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ON THE PREVALENCE OF HORSESHOES

BY

LAI-SANG YOUNG1

To the memory of my adviser, Rufus Bowen

Abstract. In this paper the symbolic dynamics of several differentiable systems

are investigated. It is shown that many well-known dynamical systems, including

Axiom A systems, piecewise monotonie maps of the interval, the Lorenz attractor

and Abraham-Smale examples, have inside them subsystems conjugate to subshifts

of finite type. These subsystems have hyperbolic structures and hence are stable.

They can also be chosen to have entropy arbitrarily close to that of the ambient

system.

Let /: M -» M be a diffeomorphism of a manifold into itself and let Q(f) be its

nonwandering set. While it is usually difficult to describe completely the orbit

structure of /, one could look for large invariant subsets of S2(/) on which the

dynamics of / are simple to characterize. This idea is due to Rufus Bowen, who

proposed that one asks the following: Given e > 0, does there exist a hyperbolic

/-invariant set Ae c ß(/) with the property that

(l)/|Ae is conjugate to a subshift of finite type, and

(2) h(f\Ae) > h(f) - e where h(f) is the topological entropy of/?

We say that/ is, in the sense of entropy, a limit of hyperbolic subshifts of finite

type if A£ above exists for every e > 0. The main result of this paper is that many

dynamical systems we know are limits of this kind. They include Axiom A

diffeomorphisms and flows, piecewise monotonie maps of the interval, the Poincaré

map of the Lorenz attractor [15] and certain Abraham-Smale examples [1]. Perhaps

this new class of systems accounts for some of the other non-Axiom A examples as

well (e.g. [11], [17], [19], [23], [24], [28]), but that remains to be decided.

Recall the definition of a subshift of finite type. Let (1.n} be given the

discrete topology and 2 = 11!^{1, ...,«} the product topology. Let a: 2 —» 2 be

defined by (ax), = (x), + 1 where (x), denotes the /'th coordinate of x. Let A = [A¡\

be an « X « matrix of 0's and l's. Let Sx = (x £ 2: A = 1 for all i G Z}.

Then o[ZA is called a subshift of finite type. If 2' = ü^il, ...,«} and 1.'A = {x G

2': Axx = 1 for all / > 0}, then a|2^ is called a one-sided subshift of finite type.

From now on "subshifts of finite type" will be abbreviated as "ssft".
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76 L.-S. YOUNG

When the mapping in question is noninvertible, by a ssft we always mean a

one-sided ssft. In the case of a flow, Ae is the suspension of a ssft.

We make a couple of remarks here. First, if/is a limit of hyperbolic sets then it

is stable in the sense that as "large" a subset of ß(/) as one wishes persists under

perturbations. Second, since zero-dimensional Axiom A basic sets and topologi-

cally transitive2 ssft are equivalent, Bowen's idea can be viewed as an attempt to

generalize Smale's Axiom A systems [9], [29].

1. Axiom A systems. A diffeomorphism / of a manifold into itself is said to

satisfy Axiom A if (a) ñ(/) is hyperbolic and (b) periodic points are dense in ñ(/).

Axiom A flows are defined similarly. For an exposition on the subject see [29].

Theorem 1.1. Let f G Diff(M) be an Axiom A diffeomorphism. Let Q,s c M be a

basic set. Then there is a nested sequence of compact f-invariant sets Xx c X2

C • • •   with U Xt = fiä satisfying

(1)/|-Y,- is conjugate to a ssft, and

(2) h(f\Xtfh(f\üs).
The analogous statement for flows also holds.

Ssft and Axiom A basic sets have long been known to be intimately related. Via

Markov partitions [8] every basic set can be realized as the quotient of a ssft. When

constructing our X^s in the theorem, it is this ssft that is exploited.

The notion of topological pressure defined by Ruelle [27] and studied by Walters

[30] is the key to proving the theorem for flows. We state the definitions. If/: A^is

a continuous map of the compact metric space X into itself then E c X is

(«, e)-separated if for each pair of distinct points x, y G E, d(fkx, f*y) > e for some

k,0<k<n—l. Let §: X -h> R be a continuous function. Let

Z„(/, <J>, e) = sup|   2   exP   2   <Pfkx' E is ("» e)-separated
[ x&E k = 0 J

and

/>(/, *, «0 = lim sup - log Z„(f, <t>, e).
n—»oo        W

Then P(f, <p,) = lime^0 P(f, <¡>, e) is called the topological pressure of / for the

function <j>. When <i> = 0 the number P(f, <j>) is just the topological entropy h(f) of

/; the theory of topological pressure generalizes that of topological entropy (as

defined in [3]). If Y c X is a compact/-invariant subset, then PY(f, ¡j>) denotes the

pressure when everything is restricted to Y.

A homeomorphism /: X<~z> is said to be topologically mixing if for every pair of

nonempty open sets U, V c X, there exists M c Z+ such that U n f"V ¥= 0

whenever n > M.

2The usual definition of ssft requires topological transitivity. \\ A is a transition matrix, there is always

an irreducible submatrix B such that h(o\1.B) = h(o\2.A). Thus our results hold using either definition.
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Lemma 1.2. Let (2, a) be a topologically mixing ssft. Let A, B c 2 be closed

subsets with the property that A, B g 2, oA c A and a~lB c B. Let <¡>: 2 -» R be a

step function depending only on the Oth coordinate. Then given e > 0, there is a ssft

X C 2 satisfying

(1) X n (A U B) = 0, and

(2) Px(a, <b) > P(o, <t>) - e.

Proof. Since periodic points of mixing ssft are dense, let us fix one in

2 \ (A u B). Call it a = ( • • • a_xa0ax • ■ • ). A u B being closed implies that there

is a positive integer N0 such that for all x G 2, if x, = a¡ for /' = -Nq, . . . , N0, then

x £ (A u B). Choose N > N0 such that

1

2N

2N-1

log     2     exp    2    *a,'x>/,(*)-e

JCo="0

i = 0

(see [30]). Assume also that the period of a divides N. Let S = {b„ . . . , b } be the

set of periodic 27V-blocks starting with a0 that occur in the elements of 2. Let

b, = (a_N, . . . , aN_,). N is fixed for the rest of the proof.

We now define a sequence of ssft. For each m = 1, 2, . . . let Sm = {x G 2: no

w-block of x appears in any element y G A to the right of y_N or in any element

z G B to the left of zN). Notice that if a symbol sequence in 2 has the property

that the 2A?-block b, occurs at least once in every one of its 2wAr-blocks then it is

automatically in S2mN. For if say b, appeared in some y G A to the right of y_N,

then a'y & A for some /' > 0 contradicting a A c A. Clearly Sm n (A u B) = 0.

We shall see that supm Ps (a, 4>) = P(a, $).

Consider 2 Nmn -blocks of the form

b, b, b,    b,b,b,
lm-2      l      l     *m "'Un

«b.b, -2,bib.

where b, can be any element of S. These blocks appear in elements of S2mN. Let

w¡ = 22f Ö ' $oJ\t¡. Let En(Sm) be a maximal subset of Sm whose distinct elements x,

y have x, ¥=y¡ for some i, 0 < i < n — 1. Then

2nmA'-l

Z2™A>(<f>)|S2mA, " 2 exp      2      «r«'x

>      2      exP
('.• ^M-2))

i<ij<q

n(m-2)

51     vv, + 2nw,

= e2"H'

n(m-2)

2 II     exp w.
Oi.--.'-.,™-!)) /"'

= e
2n*v, S  expw,.

i = i

n(m-2)
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so that

'»-,<♦• °) - äs, -„lo« z.(*)\s,m„

>M^=«-^(Í-»-)
n(m-2)

«-«•oo   2nmN

m

m   '{jÑ i0è ^ eXP W) + ik

Since (1/2AT) log Sf_, exp m>,. > P(<j>) — e, X = S^^ for large enough m is our

desired invariant subset of 2.    fj

Proof of Theorem 1.1 for diffeomorphism case (<> = 0). By the spectral

decomposition theorem [8], we have Í2S = A, u • • • UA„ the A,'s being closed

disjoint sets with /A, = A,+1, /A, = A, and where /r|A, is topologically mixing.

Since it suffices to prove our assertion for/r|A,, we may as well assume that/itself

is topologically mixing.

Let $1 = {R0, . . . , Rk} be a Markov partition on Q,s and 2 c ïl-x{0, . . . , k) its

associated ssft.

2^2

ffj, \,TT

fi,     i     ß

We know that (2, a) is also topologically mixing and that h(a) = h(f). Let

A = w-'8*€1, B = m-ldu<?H, <t> s 0. All the hypotheses in 1.2 are satisfied. m\X (X

as in Lemma 1.2) is 1-1 and is therefore an embedding.

To get a nested sequence of /-invariant subsets in íis, suppose we have Yx,

Y2, . . . c 2(ssft) obtained as above with h(a\ Y¡)1h(a). Since Yx, Y2 n (A u B) =

0, there is an M such that for all x G 2, (x_M, . . . , xM) appearing in elements of

y, or Y2 implies x G (A u B). Let y2 = (x G 2: any (2Af + l)-block is admissible

if and only if it appears in Yx or y2}. One lets Xx = mYx,X2 = mY2 and so on. The

proof is complete if we observe that U^ must be all of £ls, for h(a\m~x U X¡) =

h(a) and no invariant closed proper subsets of a mixing ssft can have full entropy.

Proof for flows. Let ^ 2 -^ R+ be a continuous function and let {S,} be the

special flow built on a: 2^ under *. Let A = {(x, /): < G [0, ^x], x G 2} c 2 X

R. Every Axiom A flow on a basic set is a quotient of one of these flows (where 2

is a topologically mixing ssft) in a way very similar to the diffeomorphism case [7],

[10]. We produce a a-invariant subset X c 2 on which the flow has correct entropy

and is identification-free when pushed down to the basic set.

Let 91LS (A) denote the set of 5,-invariant Borel probability measures on A and

similarly for 911^(2). A theorem of Abramov [2] states that for ft G 91LS (A),

M5>) = K(°Vi * dv

where v G t3H0(2) is the measure induced. Since h(Sx) = sup^gg^ (A) h^(Sx) [12],

we have, by the Variational Principle
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P(o, -h(Sx)xp) =     sup     f/i» - f A(S,)^ <fr) = 0.
!<e91t„(A)V ^ /

For further details see [10] and [30].

Now fix some arbitrary 8 > 0. From the formula above, P(a, -(h(Sx) — 8)\¡/) =

c > 0. Choose a step function <j>: 2 -^ R with ||<> + (h(Sx) - 8)\p\\ < c/3. In

Lemma 1.2 set e = c/3. Then the set X c 2 obtained has the property that

P(- (h(Sx) - 8)4) - Px(- (h(Sx) - Ó»

< \P(- (h(Sx) - fi)*) - P(<t>)\ + \P(<¡>) - Px(<¡>)\

+ \Px(<t>)- Px(-(h(Sx)-8)^)\

< c/3 + c/3 + c/3.

Thus Px(-(h(Sx) — 8)\¡s) > 0. But this means, if we go through the argument again,

that

MS, over X) =     sup      -^—- > h(Sx) - 8.
UE9MA-) /«Mm

This completes the proof.    □

2. Maps of the interval. Throughout this section let /: '[0, 1] *-r> be a piecewise

monotone mapping. That is, there is a partition 0 = c0 < • • ■ < cq = 1 such that

on each (c,_,, c,) / is strictly monotonie. Let A¡ = (c,_,, c,), Ai = [c,_,, c,] and

% = {Ax, . . . ,Aq}. Let /(c,) = limx^c+/(x) or limx_,c-/(x). In the case / is not

continuous at c,, it may be convenient to think of / as taking on both values,

though we do not particularly care which.

First define 2(/) = {x G n¿°{l, ■ • • > a\- n,"_0/"^ * 0 for all n > 0}. 2(/) is

compact; the shift operator takes 2(/) into itself. (2(/), a) is called the symbolic

dynamics off.

The following proposition was arrived at independently by several people: J.

Rothschild, Misiurewicz and Szlenk [22] and myself.

Proposition 2.1. Let f be continuous and piecewise monotonie. Then /j(o|2(/)) =

h(f). It follows that limn_>00(l/«) log(# turning points of f) exists and equals h(f).

Proof. Let 2,(/) = {(x, x) G 2(/) X [0, 1]: flx G A~x¡ for all i > 0). Let a,:

2/(/)<-d be defined by a¡(x, x) = (ax, fx). We have

2,(/)     ^     2y(/) 2,(/)     X     2,(/)

2(/)      A      2(/) [0,1]     I     [0,1]

where 77, is a projection into the z'th factor. Since [5]

h(a) < h(oj) < A(a) +    sup    h(of\mxlx)
xeX(f)

and a/ restricted to fibers maps intervals monotonically into intervals therefore

having entropy zero, one has /i(ct|2(/)) = h(a,). Similarly, h(a,) = h(f) because 7r2
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is at most a 2-to-1 map. Finally the number of monotonie parts of /" is simply the

number of distinct «-strings that appear in elements of 2(/). Thus the turning point

formula.    □

We state a consequence of Proposition 2.1, even though it is irrelevant in our

ensuing discussion. (See also [21], [25], [26].)

Proposition 2.2. Let f be continuous, piecewise linear with slope = ± X for some

\> 1. Then h(f) = log X.

Proof. That h(f) < log X follows from Kushnirenko's formula or from simple

spanning set type arguments. For the other inequality consider the length of

A G V"=o' f*- Since/" is monotone in A, one has 1(A) < l/X" so that/" has at

least X " monotonie parts. Proposition 2.1 now gives the result.    □

In general, topological entropy is defined only for continuous maps. In the case

of a piecewise monotonie map, discontinuous perhaps at finitely many points, one

could define h(f) using open coverings, spanning sets or separated sets. It is not

clear to me that all of these definitions agree, but for the Poincaré map of the

Lorenz attractor, our main interest in these maps in this paper, it is natural to

define «(/) to be «(a|2(/)). We first check to see that this makes sense.

Proposition 2.3. Let 21 be a partition of [0, 1] into arbitrarily short intervals.

Assume 21 is a refinement of St. Then

1 "-1
lim   - log card   V /~'2l = A(o|2(/)).

«-»oo   n i=o

Proof. Clearly card V?-i/"*ä > card VT-o/"'31- For each "> let an be the

maximum number of elements in V"-o f~'® contained in any element of

VT-o/"'31- We claim that an < nax. Fix A G \/"_0f-'%. fAcB for some B G

V"Jo' /***• B contains < an elements of V?_o Z-'3*- A meets < ax elements of S.

Sincef\A is monotonie, card(V"-0/"^M) < a\ + an- This shows card V-'o'/"'^

<«a, card V^o1/"'^    D

Theorem 2.4. Suppose on each open interval A¡, f is C1 and f =£ 0. Assume also

that h(f) > 0. Then given any e > 0, there is a compact hyperbolic f-invariant set

A C [0, \]such that

(1)/|A ~ ssft, and

(2) A(/|A) > h(f) - e.

For any subset 33 c 31 and B G 93 let a(n, B, 93) = card(V"~0' f~'®\B). Then by

Proposition 2.1, h(f) = \imn^J\/ri) log LA^ a(n, A, 21). Let © = {A G 21:

lim sup„(l/n) log a(n, A,Vi)= h(f)}. & # 0.

The next two lemmas are borrowed from [22]. We include their proofs for

completeness.

Lemma 2.5. For all A G <&, lim sup„(l/«) log a(n, A, (£) = h(f).



Proof. Fix /l G Gr. Observe that

«-i
a(n,A,X) <   2   a(k,A,<£)-

k=\
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2   a(n - k, B, 21)
ÄSE

Fix B G 21 \ g with

lim sup - log   2   «(£> A @)a(« - k, B, 21) > «(/). (*)
1 "-'

Suppose our assertion was false. Fix u with

lim sup — log a(n, A, (£),        lim sup — log a(n, B, 2Í) < u < h(f),
n        n „        n

i.e. there is an M > 0 such that a(n, A, <$), a(n, B, 21) < Mem for all n G Z + .

Putting these back in (*), we have

h(f) <   lim   - log nM2enu = u,
n->oo    n

a contradiction.    □

For A, B G 21 let y(A, B, n) = card{£ G \/"~¿ f^'W: E c A,fn+iE D B}.

Lemma 2.6. If h(f) > 3, /«en there exists A0 G 21 vwï«

lim sup(l/«) log y(^0, A0, n) = «(/).

Proof. Fix A G © and fix m with log 3 < u < «(/). There are arbitrarily large «'s

with (1/«) log a(n, A,@)>u and a(n + 1, A, &) > 3u. If E G V"~o'/"'SÍ and

f" + ,E meets r elements of ©, then/""1" lE contains at least r — 2 of them. Thus

2   y04, B, «) > a(n + 1, /I, @) - 2a(«, A, @) > a(«, ^, (£).
«eg

Define <i>: (£ ̂  in such a way that <¡>A = B for some £ with

lim sup(l/«) log y(A, B, n) > u.
n

Being a map of a finite set into itself, <#> has a periodic point /10, say with period m.

Thus for any v < u, there are arbitrarily large numbers «,, n2, . . . , nm with

y^o, <i>' + 1/l0, «,) > e"*" so that

(m       \ m

A0, A» 2 «,    > II Y^o- <t>i+lAo, «,) > e(2,")o-    D
i      /        i

Lemma 2.7. Given e > 0, there is a ssft 2 c 2(/) ímc/i that 77-2|7rf'2 is an

embedding and «(a|2) > «(a|2(/)) — e.

Proof. For some / > 0, «(/') > log 3. Let B G VÍ~0/~'5I be the A0 in Lemma

2.6. That is, for some large «, there are intervals Bx, . . . , BM (appearing in that

order) with B, c B, By G V-iV"" ' f J"'Bj = £ and (l/«)]og M > «(/') - e/2.
Fix «. Let C = Uj"L~o]fJ{x G [0, 1]: for all k > 0, fknlx G fi, for some i, 1 < / <

M). Then h(f\C) = (1/«/) log(A/ - 2) > «(/) - e. Let 2 be the ssft defined by:

each 2«/-block (x0, . . . , x2n/_,) is admissible if and only if it appears in elements
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of 2(/) and no c- G (1 2"¿q l f~¡A~xr Since the images of C miss all the c/s,

C c m2m\l'S.. m2 is not 1-1 over x G [0, 1] exactly if f'x = c, for some i > 0 and

some/. Such an x is not in m2m\l'S,.    □

graph of/"'

B

bx    *2  \y    B3     BA

Lemma 2.8. Let 2 be a ssft and let e > 0 be given. Then for any fixed a G 2, there

is a ssft 2 c 2 with upland h(a\±) > «(a|2) - e.

Proof. We may assume 2 is topologically transitive or even mixing. (See for

instance [13].) Let 0 + (a) denote the forward orbit of a.

Case 1. 6+(a)^= 2. Then o-0+(a) c0+(a) and Lemma 1.2 gives the desired

result.

Case 2. 0 + (a) = 2. Since 2 is mixing, there are many periodic points. Fix one,

say b. Choose a ssft 2 missing b as in Lemma 1.2. There is a neighborhood U D b

such that U n 2 = 0. Since o'a G U for some i > 0, a £ 2.   □

Lemma 2.9. Let 2 c 2(/) be the ssft in Lemma 2.7. Let e, 8 > 0 be given. Then

there is a ssft 2 c 2 and N G Z+ such that

(1) «(a|2) > «(a|2) - e, and

(2) if C is any N-cylinder set of 2, then \m2mxlC\ < 48.

Proof. There are only finitely many points x G 2(/) with |7r27rf1x| > S. Using

Lemma 2.8, choose a ssft 2 c 2 with «(a|2) > «(a|2) - e and such that for all

x G 2, |í72?r,"1x| < fi. Now there is an N0 such that if x G 2(/) has |7r27rf'x| > fi,

then the cylinder set (x0, . . . , xNo) n 2 = 0.

Let 0 = z0 < • •• < zr = 1 be a partition of [0, 1] with 5 < z, — z,_, < 25. For

each /, if there is aj > 0 such that fz¡_x G Ak,fz¡ G A, with k =£ I, then let n¡ be

the smallest such/. Let N = 1 + max(Af0, «,). We claim that m^1 (any A^-cyUnder

set of 2) < 40.

Let x, y G 2 and x G 7r27rf'x, y G 7r27rf'y have \x - y\ > 48. For some i,

x < z,_, < zt <y. If for a\lj,fzt_x and/'z, lie in the closure of the same element

of 21, then \m2mximxm2~l(zi_x, z,)| > 8 and we have (x0, . . . , xNJ ¥= (y0, ■ ■ ■ ,yN)- ^

on the other hand z,_, and z, admit distinct symbolic representations, then

(x0, . . . , x„) ¥= (y0, . . . , yj. Thus x, y lie in distinct N-cylinder sets.    □
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Lemma 2.10. Let 2 be a mixing ssft. Let ft be the ergodic measure on 2 with

h (a) = «(a|2). Let <i>: 2-*R ¿ea step function depending only on the 0th coordi-

nate. Then given e > 0, there is a ssft A c 2 and M G Z+ such that

(1) «(a|A) > «(a|2) - e, and

(2) |(1/Af) Sfl'o1 <f>a'x - / <J> 4t| < efor all x G A.

Proof. Let 9 be the 0-time partition of 2. For some small a > 0, let 91tn =

{P G V-Jo °~"$ '■ 10/") 2?=ô ^'x - / *4*l < « for x G ^}- We first show
that Hmn^00(l/«) log card 91Ln exists and equals « = h(a). By the ergodic theorem,

(l/n)1,"~Q <jxj'^> J <t> dp. a.e. By Egorov's theorem, there is a set ^4 c 2 with

fiA > 0 such that on A convergence is uniform. Since ¡i is the maximal measure of

an ergodic ssft, there exists c > 0 such that A meets > c2"* elements of

\/"~o o~"$ ■ (We assume logarithm is to base 2.) Thus for large «, we have

card 9H„ > c2"A so that lim inf„(l/«) log card 9H„ > «.

Now let 9tnf be the collection of periodic «-strings in 2 defined by

{(x0, . . . , x„„,): x0 = r and |(l/n) 27=¿ <t>x¡ _ / <í> ¿Ml < e/2} (a slight abuse of

notation). Since 2 is mixing, \im.n^x(\ /n) log card 9l„r exists and equals «.

Suppose for now that for certain arbitrarily large numbers «, there is a symbol r

and a periodic «-string a in some element of 2 with a = a0 ■ ■ ■ an_x, a0 = an = r

and a¡ ^ r for 0 < / < «. Let /I = {x G 2: x has the following form ab, b, • • •

b, ab, • • • b,, ..«••■ where b, G 9L„_, b, ¥= a V/',}. Let A = A u oA

U • • • L)amnA. Since there is absolutely no ambiguity about the position of a in

each symbol sequence in A, the union is disjoint and A is precisely the ssft defined

by "a 2«i«-string is admissible iff it occurs in A". If m and n are large enough, then

j       mn-\

2    4>o-'x - J <f> rfji
1=0

< e        Vx

and

h(o\A) >- - log(card 91,,,,. - 1) > h

A therefore is the ssft we need.

We have yet to justify the existence of a. Since 2 is not just a single periodic

orbit, there exist symbols r and s and a periodic string s = í0 • • • s¡ in 2 with

s0 = s¡ = s, s¡ =£ r for all i. Let a„ be the shortest path from r tos and ajr the

shortest path from s to r. Then a = a„s • • • sajr with as many s's as necessary is

the string we have claimed to exist.    □

Lemma 2.11. Let X c [0, 1] be a compact f-invariant set. Suppose X n

{c0, . . . , cq) = 0 and \f'x\ < X for some X > 1 for all x G X. Then h(f\X) <

log X.

Proof. For small e > 0, there exists S > 0 such that for x G X, y G [0, 1],

\x - y\ < Ô => |/'x - f'y\ < e. Then for all x, y G X, \x - y\ < 8 => |/x - fy\ <

(X + e)\x — y\. A spanning set argument gives h(f\X) < log(X + e).    □

Proof of Theorem 2.4. Assume e < (l/8)«(/). Let 2 c 2(/) be the one chosen

in Lemma 2.7. That is, «(a|2) > h(f) - e and 7r27rf12 c [0, 1] is essentially a ssft
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except that some points are intervals. So first of all let us get rid of at least the

longer intervals. We appeal to Lemmas 2.8 and 2.9. Since log|/'| is continuous on

7T27rf'2 there exists 5 > 0 such that for x,y G 2,

|x - y\ < 48 => |log|/'x| - log|/>|| < e.

Lemma 2.9 gives a ssft 2 c 2 with «(a|2) > «(/) - 2e and a positive integer N

with sup{|log|/'x| — logl/'^H: x,y G i^vr,1 (same A-cylinder of 2)} < e. Define <j>:

2^Rby

<f>x = min{log|/'x|: x G m2mxl((x0, . . . , xN_x) n 2)}.

Renaming symbols so that <¡> is constant on 1-cylinder sets, we now apply Lemma

2.10.

All this tells us is that for some large M, \(\/M) 1^~^ <pa'x - j <¡> dp\ <e for all

x G A or,

1

Since

M \og\Dfx"\-f <},dp< 2e    forx G w-.ttJA.

A(o"|A) = «(n^r'A)

<     max     log\ Df"\    by Lemma 2.11

we have

and finally

< Af( f <bdp + 2e\,

«(/) - 3e < A(a|A) < j <? dp. + 2e

■jj log\Df»\ > f $ dp - 2e > «(/) - 7e > 0

for all x G 7r277/'. We have thus produced a hyperbolic set in [0, 1]. Notice that

77f'A contains no intervals, for otherwise its corresponding part in [0, 1] would

grow indefinitely in length. This completes the proof.    □

3. A. The Lorenz attractor. This interesting non-Axiom A example has its

origin in the two-dimensional convection problem. It is the flow in R3 generated by

the system of O.D.E.

x = -lOx + lQy,

y = 28x - y - xz,

V xy.

Following Williams [32], we can picture the flow as a (pinched) inverse limit of a

semiflow on a branched 2-manifold as shown below. For details see [15], [16], [20],

[32].
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The Poincaré map of this semiflow is a map of the interval that looks like the

figure below. Theorem 2.4 applies. The inverse limit of the one-sided shift is

hyperbolic as long as we stay away from c. Thus we have

Theorem 3.1.

hyperbolic ssft.

The  Poincaré  map  of the Lorenz attractor flow is  a  limit  of

B. The Abraham-Smale examples. This diffeomorphism is a skew-product F:

S2 X T2*-dgiven by F(x,y) = (gx,fxy) where g: S2<^has a horseshoe H, a sink

and a source. We think of H as 22 = IÜ^O, 1}. For x G 22 with x0 = 0, define

A.-A-'(»   !)
the toral Anosov. For x G 22 with x0 = 1, let fx = /, be a DA (derived from

Anosov) map [31]. For x £ H,fx is defined so that we have an isotopy from/0 to/,.

We put a few assumptions on/,. Let 9t be the usual Markov partition for/0 on

T2 and 2^ be its associated ssft. In eigenvector coordinates let

*-(ï !)•
u >  1.

Write/, = a °/0. We assume

(1)/, is obtained from/0 by pushing along the stable foliation of f0,

(2) for each element R G 91, as a set f0R = fxR, and

(3) /, has a weaker expansion in the Es(f0) direction than f0 does in the Eu(f0)

direction, i.e., if

Df^y^{a(l,y)     b(x,y)

then 1 < \b(x,y)\s < u.

0     \tu    0\     /      « 0      \
)\0     s)      \a(x,y)u     b(x,y)s)'
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Theorem 3.2. With the above assumptions, F is a limit of hyperbolic ssft.

Assumption (2) guarantees the following: take any random composition of /0 and

/,. Pretend it is done on the same torus. With respect to 91 exactly the same

symbol sequences occur as if one were iterating/0 alone. Let 2^" be the one-sided

ssft corresponding to 2^. A model for the nonwandering set of F, H X T , is

22 X 2^ X [0, 1]. The first coordinate tells us which toral fiber a point x is in; this

together with the second coordinate determines the location of x up to the line

segment Ws(f0, x) n R for the appropriate R G 91, and the third coordinate tells

where x is on this line segment.

Defining <p: 22 X 2^ X [0, I]*-? naturally we get a semiconjugacy:

22x2+x[0, 1]      X     22x2+x[0, 1]

wj, ¿IT

H X T2 4. H X T2

where <p is continuous but not one-to-one. This set-up is used in the rest of the

discussion.

We compute «(F). Consider

22X2;X[0, 1]      X     22X2;X[0, 1]

+
^2 x ¿*a ~* 22 x 2^

where a+ is the product of shift operators and p is the projection map. We have

«(F) = h(<f>) because m is a finite-to-one map. Also, h(<¡>) = h(a+) because p-fibers

are intervals and <p maps such intervals monotonically into other intervals [5]. Thus

«(F) = log 2 + h(o\ZA).

Proof of Theorem 3.2. Let S„ = {«-strings in 22 starting with 0 and containing

at least half 0's}. We know that limn^00(l/«) log|S„| = log 2. Fix some large N.

Let A = {x G 22: for all k G Z, (xkN, . . . , x(k + X)N_x) G §>N}. We show that

F^IA X T2 is hyperbolic. This implies that hyperbolicity of F on (UfLV o'A) X
T2. An argument similar to (and actually simpler than) that in Lemma 2.10 gives a

ssft Ac U {Lq1 a'A with entropy near that of F Finally from Theorem 1.1 we

obtain a ssft c A X T2 with desired entropy.

It remains to check the hyperbolicity of fN\A X F2. We adopt the following

notation: if A = [A¡\ and B = [By] are matrices of the same dimension, we say

A < B if \Ay\ < \By\ for all i, j. Suppose Da < (J, °b) with bs < u. For /' =

1, . . . , N, let A",- be either Q, ?) or (uua 6i°) and let

_tun       0   \
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Then <f>„+, < aun+l + sb<¡>„ and so

<bN <a[uN + (bs)uN~l + ■ ■ ■ +(bsf'lu] <auN/(l - bs/u).

For (x, y) G A X T2,

uN 0

%°     •   ■   ■      °/«°/*)<
auN/i\-^\     sNb»/2

The criteria for hyperbolicity in [18] are satisfied.
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