V"' >

4)

The argument inside F~l(f) on the right-hand side of (2-4) is of the form

[tv + nuxu2v]/ux with (/, n) G Z2.

Then the correspondence y —> y(v) for y G SL2(Z) determines a bijection of

SL2(Z)/SL2(Z) n {(¿ f)} to the set [mv + nv\(m, n) G Z2 - (0, 0) and m, n rela-

tively prime}. This implies that the set A = {xv + yv\(x,y) G Z2 — (0, 0) with x,y

relatively prime and y = 0 mod uxu2 and if y ^ 0 then y > 0 and if _y = 0 then

x = 1} is in one-one correspondence with T0(uxu2)/T0(uxu2) n iK^)- (Note here

that ^(P) = (±¿ ±f)-) Then we partition the lattice Zv © Zuxu2v into two sets, i.e.,

T = U jeZ-it»M and the complement Tc of T in Zu © Zuxu2v. Now if w G T*7,

we assert that w = twv + uxu2¡wv has the property that tw and w,i/2 are «o/

relatively prime. Indeed if gcd^, uxu2) = 1, then let a^ = gcd(íw, uxu2¡w). This

means that a„ divides j,,,. Moreover, i^/a^ and bwu\u2/^ are relatively prime.

Hence >v = a^f^u/a,,, + w,u2¿wv/aw) G 7, which is a contradiction.

Thus taking the right-hand side of (2-4), we sum over a mod uxu2. We consider

only those terms in the sum where tv + nuxu2v G Tc. However, fixing one such
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,2^VTT (a//u,u2)

term, we see that the inner sum becomes

2       F;i(f)í-¡rv + nu2v)x(a)
a mod uiu2 \     1 /

= F-\f)[-¡-v^nu2v)      2       X(a)
V     2 / a mod uxu2

But we know that the last sum in (2-5) is a Gauss sum G(x, t, U\U2) which is zero

when t and uxu2 are not relatively prime.

Thus it suffices to consider only the sum of the form

e2ff\CT (a(/u,u2) (2-5)

2       X(a) 2

(,_   aa     \
2,7VrT^'

"lM2    /

+ F;l(f)(-Jy(v)) exp(-2wV^T ^)}- (2-6)

We note that the inner sum is invariant under left multiplication of y by an element

of the form (±¿ ±f). Moreover we have used here the fact that Fv(f)(0) = 0.

Then using the hypothesis on/again (specifically the integrability of /on R2 and

the integrability and continuity of x ~> Fv(f)[y(xv)/u2] for all y G SL2(Z)), we

deduce that Fv ° y ° Fv\f)(xv/u2) = ^(yX/Xxu/'u2) for all x G R and all y G

SL2(Z). Then we have

2 W)
jez

1
7>(u) expi2ttV^T -^-/|

= «, 2   ^ » f' ° F;\f) h+^)u (2-7)

Then using (2-7) we deduce that the left-hand side of (2-3) equals

Er0(„,U2)/r0(U|U2)n {(*'    ^)j

{JUl+^)V X(«) •    (2-8)2      FvoyoF;\f).
a mod U|«2

yez

Then if we replace/by ^^((G, g)~')(/)> tne above reasoning remains valid because

of the hypothesis on ^^((G, g)l)(f) in the lemma. Finally we use (2-2).    Q.E D.

We can extend Lemma 2-1 to higher dimensional spaces in the following way.

First we need the analogue of the *-Poisson Summation Property for R* space.

Let L be a ß integral lattice in R*. Assume that L has a ß orthogonal splitting of

the form L = £ © L(U|,„2), where £ is a Type II lattice in R*"2 and L(u¡U2) is as

before.
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Then let/be a continuous and integrable function on R*. We say that / satisfies

the *- Poisson Summation Property relative to L if

(a')/satisfies the Poisson Summation Property relative to L (see §2 of [II]).

(b') For each tj g £,(ß), the ß integral dual lattice to £ in R*"2, the function

QV(X) = /(tj + X) with X G R2 satisfies properties (a), (b) and (d) above.

(c') For any KG £,(ß) © L^.,

2     W/M + M"+ V)\ < oo.

Also if y G SL2(Z), then the function x ~+ F~l(f)[y(xv)/u2 + W] is continuous

and integrable (for any W G R*~2).

(d') For each y G SL2(Z) and each Z G R*"2 the function

Z ~» TrlJy-'X/XZ + po/M2)    (with p G Z)

is continuous and square integrable on R*"2, and the series (with Vx G £*(ß))

2
£e£
fiez

4n(7 ')(/)( e+-fc* + r .) <   00.

(e') For each y G SL2(Z) and ¡u. G Z the function Z -* Wo^y^'X/XZ + px>/u^

with Z ER*"2 satisfies the Poisson Summation formula relative to the lattice £.

Again these conditions seem unmotivated but become essential in the following.

Proposition 2-1. Let L be a Q integral lattice in Rk. Assume that L has a Q

orthogonal splitting in the form L = £ © L(u u y where £ is a Type II lattice in Rk~2

and L(„ „ j is as above. Let f be a continuous and integrable function on Rk. Assume

that for each (G,g) G G2(ß), the function tr^(G, g)~l)(f) satisfies the *-Poisson

Summation formula relative to L. Also assume that FJ^a^G', g') ))(f)(T) = 0 for

all T G R*-2 and for (G', g') G G2(ß). Let tj G £„(ß). Let {ofj( )} be the matrix

defined in §0 relative to the lattice £ (where, with an abuse of notation, the pair of

vectors (x,y) index an entry of {afj( )}). Then we have

T£v+r,,x(G',g') =
Yer0(U|U2)/r0(U|u2)n^(/')

2    (     2      <„((,, irW(G'(y, lXgT'K/)
{ee      1. r,,ee (ß)/e
jez

a mod u,u2

«+*•♦(*.+^V>X(a) ■    (2-9)

(Note: The order of summation above is critical in that the series on the right-hand

side of (2-9) may not be absolutely convergent.)

Proof. Let <p = ^^((G', g')~'X/)- Then by using properties (b'), (c')> and (d'), we

deduce by following similar reasoning as in Lemma 2-1 that
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2       !pU + i) + U«i+—)v + nu2v)x(a)
te£ \ V "2/ /

(m,n)eZ2

a mod uxu2

7er0(u,u2)/r0(wiu2)n^(/>)
2     <((y, lr'Xv)

ie£
yez

a mod U|«2

e + ,.+ (>I + Ä)0 x(*)

(2-10)

We note here that the order of taking the summation on the right-hand side of

(2-10) is important. We essentially are using the argument of Lemma 2-1 where the

Poisson Summation formula is applied two times. We know that the series on the

left-hand side of (2-10) is absolutely convergent. Also we know that

2 |{---}|< «
ysr0(u|U2)/r0(«|U2)n^(/')

(from (c') above) and that the series in { • • • } is absolutely convergent (from (d')

above).

Then using (e') above, we deduce that for y G T0(uxu2) (here we use 10 of §0)

with X G £+(ß) and

^((G, l))(<p)(Z, + Z2) = <~2((G, 1)) ® t4((G, l))(<p)(Z, + Z2)

where Z, G R*-2, Z2 G R2 (here <p G L'(R*)), we have

2 <((y, ir'Xv)
tee

£ + X + -^v

=        2 <((Y, O"')    2   »Ä((y, ir')(<P)
u,e£ (ß)/£ liée

í + v¡ + (2-11)

We note here that

<"2((y, 1))^((y, ír'X^tA- + ¡w/u2] = <((y, ir')(<P)[^" + P«/«2]

is valid because of the continuity and L2 assumptions in (d').

Then we substitute (2-11) on the right-hand side of (2-10).    Q.E.D.

A t this point we make precise the relationship between the lattice £ © L(u u ( and

the Q orthobasis defined in 1 of §0. Namely we assume that £ Ç Q <8>

[e2, . . . , êa+x, . . . , ek} (i.e. êa+x denotes ea+x is omitted) and that v — V2 va and

v = va/V2 .

The main problem is to find functions / so that w<%$.(G, g)l)(f) satisfies the

*-Poisson Summation formula relative to L. However this is satisfied by functions

given in the following lemma.
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Lemma 2-2. Let \s\ > 2k. Let <p G Fß(s2 - 2s)¿XA: (Fß(s2 + 2s)¿xK resp.). Then

for every (G, g) G G2(Q), the function X ~* w^JXG, g)~l)(<p)(X) for X Œ Rk satisfies

the *-Poisson Summation Property relative to L.

Proof. See Appendix.

Theorem 2-1 (Zagier Identity). Let L be a Q integral lattice having the form

£ ffi L(l/i uj where £ and L(B Bj are as given in Proposition 2-1. Let <p G

Ecytfs2 — 2s, s, sx, s2) (Eaj^s2 + 2s, s, s„ s2) resp.) with \s\ > 2k be given by (1-7).

Then assume that

•ÍLffW) = /R »*(r!K»)[ y + '»„] <* = o (2-12)

/<?/• eac/i  F G L|. Leí ne ¿>e the exponent of £„(ß)/£. 77ie/i the exponent nL of

Lt(Q)/L is the least common multiple of n£ and uxu2.

Assume that 2n£\uxu2 (so that nL = uxu2). Then we have (valid for g as given in

(2-17) and any z G H)

f^x(z,g)=2*-< 2
yer0(U|u2)n^(/')\r0(u1u2)

S   \rrl{      2       XÍ*)Mv(g,Z,r,p)]SLx(y)l—±-j]
X* lcmod«,«2 ; \CYZT"v/

£2n V^T ry(z)

(2-13)

where

M,(g, ß; r, r) - 2 Ä+(g(| + (/«, + -U) (2-14)
{ie£|ß(i,i)-2r} V     V \ "2/    //

yez

and where X+ = {(ß(£, £))/2} n R+ a«¿

M*) = \\x+\\-(s+(k/1)+Sí+s>-2)Psíx+)PS2{X-) (2-15)

w/'f/i X G ñ + .

Proof. We apply Lemma 2-2 and Proposition 2-1. We note that if 2/ie|M,w2, then

a5i,,((Y> 1)) = 0 if tj, ^= 0 for y G ro(M,w2). Next it suffices to observe that ad =

1 mod uxu2 implies that aay ranges over a complete set of representatives of

integers mod uxu2 when a does the same. Thus we deduce that T^   (G, g) equals

2
yer0(«lu2)/r0(U|«2)n^(/')

2 2   <4((Y> irW(G(y, I),g)-')(«P)
v mod utu2    \ jeZ

£e£

•[|+(>1 + ^)( xWxK)

(Mi
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Then we let G = ((Qyx-\), 1)) and using an argument similar to Lemma 1-2, we

obtain

°U(y> l)"V*((G(y, l),g)-')(<p)[l + (jux + v/u2)v]

= (Im z)"2|,f-lh+(g(£ + (jux + V/u2)v))(-cyz + ayys

•'-V",nr~,W4t((y, l)-')[^2(y)]* (2-17)

with z = ~(y/x) + x'2V-\   and r = ß(£, £). But then

4i(y,\)x)[Uy)]kx(dy) = sl,x(y)

for y G r0(U|U2). Finally we note that sßx(y) = sQ„x(y) by usmg tne explicit form

of Sq given in §0.

We note here that if (p G ¿¡^(s2 - 2s, s, s,, s2) and if (2-12) is satisfied, then for

any G G 5L2

/*«*((G, g)-')(v)[ *+*,„]*==()

for all A' G Lx. Indeed

*n((G,grl)(<p)(w) = c.i^r^-^^'e^'-'^íg-oí^t^iF].

Then using change of variables in (2-12), we deduce the above statement.    Q.E.D.

Remark 2-la. At this point we can make certain preliminary remarks about the

behavior of the function (with t = ux and u2 = 1)

M¿g,£,r,v)= 2 hJgU + Ut+v)-^)),
{£e£|ß(i,f) = 2r} \-\ V2   //

jez

where h+ is defined by (2-15). Then we have

Mv(gy,t,r,v)- Mv(g,t,r,v)

for all y G TL(ß) n 0(Q\L ) • U(F\). Moreover there is another elementary way to

write the function M . Indeed let £f, . . . , ¿¿(r) be a set of representatives of the

°{Q\l) n TL(Q) orbits in {£ G £|ß(|,ö = 2r). Then we have

Mv(g,£,r,v). 2 2
i=l y'ez

yer^n 0(61x^/(^0)0 o(ß|tl))*

^ + (^.((^)-^)(-e0). (2-18)

Remark 2-2. The order of summation on the right-hand side of (2-13) is

important. In general the series is not absolutely convergent. However we note that

by "formally" changing the order of summation in the right-hand side of (2-13) we

can deduce from Lemma 1-2 the formal identity
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«,(/),    (2-20)

Tt.x^s)-2"'   2   HM      2       X(») 2
reí* \r mod u¡u2 {í e £|ß(«) = 2r}

L jez

•^4*> ro(«i«2),')• (2-19)

Remark 2-3. The condition that $^( T) = 0 (for all Y G L,) is called the Second

Cusp Vanishing Condition for \j/ G EgJjs2 — 2s, s, s,, s2) in [II]. We recall from [II]

that the map (p —» <&£' is an SL2 X 0(QX) infinitesimal intertwining map of

F|(s2 - 2s)¿x* to F|,(s2 - 2s)KxK¡ (Kx = Kn 0(QX)). Thus if $?(Y) = 0 (for

all Y G L,), it follows that ^«cgvWy) = ° for a11 y e Li> a11 G Œ SL2 and

all g G pF. However if b = 2 with <p G Fß(s2 + 2s)¿xA- (|s| > j&) and if a = 2

with «¡ME F¿(s2 - 2s)KxK (s >\k), then 4>^((C,g)-.Xv)(F) = 0 for all Y G Lx, all

G G SL2 and all g G 0(ß). The latter cases are precisely the cases when

Ty (z, g) is a cusp form in the 0(ß) variable (see [II, §5]). Thus in the "cusp"

cases, (2-13) is valid for all z G H and all g G 0(Q).

The main point of (2-13) (and the formal formula (2-19)) is to prove that

< TL,X( > g)\A )XDr,    ,is êiven by the formula

2       2    x«      2       hJgU + (jux+^)v))
reX+      >.modu,u2 {Í e £\Q(£,{) = 2r} V     V x u2 '    I)

1 jez

where ar(f) is the rth Fourier coefficient of/at {oo}, i.e./(z) = Sr>1 ar(f)e2v "' ".

Here we use the reproducing formula (G,( , sßx, T0(uxu2), r)\f( )) = c

• flr(/)/-~'l| + l, c a nonzero constant depending only on s.

We can prove, by the methods of §§4 and 5, the equality between (2.20) and

<7^,x( , g)\f( )%îro(„,„2, for the cases when f£v¿ , ) is a cusp form in the 0(ß)

variable (see Remark 2-3 above).

We may ask what sort of modification is required to obtain an analog of this

formula for general T¿CíX( , )■ One possible way is to decompose g = k ■ p with

k G K n O(ßi) and p G pF. Then for (p G E^s2 - 2s, s, s,, s2), we know that

there exist linearly independent elements <p, in Ee^s2 — 2s, s, sx, s2) so that

■TQ(g])(<p)(X) = 2, a^/cjtp/pA'), with a, certain analytic functions on K. Moreover

the <p, can be chosen in a special way. Namely let <p,, . . . , <pm span the unique

subspace of E^s2 — 2s, s, sx, s2) which, via the map \p —» O^, is mapped bijec-

tively onto £gIl"2(s2 — 2s, s, s,, s2) (the corresponding K X Kx eigenspace in

L2(R*~2)). Then let <pm + 1, . . . , <pM span the kernel of the map \p -> 4>^ (i// G

Ec^s2 - 2s, s, s,, s2)).

Let/be a holomorphic cusp form which satisfies (T¿    ( , p)\f( )>6p = 0 for

all/7 G pF and / = 1, . . . , m. Then for such/we have

M

(TvLva(,g)\f()}=   2   «,(*)<^(./Ol/O)-
i>m+ 1
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Then we can try to apply (2-20) to each summand (7^"    (,p)\f( )> with/? G pF.

Hence it should be possible to derive a formula similar to (2-20) for general

g G 0(ß) provided / satisfies certain orthogonality conditions given above.

3. Dirichlet series attached to automorphic forms on <3l+. First we summarize the

results of §7 in [II]. Here b = 2, i.e., the signature of ß is (a, 2). Let

<ft+ = [x + V^T Y\X, Y EL, and Q(Y, Y)< 0 and Q(Y, ea + 2) < 0} be the
tube domain associated to the forward light cone, W = [Y G L||ß(F, Y) < 0 and

Q(Y,ea+2) < 0). We recall that the group 0(ß)o, the connected component of

0(ß), operates as analytic automorphisms on <3l+. Thus if g G 0(ß)o, we let

b(g, Z) = det(3(g • Z)/d(Z)) where 3(gZ)/9(Z) is the Jacobian matrix of the

analytic map Z —> g(Z) of *3l+ to itself. We note that b(g, Z) is a holomorphic

automorphy factor on %+. Moreover there exists a unique automorphy factor b on

<3L+ so that b2~k = b (see §7 of [II] for relevant definitions, etc.).

We note here that for g G PF| n 0(ß)o having the form hxAa(r)Nx(Y) with

hx G 0(ß,), r G R* and F G L, we have that

g(U+V^Ï V) = r[hx(U+ Y)+V^î hx(V)}

(with U + V^T V G <3l+). Then b(hxAa(r)Nx(Y), Z) = r~\

Also let ca be the element in 0(ß)o so that

ca(U +V^\ V)=-!-{U+V^\V}.      (3-1)
q( u + V^î v,u + V^T v)

Then we deduce easily that b(ca, Z) = Q(Z, Z).

We recall that a holomorphic function for <3l+ is an integral automorphic form of

weight v for an arithmetic subgroup T^ of 0(ß)o if

(i)/(y • Z) = b(y, Z)"f(Z) for all Z G <3l+ and all y G r,.

(ii) For each a G C(r„), the commensurability group of Tt in 0(ß)o, there is a

positive number d(a) so that (f\o)(Z) = f(a(Z))b(a, Z)~" is bounded on the

subdomain <ft+(c(a)) = [X + V^T Y\ \Q(Y, Y)\ >~c(a)}.

We note that C(r„) is exactly the set of Q rational points in 0(ß)o, i.e.,

C(r+) = 0(ß)o n 0(ß)Q- Moreover we say that an integral automorphic form is a

parabolic or cusp form if f(a(Z))b(a, Z)" ->0 as |ß(F, F)| -^ + oo in <ft+(c(a))

(for each a G C(r„)).

We recall from §7 in [II] that for any y G C(r+) there exists a lattice 9?(y) C Lx

so that U(Ff) n yr^y-1 = {#,(£) G Í/(F*)|| G 9ï(y)}. Then let 9í(y)* = {t, G

¿,lß(T?^(Y))CZ}.
Example 3-1. If T* = TL(Q), the stabilizer of the lattice L = £ © L(lX) in R*

then as an easy exercise we see that 31(e) = V2 {£ G £|Q(£, £) = 0 mod 2/, ß(£, |)

= 0 mod /} for e, the identity element of O(Q)0.

Then using the invariance of/relative to U(F*) n yr^y "' we deduce that

(/|Y)(Z)=      2      an(f\y)e-2^" e<z-D> (3-2)
fiej}(y)*
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where

%(/Iy) = f (f\y)(x + V^T y)e2-^ e(^+vit rjt> dx      (3.3)
JRk-2/m(y)*

with the series in (3-2) being absolutely and uniformly convergent on l5l+. We

recall that aa(f\y) = 0 for all ß G 3l(y)* satisfying ß(ß, ß) > 0 (if /is a cusp form

then aa(f\y) = 0 for all ß G 5R(y)* satisfying ß(ß, ß) > 0).

Furthermore, for y G C(r„,), we know that yr^y"1 n 0(ßi)o is an arithmetic

subgroup of 0(ß,)o and we have that ag.„(/|y) = aa(f\y) for all g G yr%y_l n

0(ßi)o-
We then observe that the subgroup {g G yTty~1O(Qx)0\g(^l) = ß} (for ß G

3î(y)* and ß(ß, ß) < 0) of yr^y"1 n O(ßi)0 is a finite subgroup. Indeed since

ß(ß, 12) < 0 we deduce that 0(ß,)o is a compact group. Then we let (for ß G

m(y)* so that ß(ß, ß) < 0)

e(ß|y) =  #{gG yr,y-' n O(ß,)0|g(ß) = ß). (3-4)

Then following [6] we can associate a Dirichlet series to a cusp form of weight v

(with respect to the arithmetic group Tt) by

D(è,f,y)=        2        ««(/W-TT^Iß^ßr (3-5)
SE{si(ï)'}r e(ß|Y)

where {3i(y)*}r  represents a complete set of representatives of the orbit space

{ß G 9î(y)*/yr,y-' n O(ß,)0|ß(n, Q) < o}.

Then following the ideas in [6] we can prove

Theorem 3-1. D(ê,f, y) is an absolutely convergent series for Re(ê) > v/2 (with

v > k — 4). Then we let

D*(Z, /, y) = {w*V(» - \ k + 2)r(â) } £>(§, / y). (3-6)

77ie« D*(è,f, y) can be analytically continued to the whole è-plane. Moreover it

satisfies a functional equation

D*(è,f,y) = D*(v-è,f,yca). (3-7)

Proof. We let F(T\) be a fundamental domain for yr^y-1 n 0(ßi)o in W. Let

d*(Y) be the measure on W given by dY/\Q(Y, Y)\ik~2)/2. Then we decompose

d(Y) = dr/r <8> do_x where da_x is an 0(ß!)o invariant measure on the + hyper-

boloid f_, n Lx = {X G L,|ß(*, X) = -1, Q(X, ek) < 0}. Then we can also

write F(Tyt) = R+ X F_x(Tym) where F_,(r^) is a fundamental domain for yr„y"' n

0(ß.)oinf_,n Lx.
First we need an auxiliary lemma.

Lemma 3-1. Let §, G C so that Re(ê) > k/2 - 2. Then for T G W,

[ \Q(Z,Z)fe2^T-zU*(Z)

= 2-{?r-2i + ik-4)/2T(è - k/2 + 2)r(a)}|ß(F, T)\-\ (3-8)
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Proof. We refer to Hilfsatz 1 of [13].    Q.E.D.

Then we define for/ a cusp form of weight v relative to the group r„,

R(z,f,y) = f     (/IyXV^T F)|ß(F, Y)\*d*(Y). (3-9)

But using the comments above

l(»,f, Y) = r r28"1! f        (/|t)(V^T r- $ do_¿Í)) dr. (3-10)
•'o {JF_,(r>) )

R(

The first problem is to determine the convergence of (3-10). Following the usual

method we write the integral in (3-10) as

f1 r2é~l{ ■ ■ ■ }dr+  r r2ê~l{ ■ ■ ■ } dr.
J0 Jx

Since/ is a cusp form of weight v we have that

|(/|y)(V=îr.{)|<'r-    sup     |(/|y)(V=ÎÎ)|-
£er_,n w

However (/|y)(V^T • £) is bounded on F_|(TJ); but F_,(r*) has finite volume

relative to the measure da_x. Hence

(>-'[ f (f\y)(V=ï rt) do.M))   dr
J0 { JF.,(pm) J

<(     sup     \fiV^-£)\)[vo\(F_x(Tl))}{(lr2*- ->dr\.        (3-11)

The latter integral in (3-11) converges if Re(§) > v/2. On the other hand we note

that

|(/Iy)(v^T/-•!)!<     2    K(f\y)\e2^^. (3-12)
£2e9?(Y)*

But since /is a cusp form on <3l+ of weight v we know from [6] that |an(/|Y)l <

C7|ß(ß, ß)|"/2 for all ß G 3?(y)* (Cp a positive constant depending only on/). Thus

the series on the right-hand side of (3-12) is majorized by

2     |ß(ß, ß)|"/V"ö(a.i) (3-13)
ñe3!(y)*

with I G F_X(T\).

But we know that (see [II, §5]) there is a positive scalar cy so that c ■ 3l(y)* Q

(Lx)z (with (L,)z, the Z span of a basis {(/,} of Lx so that ß, on L, becomes

a,i/2 + • • • +ak_3U2_3 - U2_2 = \\U+\\2 - \\U_\\2, with «„ . . . , ak_3 positive

rational numbers). Hence it suffices to study (A, some positive constant)

2     («2-||Q+||2y/V'^«a^*l-"<-î (3-14)

»eZt

||Q+||<#i

where £ - £+ + £_eA  with £+ G <e2, . . . , eÄ_2>  and £ G F.,(rj). But (3-14) is
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majorized by the series

But then

2 2      „'e2'Ma.*.]\e-**A*j,m (3_15)

llû+IK«

2      n'e2wA*a+*+l < \      2      Ún'e*4"***. (3-16)

P+fK« 11«+IK«

Then noting [II, Appendix] we find that (3-16) is majorized by

V     nk-3+r£-2wibiL-U*\\l« (3-17)

n>0

(where £_> ||£+|| by hypothesis). But using the classical Maclaurin integral test we

deduce that (3-17) is majorized by

But we recall that ex/(\ — e~x) < e~x/2/x for jc > 0. Hence (3-18) is majorized by

(^/•[£_-||£+||])-(^2)"''e-^/2>li--"^»]. (3-19)

But then

f+ °° r2i-\-v-(k-2)e^,Ar[Z_-\\i+\\\/2 dr

{ TtA\i -||£+||1 \-2*+'+(*-2)
= {       L    2 J j r(M/2)[£_-1|£+||], 28 - , - (* - 2))

(3-20)

where T( , ) is the incomplete gamma function. We note that the above identity

holds for all § G C.

On the other hand we recall from [3] that F_l(Tyt) is contained in a set of the

following form (for some t and C positive numbers).

¡=j

U   Y,(5,,c) (3-21)
/-i

where

S,,T={Aa+x(r)Nx(S)[ek}\r <iandS6 TrX)

with  TrC = {U G L2\ || U\\ < r • C}  and where  (y„ . . . , y.}  is a finite set in

0(ßi)o having the property that

U [yT.y-1 n o(Qx)}yr (o(ß,)0 n Pa}Q = (0(ß,)o)Q.
<=i
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We note here that

Aa+l(r)Nx(S)[ek] = Aa+x(r)Nx(S)[(l/V2 )(va+x - va+x)]

(1/V2) r   v„
1 + Q(S, S) I

rv„ + S

If î = Aa + x(r)Nx(S)\ek\  then  £_= ex\\u\\2/4 + cosh(x)   and   ||£+|| = V«--1

with r = e* and w = S.

We note that 0(ßj invariant measure da_x on 5, T is given by *//•//• ® i/S1.

Then we let u(x, R) = exR2/4 + cosh x. Using the change of variables r —» r-1,

then there exist positive constants tx and Tx so that (§0 = Re(§))

¡s   [l--||£+ll]-2âT(^(£_-||£+||), 2â0 - v - k + 2) ¿a ,(£)

< fÄ'r' Rk-s{ f + X     t(^-(u(x, R) -Ju(x, R)2 - 1 ), 2S0 - * - * + 2)
JR = 0 [Jx = \ogt,      \    ¿ ' I

An easy argument shows that for fixed x the function

\u(x, R) -^u(x,R)2 - 1  }"  "dxldR.

(3-22)

(3-23)

R -* V(x, R) = u(x, R) -}Ju(x,R)2- 1

for /? G [0, F,] is a decreasing function. Thus

j        t[ — K(x, F,), 2è0-v-k +.2\H(Xy2*° dx

with

i^F.)     if*o>0,

[ V(x, 0)       if S0 < 0,

majorizes the inner integral on the right-hand side of (3-22). However for fixed R,

the function x -h> u(x, R) achieves its minimum at x0 when R2 = 2(e~2x° — 1).

Then decomposing the interval [log tx, 00) into at most two parts consisting of

[log tx, x0] and [x0, +00) and making the change of variables x -^ V(x, Tx) in

(3-23) we deduce that (3-23) is majorized by an integral of the form

L+°° r(~r K 2§° " " "k + 2K(K)

-1/2.

'M

where

^{V2+ v-2) m V -
dV

\v\ (3-24)

+JÍV)-

-28o

m -2s„

if §0 > 0,

if &0 < 0,

with A/ a positive constant depending only on t.



32 S. RALLIS AND G. SCHIFFMANN

Then we recall that for v > M' > 0 there exists a constant Cu. so that |r(u, a)\

< CMe "v"   '. Hence (3-24) is majorized by

ÇJ e^/^o(K)If4-(!-      (T(±±\y2 + l
1/2

K2 - l\dV    (3-25)

with

JlKl-«'*« if ë0 > 0,

[|F|4â°-<" + *>(F2+ l)-2â°     if â0 < 0.

But the factoring V4 — 2(TX + \)V2 + 1 into a product of four terms and noting

the local integrability of each term (in V) we deduce that the integral in (3-25) is

finite. Moreover for §0 > M" (3-25) is bounded by a constant depending only on

M " and M.

Thus using (3-12), (3-20) and the immediately preceding arguments we deduce

that the function

*-*jf ">r*~l{fs  (/lY)(V=Tr•£)</<>_,(£)}<*> (3-26)

is bounded uniformly in every half space {§ G C|Re(§) > M"}. Moreover the

function defined by (3-26) is holomorphic in the complex S-plane.

On the other hand if we replace (/|y) by (/|yy,) (with y, given by (3-21) and note

that b(y„ Z) = 1 (y, G O(Qx)0) then by using the same arguments as above

g^r + DV--fr        (f\y)(V^Î rè) do_x(0) dr (3-27)
Ji i Jy,(S,,T) 1

e complex ê-plane. Thus

rX^~l{f (f\y)(V^\r-£)do_x(0)dr (3-28)

is holomorphic in the complex ê-plane. Thus

/

defines a holomorphic function in §.

Then starting with (3-19) and adapting easily the above arguments we also show

that in

2      aa(f\y)e2^^A ¿a_,(£) (3-29)
£)VOe«(y)* I

the summation and integration can be interchanged. Thus (3-29) equals

2      aa(f\y){i e2"«™ *_,(€))• (3-30)
öeSR(Y)* l/f-iiTi) I

Then we integrate (3-30) against r2è~xdr over [0, oo) (this is possible by the

arguments above) and deduce immediately from Lemma 3-1 that for Re(§) >

max(i-/2, k/2 - 2)

R(è,f, y) = 2-7T-2i + (k-4>/2T(ä - k/2 + 2)T(è)

2 ubÍ/Iy)-^ 16(0,0)1^) (3-31)
B6{»(rf}r £("It) J
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where the series is absolutely convergent for Re(§) > max(i-/2, k/2 — 2).

Then to prove the functional equation and analytic continuation of R(ä,f, y) we

let h = (f\yca). Then by change of variables

f'^-'f/" (f\y){V^\r-i)do_x(i)\dr

= r + V,-2,-.f ( h(V^\ r ■ £) do ,(£)! dr (3-32)
Ji \Jp-l(n) J

and

f       r2*~H( (f\y)(V^\r-i)da__x(i)\dr

=  r1 ,.2,-2,-, if h(V^îr-è)da_x(0}dr.
J0 { JF_l(Tl) j

Thus we deduce easily the analytic continuation and functional equation of

R(è,f,y).   Q.E.D.
We recall that if/is an integral form of weight v on 9t+ that we can define/*:

0(ß)o^Cby

f*(g-]) =f[g{V^V2ek))[b(g,yTïek)}-\ (3-33)

Then we observe that f*((gq(9))~{) = f*(g~l)eV^* (where g(9) is the rotation

group of the plane i,ek_,, e^». Then for ê so that Re(§) > v/2,

R(ä,f,y) = rf + Xr2*->\ f f*(gAa(r-l)y-*)dX(g))*

(3-34)

where dX is some 0(ßi)o invariant measure on 0(ßi)o/0(ßi)o n yT+y_1 and dr/r

is the Haar measure on Aa(r).

We are going to determine R(ê,f, y) for special choices of/ i.e., for those given

by (1-3). For such a computation we use (3-34) as the starting point.

Example 3-2. We consider a special case of the Dirichlet series defined above.

We know that if k = 5 then 0(ß)o is isomorphic to the symplectic group in two

variables, i.e., Sp2(R). We make this correspondence explicit. We recall that Sp2(R)

is defined as the subgroup of q G SL4(R) satisfying gJg' = J, where J is the 4 X 4

skew symmetric matrix

0

h 0

with I2, the 2x2 identity matrix. This implies that relative to the standard basis

ex, . . . , e4 of R4 the alternating form ex /\e3+ e2 A ¿4 (an element of A2(R4)) is

invariant by g G Sp2(R) when the natural linear action of 5L4(R) is extended to a

linear action in A2R4. We know that for any two elements a, ß of A2R4 the product

a A ß is a multiple of e0 = ex A e2 f\ e3 A e4 in A4(R4). Thus a A ß = <Kot, ß)e0

and it is easy to see that <¡> defines a nondegenerate quadratic form in A2(R4).
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Moreover for g G SL4(R) we deduce that <¡>(ga, gß) = det(g)4>(a, ß). Hence

SL4(R) (modulo its center) via the representation a2 on A2(R4) is a subgroup of

0(4>)o. But by dimensional considerations (i.e., dim 5L4(R) = dim 0(^>)o) we have

that a2(5L4(R)) = O(<¡>)0.

By simple computation we deduce that (ex /\e3,e2 /\e4}, <e, A eA, e2 /\e3}

and <e, A e2, e3 A ¿4) span hyperbolic planes relative to <¡>. Thus <i> has signature

type (3, 3). On the other hand since o2(Sp2) leaves ex /\e3 + e2 /\ e4 invariant we

deduce that a2(Sp2(R)) operates on (ex /\e3 + e2/\ e^)1- in A2(R4) as orthogonal

transformations relative to </>. Again by dimensional considerations we deduce that

a2(Sp2(R)) (restricted to (ex A e3 + e2 A e4)x) equals 0(<i>*)o where </>* is <j> re-

stricted to (ex /\e3 + e2 A e4)^. Thus Sp2(R) modulo ±/4 is isomorphic to 0(<i>*)o

where <£* has signature type (3, 2).

Then following the notation used in §0 we let v3 = exA e4 = (e2 A e3),

v2 = ex A e2 = (e3 A e4) and e3 = (1/ V2 )(ex /\e3- e2/\ e4). Then by com-

putation we deduce that

CT2(<J"Br)= N^av'+ (~c)ü~3 + (~bV*)e^

where M = [J J], a 2 X 2 real symmetric matrix. Thus it follows that det(A/) =

we have that

„ XM) with XM = av3 — cv3 + (-bV2 )e3 (with M as above). Moreover

0

gMg'
= Nx(o2(g)-(XM))

with g G SL2(R) being identified with the matrix

g

0

0

UT

Zv3 ©

in Sp2(R).

Let L be the lattice in (ex /\e3+e2f\ e^-1 given by V2 {Zv2 © Zt32

Zv3 © Ze3/V2 }. Then it is easy to see that a2(Sp2(Z)) leaves L stable.

Then we recall from {1} that a modular parabolic form of genus 2 and degree v

is a holomorphic function /on H2 = {X + V^T Y\X, Y real symmetric 2x2

matrices with Y > 0) so that for all Z G H1

with

The associated Fourier expansion of/is given by

/(Z)=   2    *<#)*2ttV^1 Tr(Ai-Z)
(3-35)

N>0

where A' in the summation above runs over all symmetric matrices N = (ab *) so
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that a, c G Z and b G \Z. And in [6] the associated Dirichlet series to /is given by

2 -niïsANKd«N)~' (3-36)

where the summation is over SL2(Z) equivalence classes of semi-integral symmetric

matrices (via the action N~* gNg') and e(N) = the number of elements U G

SL2(Z) satisfying UNU' = N.

Then via the identification U + V^T V -> Xv + V^T Xv with t/ + V^T V G

//2, we have an analytic isomorphism of H2 onto "3l+ which commutes with the

Sp2(R) action in the following manner. If g G Sp2(R) then o2(g)(Xu+y/z\ v) =

Xg(u+V^\ vy

Moreover we deduce by an easy computation (see Example 3-1) that 9? = {£ G

Lx\Nx(0(L) = L) = Zv3 © Zv3 © ZV2 e3. Thus ÏÏÎ* = Zt>3 © Zt33 © Ze3/V2 .

Then via the identification of a holomorphic / on <3l+ satisfying (3-1) with a

holomorphic /* on H2 (i.e. /*(t/ + \TÄ V) = f(Xu + V^T Xv)), we deduce that

Sj,(N) = aXfi(f). Indeed we note here the relationship Tr(W■ M) = -Q(XW, XM)

with

«"-(•'   .H".'  .):
Then we equate (3-36) to (3-2) and use the invariance of Sj{ ) under the action of

GL2(Z).

4. Melliii transform of Ff. In this section we are going to determine /?(§, /, e) for

/* given by (1-3) (see (3-34)). We first recall the following data in the problem.

Let ß, be a quadratic form on R*"2 and £ a ß, integral lattice in R*~2. Let / be

a positive integer so that 4\t. Let L(, 1} be the lattice in R2 constructed in §2. Then

we consider the lattice in R* = R*"2 © R2 given by the direct sum £ © L(t xy Here

£ © L(t ]) is a ß integral lattice, where ß = ß, © 2xy and

2xy = Q(xv + yv, xv + yv)

(see §2). Let NL = \cm(t, N¿).

Also recall here that £ ÇQ® {e2, . . . , êa + x, . . . , ek) (i.e., êa+x denotes ea+x is

omitted) and that v = V2 va, v = va/V2 .

Let/ G [r0(AL), |s|, sßx]* (see §0 for this definition). Noting that 4\t, then the

space [ro(Af£), |s|, sßx]* coincides with S2\s{(NL, XqX^ ® x)*- which consists of all

holomorphic cusp forms /: H —> C satisfying /(y(z)) = (Xß ̂  ® x)(dy)j(y, z)2|î)/(z)

with

0«f«V/-l\W-«/a^>-(!im(if)
and  x  a   Dirichlet   character  mod NL   and  y G r^A^).1   We   note   here   that

S2^(NL, Xß |5| ® x)* is the isomorphic image of the space

52WI ̂, K,\s\ «■(fr
via the map g(w) ^»g(w) (see 7 of §0).
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Thus if h G S2^(NL, ß) (for any Dirichlet character ß mod NL) then

hx(w) = h(w) belongs to S2{s¡(NL, X¿M ® ty)*> with

In particular we note that

x,(-D = /*(-i)(^pW

(here s2 = s + \k - 2). But we note here that S2]s{(NL, ß) = {0} if ß(-i) = -1.

Hence we can assume that ß(-l) = 1. Also sgn(.Dß(L)) = (-1)* (b = number of -

signs = 2). Hence X/3(-l) = (-1/2-

Let y be given by (1-7) with |s| > \ k. Then we consider (1-3).

Ff(g\<p, L, tj„ x, T0(NL)) = (f^Jz, g)\f(z))^„L) (4-1)

where < | > represents the Petersson inner product over the fundamental domain

%^N) in H.

To be consistent with the notation set forth in Proposition 2-1, we see that tj, = v.

Thus the problem is to give an explicit determination of

f+X>-"(/■ Ff(Aq(rl)m\v,L,v,x,UNL))dX(m)) ^

(4-2)

for § so that Re(§) >\s2. We note here F/g| • • • ) has weight *2 relative to <¡íl+

(see [II, §7]).

The computation of (4-2) will be accomplished in a series of steps starting with

(2-19). Then substituting in (4-2) and assuming that we can change the various

orders of integration, we deduce that (4-2) equals

2"!-'   2   Mw-,{    2    xW^.ä.^kG^.i^r^^r)]/^^  (4-3)
reX~ I v mod i >

with

4>(f,è,r)=f + Xp2^4 f 2
J0 \JO(Qth/O(Ql)0nTL(Q) {éeñ\Q'U)-2r}

■h_(mAa{p-l)[Z + (jt + w)c]) dX(m)\ &■.    (44)

The procedure is first to evaluate (4-4) and then to show that the various changes

in order of integration can be done.

We recall that h_(X) = Q(X, ea+x + V^T ea+2)~s>   (on ß_) is used in Theorem
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2-1. Then we have

2 h_(mAa(p)[i + (jt + v)v])
{£e£|ß(«) = 2r}

jez

-(pt)-* 2 \j + ^(v + ^V^\Q(mí,ea+2)X\ S\   (4-5)
{ie£|ß(«) = 2r}  I ' \ P 'I

jez

But then we recall the formula

,1,1^ + 7)  -1^1)!-,?/    e        ' (4-6)
with w G C so that Im(vv) > 0. Hence we deduce from (4-5) and (4-6) that (4-5)

equals

(pty^^X 2 ( 2 ««"«w^
lÄ2        'F     />1   l {ie£|ß(«)-2r, ß({,eA)<0}

■ /*>"'(e2*^^ '"/' + (_ 1)^-2*^'"/<"). (4.7)

At this point we make precise the normalization of measures used in the ensuing

discussion. First we fix a Haar measure da on 0(ßi)o- Then we choose 0(ß!)o

invariant measures on the hyperboloid

f» n L, = (Z G L,|ß(Z, Z) = w, ß(Z, efc) < 0} » o(Qx)Jo(Qx)l;

with Fw = t50+| + \wva+x, in the following manner. We recall from [I, §5] that the

map

(p, Y)~>Aa+x(p)Nx(Y)[va+x +\wva+x]

is a diffeomorphism from R* X Rk~4 to Tw n Lx. Then we let dp^, be the 0(ßi)o

invariant measure on fw n Lx so that c//^ = dp/p ® dY (see [I, §5]). Then for F^

we let ¿t),,, be the Haar measure on 0(Qx)l~ so that da = dvw ® dp^,.

Let dX be the 0(ß,)o invariant measure on 0(ßi)o/0(ßi)o n T^ß) deduced

from da and the counting measure on 0(ß])o n TL(Q).

Lemma 4-1. Let

Gw(p,m)=2\ 2 tM¥/OQ(-*+.Ar,-i
l>\  l {ie£\Q(É,è) = w,Q'è,e„)<0} I

for m G 0(ß,)o andp > 0. If p > D > 0, then

f Gw(p, m)dX(m)
Jntn.\~/om.^nrL(Oï/O(ß1)0/o(ß,)0nr'-(ß)

< C vo\(0(Qx)¿)M(Qx, Ê' vv)/r^+%(/>, w)e~^'2,    (4-8)

where

w(k~5-^/2 ifk>6,
SÁP> w) =  ,

Aw-^/'p + Bw-^'2+x/2     ifk-5,
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with vol( ) taken relative to the measure vw, M(QX, £, w) the Siegel mass number

defined in §0, and A, B, a and C certain positive constants depending only on D.

Proof. For fixed £ G £ we consider the sum

But by using classical arguments (Maclaurin integral test), we deduce that (4-9) is

majorized by

pS2\Q(ml ea + 2)|-V-1/2M^/')le(m£'',"2)l.

Then we consider the sum

p-s2 2 |ß(m£, eû + 2)|-V-1/2)^/')le("'i-e-2)l.      (4-10)

(«ee|ß(«)-w)ß(i,et)<0)

Then we deduce

f Gw(p, m) dX(m)
•/O(ß,)0/O(ß,)0nri(ß)

< pA 2* yo\(o(QxY¿/o(Qxy¡ n r^-(ß)) j

• f f \Q(mTw,ea + 2)\-^-l/2^/^mT^^dp^(m)},     (4-11)
{JO(Ql)0/O(Q,)S- i

where vol( / ) is taken relative to the measure induced on the homogeneous space

o(Qx%/o(Qx% n r^ß) = o(QX~/o(QX- n ôwtl(q)ô->

(with ôw G 0(ß,)o so that 8W(£¡") = Tw) by dv„ and the counting measure on

0(ßi)or" n 8wTL(Q)8-\

We then note that

yoKcKQXKXSX n r*<ß» - <«°«X) #¡0(e¿ n ̂ y

Thus we deduce that the right-hand side of (4-11) equals

M(QX, £, v.)vol(0(ß,)o-) f . *«?(»» ■ K, ea+2)) dp^(m),  (4-12)
•/O(ß,)0/O(ß,)o-

where ^(x) = x-V_I/2>"0'/,)x for x > 0.

Then the integral in (4-12) equals

f {S(w, W, x)yS2expl-l-^P--\S(w, W, x)\\xs>dW—,   (4-13)
-/R*"4XR + \     2       t   X I X

with 5(w, W, x) =\(w — Q(W, W))x2 — 1. But since ß is positive definite on

R*~4 (s L2), we obtain, by using polar coordinates in R*-4, that (4-13) equals

f       (zx2 + IF'2 exp(-^77^-(zx2 + l))x'*(z + w)(k~6)/2dz —.     (4-14)
•Iz> -w \     2.       t   X I X

x>0
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Then, letting v — zx2 above, we have that (4-14) is majorized by

f       (v+ irW2 expf-i-T^z'/V/2 + v-^2))z-^2(z + w)(k-6)/2— dz.
Jz->-w \   2     t i v

(4-15)

Then since vl/2 + v~l/1 > 1, (4-15) is majorized by

if        expf-^f z'/2)z^/2(z + wfk-^/2dz\

•if    (v + \)-tlv'i/2-1do). (4-16)
[Jv>0 I

However s2 > 0 and k > 5. Thus both integrals above are convergent. By using the

asymptotic properties of the incomplete gamma function, we deduce that the first

integral in (4-16) is majorized by

wik-5-s2)/2p-ie-apw'i2 for a some positive constant if k > 6,

{(Aw-^ + Bw-s*/2+l/2)p-le-afiw'/2    (if A: = 5) with A, B, a constants.

(4-17)

Thus we deduce (4-8).    Q.E.D.

Proposition 4-1. Let the same hypotheses hold as in Theorem 2-1. Then for each

p > 0

f *&»(*. Aa(p-])m) dX(m)
J nt n.\~ / nt n.\„r^vL(Q)

(2ttV^T
(s2 - 1)

o(ß,)o/o(ß,)onrL(ß)

= (ff f^To + (-irx(-i)}2^-^>
2       \r\^-k/2G^{z, s¿x, T0(NL), r)M(Qx, £, 2r)

(reZ\r<0)

■ if 2 iH-Wx,Utyw,p,r)
I I /> 1

(4-18)

w/jez-e G(x, /, 0 is the Gauss sum, given after (2-11), and

*(/,/», r) « 2f+ " K0llV2 ti^Vu~\(u - r)(k~6)/2 du (4-19)

in terms of the K0 Bessel function.

Proof. To show that the integral in (4-1) exists, we must prove from (4-8) with

p > D > 0 that

2       M'^'I^O, s¿x, TQ(NL), r)\M(Qx, £, 2r)
{reZ,r<0}

• vol(0(ß,)7'2')e-<vl2'l'/X(A 2/-) < oo. (4-20)

But  for z G H,  the  lower  half-plane,  we  know  that  G^(z, sßx, T0(NL), r)  is
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majorized by a series of the form

ß(z, |s|) = 2 \mxz + mJ-W.
(m¡,m2)eZ2- {0,0}

Hence (4-20) is majorized by the product

(   2   mM-iM(Qx,£,-m)vo\(0(QX")e-^'/%(m,p))Q(z,\s\).  (4-21)
I m>\ I

As a simple application of the definition of v_m we can show easily that

\o\(0(Qx)l-) = \m\2~k/2 vol(0(ß,)J-')• With this in mind we deduce that the

series in (4-21) is convergent. It is also evident that Q(z, \s\) is a convergent series.

Thus the integral in (4-18) is finite. Then we deduce that the left-hand side of (4-18)

equals

(Trt^^1^-1^-1»21*1"1

times

+ 00

Z\r\M-%\(z,s^x,T0(NL),r)

f 2   ls>-]G(x,l,t)  f
1/>1 •/O(ß,)0,

r> 1

/O(Qx)0nTL(Q)

2 exp(2^ß(m£,ea+2))ll<A(m)l.   (4-22)
{tet\Q(U) = 2r,Q(t,ek)<0) \ ' ')) )

However using an argument similar to the one in (4-11), we deduce that the

integral in (4-22) has the form

M(QX, £, 2r) vol(0(ß,)J-*)f f exp(2^Q(mT_2r, ea+2)\ dp2r(m)\.

(4-23)

Thus it suffices to evaluate the integral in (4-23). By using an argument similar to

the one in Lemma 4-1, we deduce that the integral in (4-23) equals

1 + X{fj~ e^-V2 wM (x + *ty)*)(u - rt-^du.     (4-24)

By using the integral representation of the K0 Bessel function we have the desired

result.    Q.E.D.

Theorem 4-1. Let k > 5. Suppose the same hypotheses hold as in Proposition 4-1.

Let f G S2,JNL, Xq,s\ ® x)* (with x a Dirichlet character mod /). Then consider the

Fourier expansion at oo of f given by

/(*)-   2   amV)*'VTxm.
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Then there exists a positive number pks   (depending only on s2 and k) so that for

Re(§) > f^2

f+ °°p»-'Á f Fj(Aa{p-x)mW, L, v, x, T0(NL)) dX(m)\ ̂

= c,{/a,-J*r([*)r(« + 2 -^)77-2â2-8}G(x, 1, t)L(x, 28 + 1 - s2)

2 ~aJf)M(Qx, £,2n)\n\-\ (4-25)
{/ieZ,n<-l}

where cx is a nonzero constant independent of § and t.

Proof. For/? > D > 0, we deduce from (4-8) and (4-18) that

f+°°f     2     klw+-*/2|Gw(z,s¿x,r0(^),,)|
JD I  {reZ,r<-l}

dp
■M(QX, £, 2r)e-a"^/2Sk(p, 2F)}/,2*»-<1+^

<Q(z,\s\)\j+œ{ 2 W*l-*f*
I JD \  {reZ, r<-l}

•M(ß„ £, 2r)«r*W!?Ä(A 2r)U2*»-(,+^^ }, (4-26)

where §0 = Re(§). Then using the explicit form of Sk(p, 2r), we deduce that there is

a positive constant 8k    so that

2      |r|W + 1-*/2A/(ß„ £,2/-)
reZ,r< -1

.if+Xe-^,/2Sk(p,2r)-p2^-^^±\

<(        2        k|-e°+^M(ß„ £,2r))r(2â0-s2).      (4-27)
I  {reZ,r<-l} J

Then the series above converges if §0 > 5^ (8k    some positive constant), and the

T function is defined if §0 > j(l + s2).

On the other hand if 0 < p < D, then we cannot apply (4-8) directly. However

adapting the argument in Lemma 4-1, it suffices to study

fD{      2      k|",+,-*/2M(ô„ e-,2r). ( 2 F-'^A^r))!^»-
■'O     I  {reZ,r<-l} I />1 J I

(4-28)



42 S. RALLIS AND G. SCHIFFMANN

Moreover from [7] we know that for Re(s) > k - 4

f+£° W,p,r)p&
Jo P

^y"iu-rf-^{yK^,LvzPy^)du

- ^-'(^~YmU)}'- *(i« + 2 - jt, }t - 2)W-"!*"2-!.   (4-29)

where B is the usual Beta function.

Then using (4-29) we deduce that (4-28) is majorized by

*&>)(        2        |r|**+1-*/2-*»A/(ß„£,2r))( 2  /""'-M       (4-30)
I jr6Z,r<-l) J   I />1 J

where g is a function dependent only on §0. However as above, we see that there

exists 8k^ , a positive number, so that if §0 > 8ks, the series in (4-30) are conver-

gent.

Summarizing the arguments above, it follows that there exists a positive number

h,s2 so that if ê0 = Re(§) > pkSi, then

Jo      [ Jo
\TvLv,x(z,Aa(p-x)m)\dX(m)}p2*°-°2^-

'o(Q,)0/o(Q,)0nrL(Q)

< ß(z, |s| • jS(g0)), (4-31)

where ß is a function which depends only on §0.

It is well known that for/a cusp form of weight |s|

f        |/(z)ß(2, \s\)\ |Im z|^2 dx dy < oo (4-32)

where ^r^) is tne fundamental domain of T0(NL) in H.

Thus (4-31) and (4-32) allow us to conclude that integration of the function

/(z) T^x(z, Aa{px)m) (4-33)

can be done in any order over the domains in question.

Then we let 3 = 2§ in (4-29). Finally we note that

<G,„( , s£x, T0(NL), r)\f( ))^Nl) = d- WÎ-W^OÎ, (4-34)

with d a nonzero constant independent of / and r.

Thus from the above arguments, (4-25) is a valid formula.    Q.E.D.

5. Fourier coefficient of Ff. Using Theorem 2-1 we can also determine certain

Fourier coefficients of the function Fj( \q>, L, v, x» ro(7VL)). We again have the

same hypotheses in effect as in §4. Then if F¿( \<p, L, v, x, *)) is given by (4-1) we let

Tfy be the corresponding function on the tube domain l3l+ given by the relationship

in (3-33). Then we know that for ß G 9?(e)*
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aa(ye) = e-2^2 -G«^ f    Ff(Nx(S)\<p, L, v, X, UN^e*'^ e^' dS

(5-1)

where Fn is a fundamental domain for the lattice 3Î in Lx. As in §4 we start with

(2-13) and substitute in (5-1). Then assuming integration can be interchanged with

summation we deduce that

an(Tf» = 2l*l-'   2   kr1"'
rex-

2    x(*)*(*, Ö, r)]<Gk|( ,s¿x, r0(2VL), r)|/>^Wt)
( y mod t

(5-2)

where

♦foftr)-*-2^•«<**♦»>/   f 2 h_(Nx(S)[t+(jt + ,>)v])}
JFn{ {{e£|ß(i,{) = 2r} I

. e-2„V^ Q(V,S) dS    (5.3)

with h_(X) = Q(X, ea+x + V^l ea + 2yS2 (on ß_).

Recall the explicit form of 9? given in Example 3-1. Then an easy argument

shows that for fixed £ G £ the set

{£ + (jt + v)v\j G Z}

=    N,((^)(-V2 ) • £ + m)[I]Im e K,p - a ..., d( - l)

where ß(£, £) = r < 0 and ^ is the smallest positive integer such that (t ■ dé)Z =

{ß(/x, £)| p G DÎ/V2 }. We note at this point that the number d( also represents

the number of Nx n TL(Q) orbits in the set {£ + (jt + v)v\j G Z).

Then following the discussion in [II, §5] we let /£ = £/ß(£, £). We recall that

Nf = {NX(W)\Q(W, £) = 0). Then we choose Haar measure dWx on Nf so that

dS = dWx ® dl{.  Then it follows by  the discussion in  [II,  §5]  that

volumeíFjí) = ?• volume(A/, |A7 n r (ß)) • d^ where the first volume is taken

relative to the measure dS on Fm and the second volume is taken relative to dWx

discussed above (here counting measure is used on discrete groups).

Hence we have that

/ j 2 *.(JV,(S + (^)(-V2 )£+ M)[£])le-2"VrTe^)¿/S

^ p = 0, . . . , i/f — i J

0   if V2 • £ is not a rational multiple of ß;

volume(A/lVA/,í n ^(ß))

rft-i

¿{C^^m^M ^»nCT uß(/{,ß) ^M

if V2 £ is a rational multiple of ß. (5-4)
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Then if V2 • £ is a rational multiple of ß we make the change of variables

w = u — V2 (pt + p) in each summand in (5-4) and deduce that (with

£ = aß/ V2 ) the right-hand side of (5-4) equals

l di-\ . -i

volume^«/JV« n TL(Q)) ■      2   exp(-2^V^T (^±-^ JV2 ß(£, ß))

.   j j+°" h  (| +   u.Va)2.Vm»/rMW duy (5.5)

However if £ = aß/V2 with a G Q then the summation in (5-5) becomes

exp^V^T^ß^ß))     2   expi-277V^T^-{±ß(ß, 9î)}j        (5-6)

where ß(ß, 9Î) is the smallest positive integer so that ß(ß, 9?) ■ Z = {Q(p, ß)| p G

m}.
Then the sum in (5-6) is 0 if d( does not divide ß(ß, 9Î) and is equal to d( if d(

divides ß(ß, 9Í).

We know that every element ß G 5ft* can be expressed in the form ß • ß0 with

ß G Z and ß0 a primitive element in 9Î* (i.e., if íl0/m G 9Î*, then m = ±1). Then

let £ = (cx/VÏ. ) • (/3ß0) with a G Q and £ G £. If a = m/n with m and n

relatively prime integers then, since ß0 is primitive, it follows that n divides ß. On

the other hand we recall that

(t ■ daa/V-2)Z = {Q(p,aßQ0)\peVl/V2} = «• {Q(p,ßSl0)\p(EVl/V2 };

if daS¡/^ divides ß(y8ß0, 9Î) then m divides 2t.

Lemma 5-1. Let ß G 3Î*. Let £ G £ vwïA ß(£, £) = r. Also assume that V2 • £ =

mQ/n with m, n relatively prime integers. If dt divides ß(ß, ïït), then

*(v,Ü,r) = cx(m/ny-S2d(c(L()

•[exp(-277-V^r (mv/nr)Q(ü, ß))   + (-1)4» exp(27rV^T (mv/nr)Q(Q,, ß))]

(5-7)

w/iere c(Lç) = volume(A',í/^ií n TL(ß)) and where c, /'s a nonzero constant depend-

ing only on s2.

Proof. The argument follows from the considerations above and a statement

identical to (5-7) in [II, §7].    Q.E.D.

Corollary to Lemma 5-1. Let the same conditions hold as in Lemma 5-1. Then

' 2     x(")*(". ß, ') m \
j/ = 0

0   ifm^2t,

X(n) G(x, h t)cx{x(-l) + (-IY2}

•c(L,ß/V2 n)(2t/ny~S2d,Q/V2 n    if m = 2t.

(5-8)
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Proof. We essentially evaluate a Gauss sum and use the comments preceding

Lemma 5-1.    Q.E.D.

We note here that from comments in the beginning of §4, x(~l) = X/?(_l) =

(-1/2. Hence x(-l) + (-1)*2 =±2^0 above.

Since every p G 9Î/V2 satisfies Q(p, £) = 0 mod / (see Example 4-1) it follows

that the lattice £/Ms a subset of V2 9?*.

Theorem 5-1. (i) Let ß G 9?* n W and assume that ß G £/V2 t. Then a^T^e)
= 0.

(ii) Let ß = w£/ V2 t with £ a primitive element in the lattice £. Then

aa{rTf\e) = c\G(x,\,t)t-4    2     xJv) v>*~x «(m2A2)(ß(i.i)/2)(/) 1       (5"9)
I  {v\v\m} I

where c\ is a nonzero constant independent of ß, t, x, and m.

Proof. Part (i) follows directly from the Corollary to Lemma 5-1. Then in (ii)

with ß = (m/V2 t) ■ £, with £ primitive in £, it follows that £' = 2iß/V2 v G £ if

and only if v\m. Then we apply (5-8) and the comments preceding this theorem.

In order to justify changing orders of integration above, we must show that

Lw «er0(«,«2)n^(/')\r0(u,u2)

2 vr
rex-

(      2       x(v)M¿Nx(S), £, r, v)
V v mod U)«2

Hv + rfJ• sQ.x(a
,2ttV-1  rw(z) dS < oo.

(5-10)

But  we  can  use  (4-6)  again  and  substitute  the  right-hand  side  of (4-5)  for

MV(NX(S), £, r, v) and deduce that (5-10) is majorized by

1 2    2 1'
we ■ ■ ■   rex-

\s\-l 2
{ie£|ß(i,f) = 2,-}

;i2-le-/a|ß({,«a+2)|

V + da

\s\

dS.

(5-11)

Thus we have by the same reasoning as in (4-9) that (5-11) is majorized by

r^vol(Fjß(z,|s|) 2  M1"-1 2
reX {  {ie£|ß(«) = 2r}

1

Q&ea+2)

«'lß(f.e.+2)l

(5-12)

Thus we can consider the double series in (5-12). However we may assume that

ß(£, £) = Il£+Il2 - ll£-H2> with ||£+||2 a positive definite diagonal form with positive

rational entries and ||£J|2 a positive square. Hence we have that the inner series of
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(5-12) is majorized by

2
{íiíez*-3}

{iez*-2|||í+||2-||í_||2=r}

Hence (5-13) is majorized by

i       Yi/2

Hé+H2 + M.

But (5-14) in turn is majorized by

iH/2

2 [~T~T9"tnu- (5~13)
;+U2-IMUI2-i-)Vl,*-|l/

exp(-«y||£+||2 + |r| ). (5-14)

lr]s2/2e^r + f     ( 1 Y    exp'-a^llX\\2 + \r\)dX.       (5-15)
■/R*-3\ ||A^¡|   + |r| /

Then the integral in (5-15) is dominated by

.« v + ae/ 1 W2
e~a'M    í      [-T1-        »k~4dw, (5-16)

Jo      \w2 + \r\ )

which, in turn, is majorized by

r-(.2-(/c-3»/2 exp(-a'VN ). (5-17)

Thus in any case, (5-13) is dominated by

|/f exp(-a'Vk| ),

for q some number independent of r.  Finally the double series in (5-12) is

majorized by

rex

2   |/f + ',l-1exp(-a'VH),

which is clearly convergent.

Then following the same type of arguments as in §4, we deduce that summation

and integration can be changed in (5-1).    Q.E.D.

Remark 5-1. If ß, = (m/V2 r)£, and ß2 = (m/\Í2 0£2 with £, and £2, T^ß) n

0(ß,) inequivalent primitive lattice points in £ with ß(£,, £,) = ß(£2, £2), we have

thatai2i = (T/|e) = aai(Tf\e).

Remark 5-2. By using the expression for aa(Tj\ e) in (5-9) we deduce that

2 a^f\e)—\- ß(ß,ß)-ä
^(«•l^mno«,) eW>

= c\t2i-°2 ■ G(x, 1, t)L(x, 28 + 1 - s2)        2 a„(f) M(QX, £, 2«)|«|-*.
{neZ|n<-l}

(5-18)

This verifies the computation made in Theorem 4-1.

6. Examples of Euler products associated with Dirichlet series. We have con-

structed in Theorem 4-1 a Dirichlet series of the type discussed in [10]. The special

feature of this series, aside from the T factors, is that it has the form of the product
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of an L function and a Dirichlet series, which can be expressed essentially as the

Rankin convolution of two other Dirichlet series. That is

2     ~aJf)M(Qvt,2n)\n\-*

is the Rankin convolution of 2n<_! an(f)\n\~*, the Dirichlet series D(ä,f) associa-

ted to/, and of 2n<_, M(QX, £, 2«)|/i|"8 Siegel's zeta function, f_(ß,, £, ê) associa-

ted to the quadratic form ß, and lattice £.

A very basic question is to determine what type of Euler product property the

series

2     ~aJf)M(Ql,Z,2n)\n\-
n<-\

has, given certain Euler product properties of D(§,/) and $ (Qx, £, §).

The dimension of the space R ® £ is critical at this point. The reason is that

D(ê,f) has an Euler product when the weight of/is even, i.e., the number |s| is

integral or s = k/2 mod 1 for k even. However if |s| is an odd integer divided by 2

then / corresponds to a half integral automorphic form; then we must use the

modified theory of Euler products developed in [10]. It is interesting to note that

the parity of k is reflected in the functional equation of f_(ßi> £, §)• For instance

when k is odd and k > 5 (recall dim(R ® £) = k - 2) then f_(ß,, £, ê) satisfies a

functional equation of the following form. Let <p(ß,, £, §) = ir~sT(è)^_(Qx, £, S).

Then

<p(ß„ £, S) = (-lf-3)/2|/)e,(Ê,r'/2<p(Ô„ £*, */2 - 1 - S).

However if A: is even, the functional equation is more complicated involving the

zeta function f + on the hyperbolic lattice points (see Satz 2 of [13]).

The first point to investigate is what sort of Euler product property the Dirichlet

series Ç (Qx, £, §) has. We start with the example in the case k = 5 (see Example

We then consider the space R5, the orthogonal complement to ex /\ e3 + e2 ¡\ e4

in A2(R4) relative to the quadratic form <f> defined in Example 3-2. We then let ß be

the quadratic form on R5 defined by Q(a, ß) = $*(a, ß), i.e., </>* is <f> restricted to

(ex A e3 + e2 f\ e4)x.

Then we consider in R5 the lattice given by LN M = £ © L(A, 1); with £

= V2 M[Zu3 © Zv3 © Ze3/VI ] and L{NX) = ZNv © Zt3 (where v = v2/V2 and

i? = V2 u2), and where M, N are positive integers such that M divides N. Then

LN M is always a ß integral lattice and is a Type II lattice if and only if M is even.

Then we note that

°2({Y 6 5>2(Z)|Y =/4 mod *})(£„,„) = LWA/    if^|lï.

Also we note by direct computation that

(g'Y
gG5L2(Z)
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In fact we know that the symmetric matrix

<T-f   a       b/2\
U/2       c   j

with (a, b, c) G Z3 can be identified to the lattice element

X% = {av2 — cv2 + be3/ \Í2 }

in such a way that via this identification

C    ?V
(with g G SL2(Z)) goes to

«

ur
[av2 — cv2 + be3/V2 }

Ze3/V2 ].

Thus we can classify the a2(SL2(Z)) orbits in

£ -V"2 m[Zu3©Z63(

The question just reduces to a classical problem in the theory of binary quadratic

forms.

First we know that the discriminant of the matrix

HV2     f)
is given by ¿>2 - 4ac = 8(X). Then if (a, b, c) G Z3 it follows that S(A') = 0 or

8(X) = 1 mod 4. Moreover such an X is called primitive if the greatest common

divisor of a, b and c equals 1. Then the classical theory of binary quadratic forms

says that for X primitive and 8(X) < 0, SL2(Z)X = the isotropy group of X in

SX2(Z) is

a group of order 6 if 8(X) = -3

a group of order 4 if 8(X) = -4

a group of order 2     if 8(X) =£ -3, -4.

Proposition 6-1. (i) Le/ N be divisible by 4. Let L = LN M. Then nL, the exponent

of LN M, equals the least common multiple of2M2 and N. Also the discriminant DQ(L)

of LN M is 4M6N2. If M is even and 2M2\N, then LN M is a Type II* lattice.

(ii) Let M be even and 2M2\N so that nL = N.

Let f G S2^(nL, Xß |5| ® x)* with s > 2k (see §4) and with x a Dirichlet character

mod nL. Let Ff be given by (4-1) and let F*(U + V~-[ V) = T/A^ + V^-F Xy) =

Ffig~])[b(g, V^T ek)f2 where the point U + V^T V in H2, the Siegel space of genus

2, corresponds to the point Xv + V^T Xv = g(V^T ek) in (Sl+ (where the symmetric

matrix

U
< y

corresponds to the vector Xv = rxv3 — r3v3 — r2\Í2 e3). Then F* satisfies the func-

tional equation
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F*((AZ + B)(CZ + F>) ') = (det( CZ + D))S2Ff(Z) (6-1)

for any

\c\ dJ
belonging to the group in Sp2(Z) generated by Sp2(Z)R (with N\R) and

SL2(Z) =
0 UT'

g G SL2(Z)\        (with s2 = s + 1/2).

Proof. The proof is direct from the remarks in Example 3-2 and (3-33).    Q.E.D.

Remark 6-1. The Dirichlet character (mod nL)

I      1 \k| —5/2
\U«) - t-i)(" "',>s'~t-eJ

(see the beginning of §4).

From Proposition 6-1 we also deduce that F*(Z + N ■ U) = Ff(Z) for any

Z G H2, U = (1 *), a symmetric matrix with (a, b, c) G Z. Thus we have the

expansion

F*(W)=   2    S„(U) exp^V^T ~ Tr(t/■ IV)) (6-2)
{/>o \ iy i

where U runs over all symmetric positive semidefinite matrices

b/2\

U/2 )
with (a, b, c) G Z3.

Theorem 6-1. (i) Let Ff be given as in (ii) of Proposition 6-1. Then S^U) = 0 if

det( U) = 0. F/iws F* is a cusp form on H2 relative to the group Sp2(Z)R (discussed in

(ii) of Proposition 6-1).

(ii) Let

V
=(   a       ¿/2\

"U/2       c   jb/2       c

with det( U) > 0. // e/7/ie/- a ^ 0 mod A/ or c ^ 0 mod M or b se 0 mod M, í/ien

si-.( C/) = 0. On the other hand, suppose that U = MjU0, where

Ur,
b0/2

b0/2

with gcd(a0, b0, c0) = 1 andj a positive integer. Then (up to a nonzero scalar)

S^U)^ N-S2G{X,\,N)[    2     XÖ¥S2~1 «(>V„2)(„2/2)W/) ).     i6"3)
I h-lo J

Proof. The first observation is that if

W _/*,     *2\ eF_[   a       b/2\

-\w2 W3)e"2,        "-[b/2 c     J
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,2\s\\*

(a semi-integral symmetric matrix), then Tr(W- ?T) = -Q(XW, X$.), where

»•-U TH1 ïh.-' :)•
Then equating (6-2) to (3-2) and using Theorem 5-1, we deduce the results of

Theorem 6-1.

Remark 6-2. We note that if M = 2 and TV = 8, then

/ 2 W -1 \IJI"V2

If we let g G S2k|(r0(8)), then

/W = ?M GS2|ir0(8), ̂J

(see the beginning of §4). Then we apply Theorem 6-1 to/ We see that

/ _] \2|í| / 2 \/ -1 \ 1-*!-^5/2

hence G(x, 1, 8) ^ 0. Moreover S2|f|(r0(8)) is a nonzero space (for almost all

positive odd integers 2|s|). Thus there is a nontrivial example satisfying Theorem

6-1.

We recall that a number d is called a fundamental discriminant if d is nonsquare,

is = 0 or 1 mod 4, is not divisible by the square of any odd prime and is either odd

or = 8 or 12 mod 16. We know then that any number, which is not a square and

= 0 or I mod 4, can be written uniquely in the form dm2 with m > 0 and d a

fundamental discriminant.

We let h(m) = the number of SL2(Z) equivalence classes of primitive semi-in-

tegral symmetric matrices with discriminant m.

Let

Í3    if ¿=-3,
w(d) =2    if d = -A,

[ 1    if d # -3, -4.

Proposition 6-2. Let LN2 be given where 2 and N satisfy the hypotheses in (ii) of

Theorem 6-1. Let d be a fundamental discriminant and define for Re(â) sufficiently

large

A(f, d, L„,2, 8) = 2 S^(2C/)—^—|fi(t/)|- (6-4)
{U} withS(U) = dm2 e\u )

m>\

where { } is over all SL2(Z) equivalence classes of semi-integral symmetric matrices

(via the action U —> gUg') satisfying 8( U) = df2.

Then for Re(S) sufficiently large we have the equality

A(f, d, LNa, 8) = G(x, 1, N)\ d\-*N-°2 ■ L(x, 2S + 1 - s2)

2 a2dn2(f)M(Qx,£,4dn2)\n\-2* (6-5)
{nez, n<-l}
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where M(QX, £, 4dn2) is the Siegel mass number given by

{q,q\n} W(dq  )

Proof. We apply (5-8). It then becomes a matter of explicitly determining

M(QX, £, 4dn2) in this case. Then we note that the number of distinct SL2(Z) orbits

in the quadric of semi-integral symmetric matrices of discriminant equal to dn2 is

2{9|ç|„i h(dq2). However we must assign a mass number \/w(dq2) to those belong-

ing to the partition determined by h(dq2). Hence the result follows.    Q.E.D.

We now investigate the Euler product property of A(f, d, LN2, S) in (6-5). For

this we need an explicit representation of Siegel's zeta function.

ï_(Qx,LN2,è)= £ M(QX, LN2, r)\r\-*. (6-6)
{reZ,r<-l}

Let

R(QX, LN2, d, è) =   2   M(Qx,LN2,4dm2)m-\
m> 1

However we recall the relationship

H¿£LmH£        n     U-[*\i
w{dq2)       w(d)       {pvñme,p\q}\ \P)P

Hence

M(QX, LN,2, 4dn2) = «g-    2    f II (l-(fH)U.
w\d>   {q,q\n}  I {p prime,p\q) \ \PIP1)

Thus we have the following Euler product formula for R(QX, LN2, d, §)

s(e,,iw,8).^n_Mtí_.

Hence we have that

R(QX, LNa? d, 8) = (h(d)/w(dm(m(ä - l)(l/L^), a)).

Theorem 6-2. Let f G S2^(N, a)* with a = Aß|j| ® x- Then f(w) =hf(w) with

hf G S2,JN, to), where

w = a ® I —
I  *  /

Suppose that (d a fundamental discriminant)
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where A, . = |s| — |, w, ¿s //ie Dirichlet series given by

1 \Aw/ -1 \ Aw
j,(jc) = w(x)[ —I

F/ien /or Re(s) sufficiently large, the function A(f, d, LN2, §) has the following

Euler product.

A(f d, LN2, 8) = ~aJJ)(h(d)/w(d))G(x, 1, N)N^\d\~*

„ (1 -\,/7-28 + u(p)2p2W-2-4i)
■ n-———-^-^- (6-9)

P   (1 - í/p/>'-2á + «(/0VM_4*} {1 - UPP-2* + «(/OV1*1-2-4*}

where

Proof. From (6-5) we know that A(f, d, LN2, 8) is, aside from L functions, the

Rankin convolution of the Dirichlet series given by the left-hand side of (6-8) and

by R(QX, LN2, d, 8). Thus the problem is purely an algebraic one. Namely suppose

gÁX)      lp[(\-mp.X)(\-np.X)

and

_,^  it    o-v*)
82{X)-[p[(\-rpX)(l-tp-X)

and g3(X) is the Hadamard product of g, and g2, i.e., g3(A") = 2„>0 cnd„Xn witn

*,(*) = 2 cnxn,     g2(x) = 2 dnxn.
n>0 n>\

The algebraic problem is to express g3 as a product.

By following the same arguments as in [11] we deduce that

">i+[ - <+X ™L - té \[ r{+l - tJ„ + x d - ti
P P i P P     \    )       P P P P

Using this remark we then deduce easily that

NP(X)
CpjOp*' =

j>0
2 v^ - ¡¡p(x)

where

Np(X) = 1 + {lpqp - qp(mp + np) - lp(rp + tp)}X

+ {-"ipVptp + apmpnp(rP + >p) + lPrp'p(mp + np)}x'

+ i-Lq„mnrtn}X3i    p^p   p p p p >

and

Dp(X) = (1 - rpmpX){\ - rpnpX){\ - tpmpX){\ - tpnpX).
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Then substituting the required values of rp, tp, mp and np, we have that Np(X) = 1
■2    ,     „   vl ,+ a„X + bnXz + cJTwith

b, = Mlfj*-X + ^(P)[=y-y^/2)vp + [j)^pfp^-\p + 1),

and

W-(S/2)cp = -^yx(pMp)2p^

Then by a simple and long computation we show that

Np(X) « il - (l^d-^JpW-O/^JfVl -xpx + «Q0VW-*»)

with Ap as given above.    Q.E.D.

Remark 6-3. The hypothesis on / in Theorem 6-2 is very important. Indeed we

refer to Theorem 1.9 of [10] when (6-8) expresses the fact that h; is an eigenfunction

of the Hecke operator Tx(p2) with eigenvalue Up (for each prime p). We consider

this matter more carefully in a future paper.

Remark 6-4. In the Main Theorem of [10] it is shown that the Euler product

n{i- o^ + ^yw-2-28}-'

is the Mellin transform /?(§, F) of a cusp form F of integral weight (relative to an

appropriate subgroup of SL2(Z)). Thus it follows, with (6-8) holding, that

AU, d, LNa, 8) = a2d(f) (h(d)/w(d))G(x, 1, N)\ d\~*

■ A"^Z)(28, F)Z>(28 - 1, F)I1 (1 - V"2' + «(/>)VW"2~'M}- (6"1°)
p

Appendix.

(Proof of Lemma 2-2). We give the proof in steps (I) to (V).

(I) We let

l(x, t, Z) = ^((G, gyl)(<p)(xv + tv+Z).

By the continuity property of (p we see that / is a continuous function. Moreover we

know from [II, §1] that

\l(x, t, Z)\ < (2xt + Q(Z, Z))w-1e-al2x' + c(zz»f-!-)      (A-l)
' *V        " \\\Z\\2+ x2+ t2)

with a = s/2 + k/4 — 1 and a a constant which depends only on (G, g) (here we

recall that X = xv + tv + Z G ß+ and that i||Ar+|| < \\X\\ < 2||Ar+||). Thus we

easily deduce that / is an integrable function on R*.

Also we know from Lemma 1-4 of [II] that

\l(x, t, Z)\ < (a2 + x2 + t2 + IIZII2)"" (A-F)

with a, a constant depending only on (G, g).
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From Theorem (1-5) of [II], we recall that l(x, t, Z) satisfies the Poisson

Summation formula (see 11 of §0) for the lattice L if s >^k.

Moreover using (A-L) we see that for fixed Z, the function (x, t) ~» l(x, t, Z) is

integrable when s > \k + 1.

Thus (a') of *-Poisson Summation Property is satisfied. Moreover for tj G

£„(ß), the function ß^(A') = l(x, t,r¡) (with X = xv + yv) satisfies (a) of the

*-Poisson Summmation Property relative to L(u u_..

(II) On the other hand we know that G = Wq1G'w0 in SL2. By assuming that

rp G E^s2 — 2s, s, s,, s2) we see that

■"<m.{(G, g)~')(<p)[wu + rv + Z] = ^[^((G', g)~l)(<p)Y[rv + ui + mq(z)]

for a nonzero c. By Fubini's Theorem

l(x,t,Z)= [ e2«VZXx>j(y,t,Z)dy
Jo

(A-2)

where

j(y, t,Z)=f ^((G',g)l)U)[uv +yv + W]*2'^ "" + e(^.z)] du dw

Thus /( , t, Z) is the Fourier transform of y'( , t,Z). From the preceding material it

is clear that /(, t, Z) is integrable in x (when s > k/2) and hence we deduce that

F;l(«**.((G, g)-l))(<p)[uv + rv+Z] = f l(x, r, Z)e2^VZx ux dx = j(u, r, Z)

(A-3)

at all points u G R where j( , r, Z) is a continuous function. But using (1-13) of

[II, §1] we see that for x > 0

\j(x, r, Z

<
/J{(y.Y)eRxRl'-2\2xy + Q(Y, Y)>0)

Jltk-2      y„_

F||2 + y2 + x2

z[2xy + Q(Y,Y)] dydY

Jy = -Q(Y,Y)/2x Y\\2 + y2 + x2

e-a[2Xy + Q(Y,Y)] ^      dy

(A-4)

But the inner integral above by the change of variables y = y'-Q(Y, Y)/2x

becomes (m = Q( Y, Y))

/;

i
-2axy'

\Y\\2 + x2 + (/- m/2xY J

Hence \j(x, r, Z)\ is majorized by

dY.

Fll2 + x2
dY

(A-5)

(A-6)

Then by the change of variable u = 2axy' in the first integral and Y = xZ in the
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second integral it follows that (A-6) is majorized by  Cxx s+k/2   '  (where  C,

depends only on (G, g)). Thus

\j(x,r,Z)\<Cx\x\-s + k/2-x (A-7)

for x away from zero.

Thus we deduce thatj(, r, Z) is continuous away from the origin. By the growth

property in (A-7) and (A-l) we deduce that the function

x ~» ^((G, gy])(<p)((xux + 8)v + W)

with  W G L, © Rv and with 8 G Q satisfies (b) of the  *-Poisson Summation

Formula Property relative to Liu0^.

(Ill) But by using (A-l) and (A-3) we deduce that if |s| > k/2, then

1
\F;l(- ■ ■ )(uv+ tv+Z)\ <  f

Jo \Z\\2 + t2 + x2
dx

\Z\\2 + t2

(j/2 + A/4)-3/2

Thus we deduce from (A-7) and (A-8) that (for |x| > |)

\F;\- ■ ■ )(xv + tv+Z)\2< g(x)
1

izn2+r2

(i/2 + A:/4)-3/2

(A-8)

(A-9)

where g is a continuous function of x, equal to |xkI + */2_1 when |jc| >\. Then

taking square roots of both sides of (A-9), we find that (aside from a finite number

of terms)

2      \Fvx(...)(i;-r-p + v)\ (A-10)

is majorized by a series of the form

-|(i + */2-3)/4

2
neZ-{0}

(m,í)eZtl-{0,0}

V^öö 1

+        2
(m,{)ez'-'-(0,(i)

m2 + ||£||2

1

u\\2

(s + k/2-3)/2

+       2       gi")-
neZ-{0}

(A-11)

However (A-l 1) is a convergent series when s > 3&/2 + 1.

Then if

y-' =
«r     èv

SL2(Z),

we see that g(x) = Fc (/)[(l/«2)y   (xd) + PF] is integrable with H7 (using

(A-7) if ay ̂  0 and (A-8) if ay = 0 with s > \k + 1). Also using (A-F), (A-3), and

an argument similar to that in (A-8), we see that g is a continuous function.

Thus   (c')   of   the    *-Poisson   Summation    Formula    Property   holds   for

"«.((G, *)-')(/) (when s > 3^/2 + 1).
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Rk-2,(IV) Then we consider the function (Z G R     )

"•fuíy'K^ÍG, gr')(<p))(Z + pv/u2)

«177   f   ir*n.{{G,gy'){<p)[tv + uv+Z]
\Cy\     JR2

•exp 2ttV^-[ — tu
p   u

dtdu       (A-12)

where

ay     by
G 5L2(Z)

with r , a number of modulus 1 depending only on y (cy =£ 0 here).

Then using (A-F) we deduce that the left-hand side of (A-12) is majorized by

(when s > k/2 + 2)

1

I
1

a, + HZII2 + t2 + u2

(s + k/2-2)/2

dt du. (A-13)

The latter integral is convergent when s > k/2 + 1. Moreover using the majoration

given by (A-13) we see that Z~»7r27ll(y"1)(77„x((G, g)"')((p))[Z + pv/u2] is a con-

tinuous function in Z. Also by applying (A-13) we deduce that

K(Y-')K((C^r,)(<P))[Z + HV/U2]\ < (l/K|)(l/(a, + ||Z||2))2-(i + */2)/2.

(A-14)

Thus the function Z ~* VsXr(.y~l)(w<m.((G, g)~l)(<p))(Z + pv/u2) is an L2 function

on R*-2 (when s > k/2 + 1).

On the other hand we note that the integral in (A-12) can also be written in the

form

exp -2.VrT^ß(z,z))/R2^(^)(G,g)-')

• (<p)[íu + uC +Z] exp[~27tV^Ï pu/u2cy) dt du.   (A-15)

The integral expression in (A-15) is simply the Fourier transform of the function

(/, u) ~+ Ws^( ■ • • )(<p)[tv + uv + Z]    at (0, -p/u2cy).

Then using the same argument as above we note that

tr^(n(2dy/cy)(G,gyl)(<p)[tv + uv + Z]

1
= ci^»(((

■HAr
with c. some nonzero constant. Then we let

, l)(G',g)-1j(<pr[Ut;+/t3+Mß(Z)]

)
uU,y,z)=fRt2^(((_2]y/Cy   ?),i).(G',g)

• (<p)[xv +yv + w\e2W~XQ(W-Z) dW
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and observe that

^(«(2^/^(0, g)-')(<p)[íü + UV+Z]

= c, J U(xv +yv+Z)e27,VZxlxu+>"x dx dy. (A-16)

Thus if

xv + yv + Z = -pv/u2c   + Z

is a point of continuity of U(, , ) it follows that

i/(0, -p/u2cy, Z) = f   ir^(n(2dy/cy)(G, g)"1)
yR2

• (cp)[/ü + uv + Z]e-2'rV-T ^/u^ ¿i du.      (A-17)

However we note from (A-F) that for |s| > k/2

1
\U(x,y,Z)\ <  f

a, + x2 + y2 + ||IF|
dW (A-18)

with a = s/2 + k/4 — 1. This argument also shows that U(x,y, Z) is continuous

at all points (x, y, Z). Moreover we deduce if s > k/2 that

\U(0,y,Z)\ < C2(l/(«, + M2))*74"'72, (A-19)

with C2 a positive constant.

Then using (A-12), (A-17) and (A-19), we deduce that (for |s| > 3A:/2 + 1)

property (d) of *-Poisson Summation formula (relative to L(u u,) is satisfied.

Moreover we have that

2
£e£
p.ez

<(y-l)M(G, g)-l)(<p))U + JLv+ Vx)\ (A-20)
V "2 /

is majorized by a series of the form

where

2    Vsi(m) VÄ(i)
Pez

tez"-2

(A-21)

gx(p) = (l/(a, + | p\2))k/4~s/2    and    Ml) = («, + ||£||2)2-(l + */2)/2.

The series in (A-21) is convergent when s > 3/c/2. Thus property (d') is valid in

*-Poisson Summation Property relative to L. (We note here that if y G SL2(Z) and

cy = 0 then (d') works trivially in such a case.)

(V) Then to prove (e') we consider the function i7m((G, g)~x)((p)(Z + pv/u^ =

X(Z) (with p G Z) and must show that X satisfies the Poisson Summation formula

relative to £. First X is continuous in Z and using (A-F) we deduce that for

|s| > k/2

\X(Z)\ < \\Z\\2-(k/2+s\ (A-22)
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Again by using arguments as above, the function

T~* Í   *■?*.((G, g)~l)(<p)\ T + xv + yv}e2nVZx y^"2 dx dy (A-23)
Jol

is a continuous function in T (if |s| > k/2 + 1) and hence we have

X(W) = c2- (   77^((G',g)-')(<p)[Mß(IF) + xv +yv]e2"VZx^U2dxdy
Jo2

(A-24)

with c2 a nonzero constant. Hence (for |s| > k/2 + 1)

|Â(IF)| < ||IF||4-(í + Ar/2) (A-25)

for W away from zero. Hence A satisfies the Poisson Summation formula relative to

£.   Q.E.D.
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