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FAMILIES OF REAL AND SYMMETRIC ANALYTIC FUNCTIONS

BY

YUSUF ABU-MUHANNA AND THOMAS H. MACGREGOR

Abstract. We introduce families of functions analytic in the unit disk and having

rotational symmetries. The families include the /c-fold symmetric univalent func-

tions which have real coefficients. We relate the families to special classes of

functions with a positive real part and then determine their extreme points. The

case k = 2 corresponds to the odd functions which "preserve quadrants" and the

extreme points of this set are characterized by having a radial limit which is real or

imaginary almost everywhere. We also find estimates on the initial coefficients of

functions in the families.

1. Introduction. We shall study families of functions which are analytic in the

open unit disk and have symmetries which may roughly be described as "preserv-

ing sectors". The families provide generalizations and specializations of the idea of

a typically-real function. Our main concern is the determination of the extreme

points of each family.

We now define one of these families, which is associated with the property of

"preserving quadrants". It is a special case (k = 2) of what is introduced near the

end of the paper. Throughout we let A = (z: \z\ < 1}.

Definition. Let Q denote the set of all functions / that are analytic in A, satisfy

/(0) = 0 and/'(0) = 1 and for which/(z) is in they'th (closed) quadrant whenever z

is in they'th quadrant and \z\ < 1 (j = 1, 2, 3, 4).

The class Q was introduced by M. S. Robertson [7]. The condition that /

"preserves quadrants" implies that /(z) is real when z is real and / is odd (as we

verify later). It also implies that /(O) = 0 and /'(O) > 0 so that the normalization

/'(0) = 1 is not a real restriction.

The class Q contains the subclass of normalized, odd univalent functions which

have real coefficients. Q also is contained in the class of odd typically-real

functions. Let T denote the set of typically-real functions introduced by

W. Rogosinski in [8]. A function / analytic in A belongs to T if and only if /(0) = 0,

/'(0) = 1 and

lmzlm/(z)>0    for|z|<l. (1)

The class Q is characterized by condition (1) and

RezRe/(z)> 0   for |z| < 1 (2)

and the normalizations.
-
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The set of extreme points of T is given by

/M = T.-'       - ,       (1*1 = O (3)
(1 — xz)(l - xz)

as proved by L. Brickman, T. MacGregor and D. Wilken in [1]. The set of extreme

points of the family of odd functions in T was found by D. Hallenbeck in [4] and

consists of the functions given by

/W = J.-'In      -2,        <W = l>- (4)
(1 - xz2)(l - xz*)

We shall prove that the extreme points of Q are characterized by the condition

that/(e'*) is real or imaginary for almost all 0 on [0, 2w]. In general, if / e Q then

the radial limit function defined by

f(e'e) = lim fire") (5)
r—>1

exists for almost all 0 (as we verify later). The nature of the extreme points of Q is,

therefore, quite different from the results described by equations (3) and (4) for two

related classes. It compares more closely with the results obtained by J. Milcetich

in [5] about the family of functions whose range lies in a strip or in an angular

region {w: |arg w\ < a(w/2)} where 0 < a < 1. One of the arguments we present is

an extension of a technique introduced by Milcetich.

This paper is organized so that the bulk of the material is with reference to the

class Q. In the process of determining the extreme points of Q we prove several

lemmas which have other applications. Later on we introduce the more general

classes and determine their extreme points. The last section contains coefficient

bounds for functions belonging to Q and its generalizations.

The functions we study are related to functions which are subordinate to the

map onto an angular region and are real on the real axis. In particular, functions

with a positive real part with additional symmetries play an important role. Several

results are used or developed which concern the theory of //''-spaces, especially

about radial limit functions and the Poisson representation formula. This formula

and other facts relating to //''-spaces may be found in [2]. One of the critical steps

in this paper involves the construction of a suitable analytic function in terms of

harmonic measure. The facts we use about harmonic measure may be found in

[10].

2. Preliminaries. In this section we present initial facts about Q and introduce

families of functions needed in the later development.

Suppose that/ G Q and
00

f(z) = z +  2 <V"        (1*1 < O- (6)
n = 2

Since/(z) is real when z is real it follows that the coefficients {an} are real. We now

show that/is odd. This depends on two reflections. Namely, since/(z) is real when

z is real we conclude that/(z) =/(z). Also, since/(z) is purely imaginary when z is

purely imaginary we find that/(-z) = - /(z) = — /(z). Therefore,/(-z) =/(-z) =

- /(*)•
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Definition. Let P denote the set of functions p that are analytic in A and satisfy

p(0) = 1 and Rep(z) > 0 for |z| < 1. Also, let PR denote the subset of P so that

p G PR if p(z) is real when z is real (and \z\ < 1).

As was proved in [8] the mapping given by

f(z) = zp(z)/(\-z2)        (|z|<l) (7)

provides a one-to-one correspondence between PR and T. The following lemma

establishes a similar characterization of Q in terms of a special subset of PR.

Lemma 1. A function f belongs to Q if and only if there is a function p in PR so that

f(z) = zp(z2)/ (1 - z2)        (|z|<l) (8)

andp has the property that the function q defined by

q(z) = (1 + z)p(z)/ (1 - z) (|z|<l) (9)

also belongs to PR.

Proof. Suppose that / G Q. Let the function g be defined by g(z) = — if(iz).

From equation (2) we see that the conditions Im z > 0, Re iz < 0, Re f(iz) < 0,

Im[-//(/z)] > 0 are equivalent. Thus, g G T. Consequently, because of equation (7),

g(z) = z<7,(z)/(l — z2) where qx G PR. Replacing z by -iz this relation becomes

/(z) = z<72(z)/(l + z2), where q2(z) = <7,(-/'z) and thus q2 G PR. Since/ is odd, q2

is even and therefore q2(z) = q(z2) where q G PR. Summarizing these relations we

find that

/(z) = z<7(z2)/(l + z2)        (|z|<l), (10)

where q G PR.

Similarly, since/ G T and /is odd we find that

/(z) = z/>(z2)/(l-z2), (11)

where p G PR. Equating the right-hand sides of equations (10) and (11) we find

that the relation given in equation (9) holds for/7 and q.

Conversely, suppose that there is a function p in PR so that the function q

defined by equation (9) belongs to P and let / be defined by equation (8). Because

the function />, defined by px(z) = p(z2) belongs to PR, equation (8) immediately

shows that/ G T, or, in other words, that equation (1) holds. The equations (8) and

(9) imply equation (10). We conclude that g G T, where g(z) = — if(iz), which is

the same as condition (2). Therefore, / G Q.

Definition. Let P* denote the set of functions p so that/> G PR and the function

q defined by equation (9) also belongs to PR.

The mapping given by equation (8) provides a linear homeomorphism between

P* and Q. Therefore, the extreme points of the two convex sets are in one-to-one

correspondence. We shall characterize P* in another way which leads to the

determination of the extreme points of P*.

In general, a function analytic in A and having a positive real part has a (finite)

radial limit p{e'e) = limr_l p(re'e) for almost all 9 on [0, 2w]. Because of the

correspondence given by equation (7), it follows that each function in T also has a
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(finite) radial limit almost everywhere. This property holds, in particular, for PR

and Q and, in general, for functions in any subset of P or T.

Definition. Let P+ denote the subset of P consisting of the functions q that

satisfy

Im z • Im q(z) > 0   for \z\ < 1. (12)

Except for the constant function q = 1, q is an open mapping. Thus, if q ^ 1

then q G P + if and only if q(z) belongs to the (open) first quadrant when Im z > 0

(and \z\ < 1) and q{z) belongs to the (open) fourth quadrant when Im z < 0 (and

\z\ < 1). If q G P+ then q(z) is real when z is real and consequently the coeffi-

cients of the power series for q are real. If q G P+ and f 9* 1, then q(z) = 1 +

q„z" + ... where qn ¥= 0. By considering the local behavior of q at z = 0 it is easy

to show that n = 1 and that qx > 0. Thus, except for q = 1, if q G P+ then

q'(0) > 0.
Definition. Let P ' denote the subset of P consisting of functions p that satisfy

Im z • lmp(z) < 0       for \z\ < 1. (13)

The family P~ is a subset of PR, and, except for the function/; = 1, if p G P~

then p'(0) < 0. Note that the mapping defined by p(z) = q(-z) gives a linear

homeomorphism between P ~ and P + and, in general, provides information for one

class from information about the other one.

3. The extreme points of P*, P+, and P~. The following two lemmas shall be

used to determine when a function q belongs to our various classes in terms of the

boundary value function q(e'e). Henceforth, we shall use the notation m(A) to

denote the Lebesgue measure of the set A where A is any subset of [0, 2tr].

Lemma 2. Suppose that q is a function which is analytic and nonvanishing in A and

satisfies |arg q(z)\ < -n for \z\ < 1. Also, suppose that there is a subset A of [0, 2tt] so

that m(A) = 2-n and q(e'e) = lim/._1 q(re'e) exists and satisfies Re q(e'ff) > 0

whenever 9 G A. Then, Re q(z) > 0 for \z\ < 1.

Proof. The function s = qx/1 is analytic in A and satisfies Re s(z) > 0 for

\z\ < 1, and thus the function \p = (s - \)/(s + 1) is analytic in A and satisfies

\ip(z)\ < 1 for \z\ < 1. The function f = (w1/2 - 1)/(h>1/2 + 1) maps the set {w:

Re w > 0} u {oo} one-to-one onto a set T, which is a lens region symmetric about

the real axis so that 3r consists of arcs of two circles passing through the points -1

and 1. In particular, T is a compact, convex subset of the closed unit disk.

Since Re q(ew) > 0 when 9 G A, it follows that 4>(ew) G T when 9 G A. We

may represent the bounded function ifasa Poisson integral of the function \p(e'e).

The function \p(e'e) may be conveniently defined when 9 (£ A as one of the values

\p(e'e°) where 90 G A. As T is convex this implies that ^(z) G T when \z\ < 1. We

may assume that \p is not a constant function, and thereby conclude that \p(z)

belongs to the interior of T whenever \z\ < 1. Since the inerior of T corresponds to

the set {w: Re w > 0} this shows that Re q(z) > 0 whenever \z\ < 1.
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Lemma 3. Suppose that q is a function analytic in A so that q(0) = 1, |arg q(z)\ < m

for \z\ < 1 and q{z) is real when z is real (|z| < 1). Also, suppose that there is a

subset A of [0, 2tt] so that m(A) = 2tt and whenever 9 El A the following relations

hold. q(e'e) = BffiM, q(rei9) exists, Im q(ew) > 0 when 0 < 9 < it and Im q(ew) <

0 when -n < 9 < 2-n. Then, Im z • Im q(z) > 0 for \z\ < 1.

Proof. Let the functions s, \p and J be defined as in the proof of Lemma 2. Since

the mapping defined between w and f has the property Im f • Im w > 0, the

function 4> satisfies \¡/(z) is real when z is real (|z| < 1) and Im z • Im \p(z) > 0 for

almost all 9 (z = e'#). The condition q(0) = 1 implies that \p(0) = 0 and thus the

function co defined by co(z) = (1 - z2)tp(z)/z is analytic in A. Also, co is bounded

and Re co(z) > 0 for almost all 9 (z — e'6). Appealing to the Poisson representation

formula for co we conclude that Re co(z) > 0 for \z\ < 1. The lemma is certainly

valid if \p is the constant function \p = 0 as this corresponds to q = 1. Otherwise, we

conclude that Re co(z) > 0 for \z\ < 1. In particular, yp can only have a simple zero

at z = 0. Thus, $'(0) is real ana not zero. Since Re »//'(O) = Re co(0) > 0 we

conclude that if/(0) > 0.

The fact that t//(0) > 0 implies that if co0 = co/co(0) and ^0 = \¡//\¡/'(0) then

co0 G PR and thus ipo e T. In other words, Im z • Im >//(z) > 0 for |z| < 1. Since the

function w = [(1 + f )/(l — f)]2 maps the upper half of A onto the upper half-

plane and the lower half of A onto the lower half-plane, this proves that Im z •

Imc7(z) > Ofor |z| < 1.

Lemmas 2 and 3 are not valid without the assumption that |arg q(z)\ < it for

\z\ < 1. Any function that maps A one-to-one onto the complement of the slit

{w: w = iy,y < 0} satisfies Re q(e'e) = 0 for all 9 on [0, 2-n) with one exception

but it is not so that Re <7(z) > 0 for |z| < 1. The function c7(z) = [(1 + z)/(l - z)]5

shows that Lemma 3 needs some restriction such as |arg c7(z)| < it.

Theorem I. P* = P~.

Proof. Suppose that p G P'". Since p G PR, in order to show that p G P* we

need only show that q G P where <5r(z) = (1 + z)p(z)/(\ — z). This is a conse-

quence of the more general fact that if qx G P+ and p G P~ then qxp G P.

Namely, equations (12) and (13) imply that Re qx(z)p(z) = Re qx(z)Rep(z) —

Im qx(z)lmp(z) > 0 for \z\ < 1. Since the function c7,(z) = (1 + z)/(l — z) be-

longs to P +, we conclude that P~<z P*.

Conversely, suppose that p G P*. Let z = x + iy and p(z) = u(z) + iv(z) and

therefore, in particular, u(z) > 0. Then, equation (9) and the definition of P* imply

that

[1 -(x2+>>2)lM(z) -2yv(z)
Req(x) = ±-i-      ,        , >0    for|z|<l.

(l-xf+y2

Thus,.yü(z) <~[\ - |z|2]w(z) for \z\ < 1 and consequently lme'elmp(ei0) < 0 for

almost all 9. According to Lemma 3 with q(z) = p{-z) we conclude that

Im z Im/7(z) < 0 for \z\ < 1. Therefore,/) G P~ and so P* c P~.
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Theorem 2. A function q in P+ is an extreme point of P+ if and only if q(e'9) is

real (and nonnegative) or purely imaginary for almost all 0.

Proof. Suppose that q G P + and q(e'9) is real or purely imaginary for almost all

9. Suppose that q ± h G P+. Since P+ is convex in order to show that q is an

extreme point we need only show that h is the constant function h = 0.

If \z\ < 1 and Im z > 0 then Re[<?(z) ± h(z)] > 0 and lm[q(z) ± h(z)] > 0 and

so |Re h(z)\ < Re q(z) and |Im h(z)\ < Im q(z). If \z\ < 1 and Im z < 0 then

Re[c7(z) ± h(z)] > 0 and Im[c7(z) ± h(z)\ < 0 and therefore |Re h(z)\ < Re q(z)

and |Im h(z)\ < -Im q(z). Therefore, \h(z)\ < |c7(z)| for \z\ < 1 and thus the func-

tion k = h/q is analytic in A, \k(z)\ < 1 for \z\ < 1 and k(0) = 0.

The three functions q, h and k all have radial limits on some set of measure 2tt.

If q(ew) is real then h(ei9) is real, because Im^e'*) ± h(ei9)] > 0 when 0 < 9 < m

and lm[q(eie) ± h(ew)] < 0 when m < 9 < 2m. Thus, k(ei0) is real when h(ei9) is

real. If q(e'e) is purely imaginary, then h(e'9) is purely imaginary because

Re[q(ew) ± h(ei9)] > 0, and again k(ei9) is real. Therefore, k(e") is real for almost

all 9. As k is bounded this implies that k is constant, that is k = 0. Therefore h = 0

and q is an extreme point of P +.

The converse shall be proved in its contrapositive form. Let A denote the set

consisting of the purely imaginary numbers and the positive real numbers. Suppose

that q G P+ and that the set A = {9: q(e'9) & A} has a positive measure. We shall

construct a nonconstant function h so that q ± h G P +.

Let A; = {w: Re w > \/n, Im w > \/n, \w\ < n} (n = 1, 2, 3, . . . ) and let

^■n = iw: w e ^n) so mat A„ = A^, u A^' provides an exhaustion of the set of

complex numbers in the (open) first and fourth quadrants with An compact and

symmetric about the real axis. Let An = {9: 9 G A and q(e'9) £AJ (n =

1, 2, 3, ... ). Since {An} is an increasing sequence and U~_i An = A, there is an

integer n so that An has positive measure. There is a closed subset of An, denoted B,

so that m(B) > 0 and if 9 G B then q(e'e) exists and belongs to a compact set

having a positive distance denoted S from A. We also may assume that m(B) < 2m

as we could replace B by either B n [[0, w/2] u [3tt/2, 2tt]] or B n [w/2, 3w/2].

Since ¿7(z) =q(z) we also may assume that the set fi, = (z: z = e'Ä, 9 G B) is

symmetric with respect to the real axis. Let C, = ¿?, n (w: |w| = 1, Im w > 0}

and Z>, = £, n {w: \w\ = 1, Im w < 0} and let C and £> denote the corresponding

subsets of [0, 27r].

Let ux denote the harmonic measure of C,, let u2 denote the harmonic measure

of Dx and let u = ux - u2. Then u is harmonic in A and -1 < u(z) < 1 for \z\ < 1.

Since Cx and Dx are conjugate sets, m(C) = m(D). Therefore,

M(0) = h Cu{e'e) d0 = in { CU¿eU>) M - C"*^ * }

= ^{m(C)- m(D)} =0.

Let t; denote the harmonic conjugate of u with t>(0) = 0 and let co = v + iu. The

function f defined by f(z) = co(z) + co(z) is analytic in A and f(z) is real when z is
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real (|z| < 1). Suppose that 9 & C u D and ux(ei9) and u2(ei9) exist. Then ux(ei9)

= u2(e'9) = 0 and so u(e'9) exists and equals 0. Since Cx u /?i is symmetric

e~i9 Í C, u A, and so ux(e~i9) = M2(e~'*) = ° and again "(«"'*) = 0. As w, and w2

have radial limits almost everywhere this proves that ?(e'*) exists and is real on a

subset E of the complement of C u D for which m(E) = 2m — m(C U D).

Since -1 < u(z) < 1 for |z| < 1, we conclude that -2 < Im f(z) < 2 for |z| < 1.

Thus, the function a = (exp(7rf /4) — l)/(exp(7rf /4) + 1) is analytic in A, cr(0) = 0,

|a(z)| < 1 for \z\ < 1 and a(z) is real when z is real (|z| < 1). Also, if 9 G /s then

a(e '*) exists and is real, where if necessary the subset of E (of measure 0) on which

Ç(ew) = - 2 is deleted.

Let e be a real number so that 0 < e < min(l, S/n) and let h = eaq. Suppose

that 9 G E and q(e'9) exists. Then a(e'9) exists and o(e'9) is real. Therefore,

q(eie) ± h(ei9) = (1 ± ea(ei9))q(ew), and so t7(e'0) ± /¡(e*9) is a positive real multi-

ple of q(e'9). In particular, this implies that q(e'9) ± h(e'9) belongs to the (closed)

first or fourth quadrant whenever q(e'e) belongs to that quadrant. Now suppose

that 9 G (C u D) n F where F is the set (of measure 2w) on which a(e'9) exists.

Since 0 < e < 8/n, \a(ei9)\ < 1 and \q(ei9)\ < n it follows that q(ew) ± h(ei9) is in

the same quadrant as the number q(e'9). Also, we note that |arg(q(z) ± h(z))\ < m

for \z\ < 1. This is a consequence of |arg q(z)\ < 77/2 and |arg(l ± ea(z))| < w/2,

as e < 1 and \a(z)\ < 1.

We have shown that the functions q + h and q — h satisfy the conditions of

Lemma 2 and therefore Re[<?(z) ± h(z)] > 0 for \z\ < 1. The normalizations ¿7(0)

= 1 and h(0) = 0 imply that Re[<7(z) ± h(z)] > 0 for \z\ < 1, that is, q ± h G P.

Also, q + h and q — h satisfy the conditions of Lemma 3 and this yields the

conclusions that q ± h G P+. Since h is not the zero function this completes the

proof that q is not an extreme point of P +.

Corollary 1. A function p in P~ is an extreme point of P~ if and only ifp(e'9) is

real (and nonnegative) or purely imaginary for almost all 9.

Proof. This result is equivalent to Theorem 2 because the mapping defined by

¿7(z) = p(~z) provides a linear homeomorphism between P ' and P +.

Corollary 2. A function p in P* is an extreme point of P* if and only if p(e'9) is

real (and nonnegative) or purely imaginary for almost all 9.

Proof. This result follows from Corollary 1 and the fact that P* = P ~ as proved

in Theorem 1.

4. The extreme points of Q.

Theorem 3. A function f in Q is an extreme point of Q if and only if f(e'9) is real

or purely imaginary for almost all 9.

Proof. Because of Lemma 1 the family Q consists of the functions given by

f(z) = zp(z2)/(\ — z2) where/? varies in P*. This correspondence between Q and

P* is a linear homeomorphism and so extreme points of Q correspond to extreme

points of P*. If \z\ = 1 and z^ ±1  then z/(l — z2) is purely imaginary. It follows
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that the condition that p(e'9) is real or purely imaginary for almost all 9 is

equivalent to the condition that f(e'9) is real or purely imaginary (pointwise, in

reverse order) for almost all 9. Therefore, Corollary 2 implies this theorem.

We shall determine the univalent functions in Q which are extreme points of Q.

Our argument uses the following lemma which may be of more general interest. We

recall the fact that if/ is univalent in A then the radial limit function f(e'9) exists

(and is finite) for almost all 9. In the lemma and later on we use the notation dA

for the boundary of a set A, A for the closure of A and A' for the complement of A,

where the topology is the usual one for the (unextended) complex plane and A is

any set of complex numbers.

Lemma 4. Suppose that the function f is analytic and univalent in A and that T is a

measurable subset of [0, 27r] with m(T) = 27r so that f(e'9) exists (and is finite) when

9 ET. If D = {w.w = f(ei9), 9 G T} and F = /(A) then dF c D.

Proof. Suppose that there is a complex number w0 such that w0 G dF and

w0 & D. Since w0 G dF it follows that f(z) ^ w0 for all z in A because of the

openness of the mapping/ Therefore, the function g defined by

g(z)= l/(f(z)-w0)

is analytic and univalent in A. Since g does not vanish the function h = g1^3 is also

analytic and univalent in A. The distortion theorem implies that there is a constant

K (depending on g(0) and g'(0)) so that \g(z)\ < K/(\ - |z|)2 for \z\ < 1. Thus,

there is a constant L so that \h(z)\ < L/(\ — |z|)2/3 for \z\ < 1. Since the exponent

in this estimate is less than 1, Prawitz's inequality [6, p. 127] shows that the integral

(\/2m)j2? \h(re'9)\ d9 is a bounded function of r on the interval (0, 1). In other

words, h belongs to the Hardy class H '.

We shall show that if 9 G T then h(e'9) exists (and is finite). First notice that

since w0 £ D, g(e'9) exists whenever f(e'9) exists. In addition, the mapping a =

f1/3 has the property that if f0 G dg(A) and if f approaches f0 along a curve in g(A)

then a has a limit. When f0 = 0 this is a consequence of the relation |f ,/3| = |f |1/3.

When f0 ^ 0 we appeal to the corresponding property of the logarithm function,

which is due to its representation as an integral of the analytic function s = 1/f

along a path in the simply connected domain g(A) from a fixed point to a variable

point.

Since h G //', h may be represented as the Poisson integral of its boundary

value function h(e'9). This integration may be regarded as taking place only over

the set T. Therefore, for each z in A h(z) is a (positively weighted) average of

numbers in the set C = {h(e'9)\ 9 G Y], and so /¡(A) is contained in the closed

convex hull of C. The set C is bounded, since w0 £ D and lim^^^ (l/>v1/3) = 0.

Consequently, /i(A) is bounded. On the other hand, because w0 G dF there is a

sequence {z„} so that |zj < 1 and/(z„)-> w0. This implies that |g(z„)| —» oo and

|/i(z„)| —> oo. This contradicts the boundedness of h(A) and completes the proof.

Lemma 4 is not generally valid without the assumption that / is univalent in A.

For example, if f(z) = exp[-(l + z)/(l - z)] and T = (0, 2ir) then D = {w: \w\ =

1} and F = D (j {0}. A modification of this example is possible so that T, D and
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F remain the same and limr_, /(/•) does not exist.

Theorem 4. The set of functions in Q that are univalent in A and are extreme

points of Q is given by

M = 7-T^-T7Ï7Ï      <W - !)• <14>
[(1 - xz2)(l - xz2)]l/2

Proof. We shall give a characterization of the set given by equation (14) in terms

of the mapping properties of these functions. We first consider the related set of

functions

8{Z) = (1 - xz)0 - xz)        to'iy 05)

Each function g is analytic and univalent in A, and g(A) consists of the complex

plane excluding the slits [-oo, -1/|1 + x\2] and [1/|1 - x\2, oo] on the real axis.

We claim that there are no other functions than those given by equation (15) that

have the properties: g is analytic and univalent in A; g(0) = 0 and g'(0) = 1; g(z) is

real when z is real and the only excluded values of g are real. To see this result, we

first note that any such function has the property that if g(z) ¥= a with a > 0 then

g(z) ¥= b for b > a. Likewise if g(z) =£ -a with a > 0 then g(z) =£ -b with b > a.

Thus, the excluded values of g consist of one or two (unbounded) intervals on the

real axis. Now, if g, and g2 are two functions having the properties prescribed

above and if g, excludes the intervals [-oo, -a] and [bx, oo] and if g2 excludes the

intervals [-oo, -a] and [b2, oo], where a, bx and b2 are real and positive, then

bx = b2. This follows from the principle of subordination, namely, if, say, bx < b2

then g, is subordinate to g2 and so |gi(0)| < |g2(0)| as equality in the general

inequality |g',(0)| < |g2(0)l can occur only when g, and g2 have the same range.

This contradicts the normalizations g[(0) = g2(0) = 1, and so bx = b2. A similar

argument shows that if two functions with the prescribed properties exclude the

intervals [-oo, -a,], [b, oo] and [-oo, a2], [b, oo], respectively, with ax, a2 and b

positive, then ax = a2. In other words, there is at most one pair (a, b) so that a

function g (with the given properties) has [-oo, -a] and [b, oo] as excluded values.

Because of the Koebe covering theorem, b is restricted by b > 1 /4. As x varies on

the circle \x\ = 1 the number 1/(|1 — x\2) takes on all values b with b > 1/4.

The set of normalized, real, univalent functions are in one-to-one correspon-

dence with the set of normalized, real, odd univalent functions through the relation

f(z)=fg(z2). (16)

The set given by equation (15) corresponds to the set given by equation (14)

through the mapping (16). Therefore, the observations in the previous paragraph

imply that the set of functions given by equation (14) consist of exactly those

functions that are analytic and univalent in A, satisfy /(0) = 0, /'(0) = 1, f(z) is real

when z is real, / is odd and only have real or purely imaginary numbers for

excluded values.
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The functions given by equation (14) belong to Q since they are real, odd and

univalent in A. They are extreme points of Q because of.'. heorem 3, for/(z) is real

or purely imaginary whenever \z\ = 1 with either two or four exceptional values

(where/= oo).

Conversely, suppose that / G Q, f is an extreme point of Q and / is univalent in

A. Theorem 3 implies that/(e'e) is real or purely imaginary for almost all 9. Thus,

because of Lemma 4, the boundary of the set of excluded values of / is a subset of

the real and imaginary axes. Consequently, / must take on all values off the axes.

As we have just shown, this determines that/must have the form of equation (14).

5. Further symmetric families. Let k be a positive integer and define the sectors Aj

and Bj by

Aj = [w: 2(j - \)m/k < arg w < 2jm/k)    and    Bj = {e~in/kw: w G Aj]

for/ = 1, 2, . . . , k.

We shall introduce three classes of functions denoted by Tk, Tk and Qk. A function

in each class is assumed to be analytic in A and normalized by the conditions

/(0) = 0 and/'(0) = 1. The following conditions define the classes.

(A)/ G Tk if f(z) G Z whenever z G Z n A (j = 1, 2, . . . , k),

(B)/ G fk if f(z) G % whenever z G Bj n A (j = 1, 2, . . . , k),

(Q Qk = Tk n fk.
The classes Tk, Tk and Qk relate to families already discussed in this paper. For

example, T2 = T and Q2 = Q. An interesting subclass of Qk is the set of univalent

functions that are real and /c-fold symmetric. This relation is not difficult to show.

We recall that a function is called &-fold symmetric if its power series has the form

oo

Äz) =  2 a„* + ,^ + 1        (kl < 1). (17)
n=0

This condition on the power series is equivalent to the condition that f(e2m/kz) =

e2m/kf(z) for \z\ < 1, as is easily verified. An important example is the function

defined by

Áz) =-Z-—7k        (kl < O- (18)
(1 - zk)2/k

This function is univalent in A and/(A) is the complement of the slits {w: w = re'9,

r > (1/4)'/*, 0 = m/k + (j - l)2m/k} (j = 1, 2, . . . , k).

From the definitions of Tk and Tk it follows that if / G Tk then the function g

defined by g(z) = <r"r/*/(e"r/'cz) belongs to fk. Conversely, if g G fk then/ G Tk.

Also, if / G Tk then the coefficients of / must be real, because f(z) is real (and

nonnegative) when z is real and nonnegative. If k is odd and g G Tk then g has real

coefficients since g(z) < 0 when z < 0 (|z| < 1). When k is even and g G Tk the

coefficients are not necessarily real.

Lemma 5. (a) // k is odd and f belongs to Tk, then f is k-fold symmetric.

(b) If k is even (k ^ 2) and f belongs to Tk, then f is (k/2)-fold symmetric.

(c) /// G Qk then f is k-fold symmetric.
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Proof. Suppose that k is odd and / G Tk. Let g be defined by g(z) = f(z) —

e-2"i/kf(e2"i/kz). If we let z = re'9 where 0 < r < 1 and 9 = (k - l)m/k then, as/

has real coefficients, we find that

g(reu) = f(rei9) - e-2"i/kf(re{k+l)™/k) = f(rei9) - «-»/»/(««ft-»>*/*) = o.

Therefore, g(z) = 0 for \z\ < 1. This is the same as the condition that/ be A;-fold

symmetric.

Now suppose that k is even and / G Tk. Let g be defined by g(z) = f(z) —

e^vi/kf(e4vi/kz). If we let z = rew where 0 < r < 1 and 9 = (k - 2)m/k we find

that g(z) — 0 because/ has real coefficients. Thus, g(z) = 0 for |z| < 1, which is

the same as the condition that/be (&/2)-fold symmetric.

When k is odd, part (c) follows from part (a) since Qk c Tk. Now, suppose that

/ G Qk and k is even. Since / G Tk, f is real. Also, by part (b) / is (A;/2)-fold

symmetric and so we may write

Az) = 2 amJ+iZmJ+l        (1*1 < O with m = k/2.
/-0

Since /eft the function g defined by g(z) = eni/kf(e^i/kz) belongs to Tk. The

series for g takes on the form
00

£(z) 2 am/+ \e^J'/2zmj + '

/-0

and as g G Tk all of the coefficients must be real. Since amJ+, are real this implies

that amJ+1 = 0 for every odd value of/. This proves that/is A>fold symmetric.

Definition. Let Pk denote the set of functions p that are analytic and nonvanish-

ing in A and satisfy p(0) = 1, p(z) is real when z is real and |arg/?(z)| < m/k for

\z\ < 1.

This definition only requires that k > 0 but our interest is in the cases k =

2, 3, 4,_We note that P2 = PR.

Lemma 6. (a)/ G Tk if and only if there is a function p belonging to Pk so that

/(¿) =-t-TTTZPi**) (19)
(1 - zk)2'k

when k is odd, or

A*) =-L-T77/>(¿*/2) (20)
(1 - zk)2/k

when k is even.

(b) / G Tk if and only if there is a function q belonging to Pk so that

A*)--Z—T7-Mzk) (21)
(1 + zk)2/k

when k is odd, or

A*)'-Z-—q(izk>2) (22)
(1 + zk)2/k

when k is even.
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Proof. Suppose that / G Tk. Let the functions qr be defined by qr(z) =

(1 - zk)2/kf(rz)/£ for each r on (0, 1). Let Wk = {w: |arg w\ < m/k). The condi-

tion that f(z) G Aj when z E A, D A and the mapping properties of the function in

equation (18) imply that if \z\ = 1 then qr(z) G Wk. We may apply the Poisson

integral formula to qr and this implies that qr(z) G Wk for |z| < 1 due to the

convexity of Wk. Letting r —» 1 we conclude that q(z) G Wk for \z\ < 1, where the

function c7 is defined by <7(z) = (1 — zk)2/kf(z)/z. The normalization q(0) =/'(0)

= 1 implies that q(z) G Wk for |z| < 1 and, therefore, q G i^. Depending on the

parity of k we may appeal to part (a) or (b) of Lemma 5 in order to derive equation

(19) or (20) with g(z) = p(zk) or q(z) = p(zk/2). This proves one-half of part (a) of

this lemma.

In order to prove the converse statement, first consider the case k is odd and

assume that equation (19) defines / where p G Pk. Let q be defined by q(z) =

p(zk). We may assume that q is analytic in A, since the general result would be

deduced from that for q(rz) with 0 < r < 1 by letting r —» 1. The function/satisfies

f(x) > 0 for 0 < x < l,f(e2wi/kx) = ye2™/k where/ > 0 whenever 0 < x < 1 and

f(z) G Ax when \z\ = 1 and 0 < arg z < 2m/k. We may write

/(z) = q(z)/ (1 - z)2/k

where g is analytic at z = 1 and g(z) > 0 for 0 < z < 1. We shall show that this

implies that if A7 is a sufficiently small neighborhood of 1 then/(Af n A n Ax) c

Ax. By taking a suitable power of /in order to introduce a simple pole at z = 1, this

assertion follows from the local behavior of analytic functions expressed at z = 0

as follows. If h is analytic at z = 0, h has a simple zero at z = 0 and if h(z) is real

and nonnegative when z > 0 and z is small, then to each given e (e > 0) and 90

(0 < 90 < 2w) there exists an r0 (r0 > 0) so that if 0 < arg z <90 and \z\ < r0 then

0 < arg h(z) < 90 + e. We merely need to observe that arg h(re'9) is an increasing

function of 9 since h is locally starlike with respect to the origin, and arg h(re'9°) is

as close to 90 as we like if r0 is near 0. The application of these relations here needs

only 90 = w/2 and e = 7r/2. The local behavior of / at the point z0 = e"9, 9 =

2m/k similarly implies that if Nx is a sufficiently small neighborhood of z0 then

f(Nx n A n Ax) c Ax. The several properties of /in Ax imply that f(Ax n A) c Ax.

(Our argument here is an extension of the one given by Rogosinski in [8] in order

to obtain the corresponding fact about T.) A similar argument applies to each

sector Aj in order to deduce that f(A- n A) c Aj for j = 1,2,..., k. This com-

pletes the proof that / G Tk. A similar argument applies when k is even, as a

consequence of equation (20).

Part (b) of this lemma is a consequence of part (a) and the fact that / G Tk if

and only if we may write/(z) = e"r/kg(em/kz) where g G Tk. The form of equation

(21) occurs because q G Pk when q(z) = p(-z) and/> G Pk.

Lemma 7. / G Qk if and only if there is a function p belonging to Pk so that

Az)'-z—7j;p(zk) (23)
(1 - zk)2/k
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and

Az)=-Z—T7-k4(zk)- (24)
(1 + zk)2/k

Proof. When k is odd this lemma is an immediate consequence of Lemma 6

since Qk = Tk n Tk. When k is even we additionally need to appeal to part (c) of

Lemma 5.

Theorem 5. / G Qk if and only if there is a function p in Pk so that equation (23)

holds andp has the property Imp(z) • Im z < 0 for \z\ < 1.

Proof. Suppose that/ G Qk. Lemma 7 implies the existence of two functions/?

and q so that equations (23) and (24) hold. This implies that

q(zk)/P(zk)=((l + zk)/(l-zk))2/k

which may be expressed as qx(z)/px(z) = (1 + z)/(l - z), where qx = qk/2 and

px = pk/2. Since q and/» belong to Pk it follows that qx and/?, belong to P. As /is

real so is/?, and so we see that/?, G P*. Because of Theorem 1 this implies that

px G P~. Since the mapping w = f2/k satisfies Im w • Im f > 0 whenever Re £ >

0 we conclude that p has the additional property expressed as Im p(z) • Im z < 0

for \z\ < 1.

The converse follows because equations (23) and (24) characterize functions in

Qk and since P   = P* we may reverse the several relations.

The relations we have developed in this section enable us to determine the set of

extreme points of each family of symmetric functions. The arguments are similar to

those given in the initial part of this paper and in some cases are easier, since, for

example, the Poisson formula is directly applicable to functions having a range in

the set {w: |arg w\ < m/k} whenever k > 1. We shall present the result only for

the family Qk.

Theorem 6. A function f in Qk is an extreme point of Qk if and only if the radial

limit function f(e'9) belongs to one of the rays arg w = ± jm/k (j = 0, 1, . . . , k) for

almost all 9 on [0, 277].

Proof. According to Theorem 5, the family Qk is in one-to-one correspondence

with the set of functions in Pk with the property Im p(z) • Im z < 0, through

equation (23). This established a linear homeomorphism between these two classes

and so their extreme points are in one-to-one correspondence by the relation (23).

The extreme points of this distinguished subset of Pk may be characterized through

the property that &rgp(e'9) = ± m/k for almost all 9 on [0, 2m]. The argument

uses the techniques given in the proof of Theorem 2. The property of p transforms

to the stated property of / because of equation (23) and the mapping properties of

the function w = z/(\ - zk)2/k on \z\ = 1.
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6. Coefficient estimates.

Lemma 8. Suppose that <p is an analytic function which satisfies \<p(z)\ < 1 for

\z\ < 1, cp(O) = 0 and Im <p(z) ■ Im z > Ofor \z\ < 1. //

<p(z) = 2 V (25)
n=l

/Ac« 0 < c, < 1 a/ii/

|c2| < 2c,(l - c,). (26)

Proof. The condition Im <p(z) • Im z > 0 implies that the coefficients {c„} are

real and, except in the case <p = 0, that c, > 0. The fact that |ç>(z)| < 1 for |z| < 1

generally implies that |c,| < 1 and so 0 < c, < 1. In order to prove equation (26)

we may assume that c, > 0. Let the analytic functions g and h be defined by

g(z) = <p(z)/(l - (p(z))2 and h(z) = -<p(-z)/(l + <p(-z))2. Since the function k

defined by k(z) = z/(\ — z)2 also satisfies Im k(z) • Im z > 0 the same condition

holds for g and h, being composites of two such functions. If we let dx = g'(0) and

ex = h'(0) then dx = e, = c, and so dx > 0 and ex > 0. Hence g/dx and h/ex

belong to T. Any function / belonging to T with f(z) = z + a2z2 + . . . satisfies

\a2\ < 2. Applying this inequality to g/dx and h/ex we find that \2c2 + c2\ < 2c,

and |2c2 - c2| < 2c,, respectively. These two inequalities imply the desired in-

equalities -2c,(1 — c,) < c2 < 2c,(1 — c,).

We also show that inequality (26) is sharp and find all extremal functions. The

condition c2 = 2c,(1 — c,) is equivalent to a2 = 2 which occurs only when g(z)/dx

= z/(l - z)2, that is, where <p is determined by <p(z)/(l - <p(z))2 = c,z/(l — z)2.

This function <p maps A one-to-one onto A slit along part of the negative real axis

and for any c,, 0 < c, < 1, satisfies Im tp(z) • Im z > 0. Likewise, the equality

c2 = -2c,(1 — c,) requires that h(z)/ex = z/(\ — z)2. This is the same as

m(z)/(l + tp(z))2 = c,z/(l + z)2, which for any c,, 0 < c, < 1, produces a univa-

lent mapping of A onto A slit along part of the positive real axis.

Theorem 7. Suppose that f G Qk and

oo

Az)-  2^ + ,z-+1. (27)
«=o

Then

-2/k <ak + x < 2/k (28)

and

-\/k < a2k+x < 3/k. (29)

Each inequality is sharp.

Proof. Suppose that/ G Qk and/? and q are defined by equations (23) and (24).

Write

p(z) = 1 +Pxz + p2z2 + ... (30)
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and

q(z)=l + qxz + q2z2+ .... (31)

Since p and q belong to Pk, they are subordinate to the function given by

w = ((1 + z)/(l - z))2/k = 1 + 4z/A: + . . . and consequently |/?,| < 4/k and

\qx\ < 4/k. Equating coefficients on both sides of equations (23) and (24) we find

that ak+x = 2/k + /?, and ak+x = -2/k + qx. Therefore, \ak + x - 2/k\ < 4/k and

\ak+x + 2/k\ < 4/k. Using one-half of each of these inequalities, we obtain

inequality (28).

Because of Theorem 5, we may write

/?(z)=[(l-m(z))/(l+<p(z))]2/*, (32)

where tp satisfies the conditions of Lemma 8. From equations (23) and (32) we find

that

2,1       8 8   2     4
^ + ,=-^ + ^-^c, + -c2--c2. (33)

The inequality c2 > -2c,(1 — c,) implies that

«2*+. < 2/k2 + \/k + (S/k2)(k - l)(c, - c2)

and as cx — c2 < 1/4 we obtain the estimate a2k + x < 3/k. Using c2 < 2c,(1 — c,)

and the inequality c2 - c, > -1/4 we find that a2k+x > -\/k.

The equality ak+x = -2/k requires that /?, = -4/k, which holds only when

p(z) = ((1 - z)/(l + z))2/k. This implies that/(z) = z/(l + zk)2'k. Similarly, the

equality ak + x = 2/k requires that/?, = 4/k. This implies that

«7(z) = ((l + z)/(l-z))2/*    and   /(z) = z/(l-z*)2/*.

The equality a2k + x = -\/k requires that c2 = 2c,(l — c,) and c, = 1/2. From

the remarks after the proof of Lemma 8 this implies that

<p(z)/(l-<p(z))2 = z/2(l-z)2.

If/? is defined by equation (32) then Im/?(z) • Im z < 0 because Im cp(z) • Im z >

0. Therefore, if / is defined by equation (23) then / G Qk and it is the only

function for which a2k+x =—\/k. In a similar way the equality a2k+x = 3/k

associates with the conditions c, = -2c,(l — c,) and c, = 1/2. This determines <p

by <p(z)/(l + <p(z))2 = z/2(l + z)2 which in turn determines/? and then/.

The inequality (28) compares with the result that \ak+x\ < 2/k whenever/(z) =

z + a^ + iz*"^1-!-... is /c-fold symmetric and univalent in A. For such functions

the sharp result [3]

l<fe+il < (2/*)exp[-2(* - 1)/(A + 1)] + \/k

is quite different from inequality (29). Even for univalent functions with real

coefficients the coefficient estimates are generally more restrictive than that given

by Theorem 7. For example, when / is odd and univalent, |a5| < e~2/3 + \ =

1.013 ..., as stated above, but, in addition, there is an odd univalent function with

real coefficients for which a5 = e"2/3 + \  [9, p. 633].
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For the class Q2, Robertson [7] proved that \a3\ < 1 and, in general, |a2n_,| +

\a2n+ il ** 2. For the family of odd, typically real functions the coefficents are much

less restrictive than for Q2 and the bound |fl2n+,| < 2n + 1 [8] is the sharp result.

This bound may be viewed as a consequence of the knowledge of the extreme

points of this class, as determined by Hallenbeck in [4]. It does not seem that

extreme point methods will be useful to solve extremal problems for the classes Qk

because of the diversity of extreme points of Qk as given by Theorem 6. Theorem 4

provides some idea of the distinction between Q and the closed convex hull of the

set of odd univalent functions with real coefficients.
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