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Abstract. Using nonstandard methods we construct a configuration space ap-

propriate for the statistical mechanics of lattice systems with infinitely many

particles and infinite volumes. Nonstandard representations of generalized

equilibrium measures are obtained, yielding as a consequence a simple proof of the

existence of standard equilibrium measures. As another application we establish an

extension for generalized equilibrium measures of the basic variational principle of

Landord and Ruelle. The same methods are applicable to continuous systems, and

will be presented in a later paper.

1. Introduction. The early history of statistical mechanics is characterized by

calculations which establish elaborate interrelationships between the fundamental

notions but the calculations are mostly formal-convergence questions arising when

the number of particles and volume approach infinity are ignored. The step into

rigorous statistical mechanics was taken in the works of Van Hove, Yang and Lee,

Fisher and Ruelle on the existence of thermodynamic limits [6]. Since that time the

thrust has been to place not only the thermodynamic quantities, but the whole

edifice of statistical mechanics on a rigorous footing. An important step in that

development involves defining an appropriate "limiting" configuration space. To

quote Minios [11]: "This question, despite its mathematical sophistication, is of

great physical interest: essentially it is a matter of being able to describe correctly

an 'infinite physical system', that is, a system containing infinitely many

particles .... This description ought to be such that all the thermodynamic

quantities usually obtained as limits of parameters of the finite ensemble serve as

the corresponding parameters of the infinite ensemble." This can be interpreted in

the following way. The basic real world of statistical mechanics resides in a family

% = (.(X¡, %)} (i G /) of measurable spaces (X¡, <5¡), each of which is finite in an

appropriate sense (finite volume, finite number of particles) and possesses consider-

able attendant structure (measures correlation functions, dynamics, etc.). [Indeed,

one could argue that systems containing infinitely many particles do not actually

exist in nature, but only families of finite systems of arbitrarily large cardinality.]
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Then statistical mechanics is the investigation of limiting measure theoretic phe-

nomena within %. One wants to define a "limiting" measurable space on which the

limiting measure theoretic phenomena can be investigated easily. From this point

of view, any such limiting space is an "ideal" structure whose sole role is to make

the analysis of limiting phenomena in % more amenable. The limiting space

should satisfy two properties:

(a) There is a class of limiting measure theoretic entities (e.g. measures measura-

ble transformations, etc.) on the limiting space such that each family of correspond-

ing entities on the (A',, S|), which converges in an appropriate sense, corresponds to

a well-defined limiting entity in that class.

(b) Any result stated in terms of the limiting entities of (a) should be translatable

to a limiting measure theoretic result on the real world of the family %.

At this point in time candidates for the correct limiting space in lattice and

continuous have gained common acceptance (see e.g., [7], [11], [16]). But carrying

out (a) for these spaces sometimes involves considerable technical difficulties. For

example there is the problem of limiting dynamics: in continuous statistical

mechanics one wants to define a limiting measurable transformation on the

limiting space which is induced by the Newtonian dynamics on the (X¡, %). This

problem, essential to nonequilibrium statistical mechanics, is still in an unsatisfac-

tory state (see [7] and the references therein).

Many of these technical problems arise because the commonly accepted limiting

spaces, which we denote generically by (X, l5r), are too small to accommodate (a)

easily. We present here the foundations of an approach to rigorous statistical

mechanics using nonstandard analysis. The starting point is the introduction of a

new limiting space (X, 9) which plays the same role as (X, 9) but is large enough

so that (a) holds. Even though (X, 9) is very large it also, perhaps surprisingly,

satisfies (b). Although it is not essential to do so, we show in addition that each

measure on (X, Sr) induces a measure on (X, 5) in a canonical way. Thus the

measure theoretic structure on (X, 9) can in some sense be regarded as an

extension of that on (X, $"). On the other hand, there are measures on (X, W) which

do not in any way correspond to measures on (X, '3), so that the measure theoretic

structure of (X, 9) is much richer than that of (X, 9). As a consequence it is

important to remark that results on (X, 9) do not necessarily yield results on

(X, W); however, they always yield limiting statements on the real world of % by

(b). Indeed, it is precisely because (X, 9) is a richer structure that there is a

possibility of proving results not envisaged in the usual analysis on (X, 'S).

Our limiting configuration space (X, 9) is defined using the nonstandard models

first introduced by Abraham Robinson in 1961 [14]. Given % = ((XA, 9^)>

(A G /), where / is a directed set usually indexing number of particles and volume,

then in an appropriately large nonstandard model we consider a nonstandard space

(Xn, 9Q) where fi is an infinite element of the nonstandard extension I of /. By

using a central result called the Transfer Principle [2] or Leibniz' Principle [17], it is

easy to investigate the structure of (Xß, %). Indeed it follows by transfer that

(Xs2, &a) possesses nonstandard analogues of all of the structure (dynamics, correla-

tion functions, etc.) which exist on each of the (XA, l3A). 9a is an algebra of subsets



NONSTANDARD ANALYSIS 91

of Xn and, following ideas of Loeb [10], we let X = Xa, and 9 be the a-algebra

generated by &a. The resulting standard measurable space is, in some conventional

sense, very large, but still satisfies (a) and (b). The nonstandard entities on (Xjj, 9a)

can then be used to induce measure theoretic entities on (X, 9). Note that

establishing (b) amounts precisely to showing how to bring results on (X, 9) back

down to results in the real world of % and makes the nonstandard technique more

than just a formal exercise in large "ideal" structures.

After reviewing the standard theory of lattice statistical mechanics in §2, we

introduce the basic nonstandard ideas, and, in particular, the notion of generalized

equilibrium state, in §3. In §4 we establish properties (a) and (b) for measures on

(X, 9), and connections between measures on the standard (X, 9) and those on

(X, 9). In particular, the notion of generalized equilibrium state is shown to be an

extension of the usual notion, and a new proof of the existence of standard

equilibrium states results. In §5 we present a typical application of the nonstandard

techniques by proving a variational principle for the generalized equilibrium states.

The result provides a partial justification for the definition of these states. The

nonstandard proof is a transfer of finitistic arguments and thus essentially elemen-

tary.

These techniques have many other applications, not only to statistical mechanics,

but also to stochastic processes. In a later paper we will present applications to

continuous models in statistical mechanics. In particular we will show how the

problem of limiting dynamics can be handled in the nonstandard setting. In earlier

papers [12] Ostebee, Gambardella and Dresden have applied nonstandard tech-

niques to study the thermodynamic limit. Recently Helms and Loeb [4] have

considered the stochastic theory of infinite particle systems from a nonstandard

viewpoint. Finally, Anderson [1] and Keisler [6] have developed a nonstandard

approach to stochastic integral equations.

The basic ideas in this paper were announced at the Symposium on Abraham

Robinson's Theory of Infinitesimals held at the University of Iowa (May 31 -June

5, 1977), and at the 1977 summer meeting of the American Mathematical Society in

Seattle [5]. I wish to express my indebtedness to Marvin Shinbrot and G. V.

Ramanathan for introducing me to statistical mechanics. In addition I want to

thank Marvin Shinbrot for his constant encouragement and advice. Finally, many

thanks to the referee for suggestions which led to improvements in an earlier

version of this paper.

2. Standard lattice statistical mechanics. In this section we review the structure of

lattice statistical mechanics. For reference see §5 in [13]. Throughout the paper we

use the notation F(X, 9% M(X, 9) and P(X, 9), or simply F\9), M(9) and P(9)

when X is understood, to denote the sets of real valued measurable functions,

positive measures, and probability measures, respectively, on a measurable space

(X, 9).
Let 5 be a countable set representing the sites. Denote by Q the collection of all

finite subsets of S, partially ordered and directed upwards by inclusion Ç . Let /

be a conveniently chosen cofinal subset of G. For example if S = Z, the integers,

then / could be the set of all subsets of Z of the form {x G Z\ — n < x <«}. For
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convenience we suppose that the possible states at each s G S come from a fixed

finite set Y (this is the most important case in applications). The standard limiting

configuration space is the set X = Ys, the set of all maps x: S —» Y, each of which

is called a configuration. Similarly, for any subset A of S we let XA = YA. There

are natural projection maps pA: X —> XA, and pAB: XB—>XA,A Q B, defined by

restriction, e.g. pA(x)(s) = x(s), s E. A. We will write xA for pA(x), x G X, or

pAB(x), x G XB, letting the context make clear the distinction.

If A G G then XA is a finite set and we let (3A be the collection of all (finite)

subsets of XA. There is thus a natural projective family2 {(XA, ^A), pAB} (A, B G

/) associated with our lattice model. Let %A,B) = PÄbC^a) an<^ \a) = Pa\^a)- ^

9 is the a-algebra on X generated by the algebra % = U ^A) (A G /) of cylinder

sets, then ((X, 9), pA} (A G /) is the projective limit of the projective family

({XA, 9A), pAB} (A, B G /), and is the standard limiting probability space for

lattice models. Also, for A G G, 9a is the a-subalgebra of 9 generated by

U ^(a-a) (A G /), and is denoted by fA in [13]. In analogy with 5a we define

Sa =^-am(^-a)-Note that

Pa~b(!$a) c ^b- (2-1)

To define equilibrium (Gibbs) states we need to introduce interaction potentials

into the picture. Let b G A" be a reference configuration (whose potential energy

will be zero). An interaction potential is a family <<f>A>  (A G G) of maps <¡>A:

XA^>R such that

<MW) = °   if w(i) = b(') for some / G A (2.2)

(with the convention that if A = 0, the empty set, then <f>A = 0).

Later on we will need the following assumptions. Let

||*A|| = sup|*A(.y)| (y S XA)    and    V(A) = {C G G\C n A * 0).

2.1. Assumption. For each / G S, 2||<f>A|| (A G V({t})) is finite.

2.2. Assumption. There is a number K so that 2||«f>A|| (A G V({t})) < K.

Assumption 2.1 is always in force in the standard development [13, Proposition

5.2], and 2.2 is a uniform version of 6.1 which holds when the interaction potential

is translation invariant. For A G /, the set

QA = {A G ß|A QA) (2.3)

is an initial segment of G. Using the interaction potentials we define a family <gA>

(A G GA, A G /) of potential energy functions gA: XA —> R by

«M = 2 4>c(xc)       (C ê VA(A)) (2.4)

where VA(A) = {C G GA\C n A =£ 0}. In terms of the function gA we define the

2A projective family ((XA, lSA),pAB} (A, B G I) consists of the measurable spaces (XA, 9A) (A e /)

and measurable maps pAB: XB —» XA satisfyingpAB ° pBC = pAC(A Q B Q C). ({X, ^î),pA} (A 6 /) is

the proj ective limit of <( XA, <&A ), pA B > (A, B e / ) if the pA : X -» XA are measurable and />,, a •> pB = pA.

AQB.IÍH& M(XB, 9B) we define the measure pAB(p) 6 A/^, ^) by pAB(n\F) = KpAb(f))<

F<=VA.
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functions/^: Xa^>R(Aœ6a,A G /) by

fAHx) = ZJWaT' exp(g^(x)) (2.5)

where

^(j') = 2 exp gA(>^ _A X w)        (*> e *A),j> G X. (2.6)

The Z^ are called partition functions. Finally we define the family of kernels <w^)

(A G eA, A G /), <n%: X,'X^-* /?, by

^A(*, n = S ß{*A-x x ")        (" G wa{^ F)) (2-7)

where WA{x, F) = {ic e Jjx^^ X w G F}. Notice that for given F, ita(x, F)

depends only on the restriction of x to A — A and that

<{y> {*)) = [f^x)    tf?<<-A"^-A> (2.8)

I 0   otherwise.

It is easy to check, as in [13], that jta(x, ■) is a probability measure on 9A for each

x G XA and A G QA.

Any measure v G P(9%) is specified by a density 5: A^_A -» Ä where S(x) > 0

and S ô(x) (x G A^_A) = 1. Then the family <íA> (A G /, A G ßj of maps /A:

¿>($*)-»P(^) given by

(»(f) = 2 <K^-aK(^ *)     (y 6 *J (2-9)

satisfies

/•A » fA = identity,        Ae6„ (2.10)

and

,a o rA o ,À = ,Â,        AcÄinß^, (2.11)

where rA: P(9A) -* P(9%) is restriction. The map í^ is the finitistic analogue of the

map tA defined in §2 of [13]. The measure tA{v) has a density a which assigns to

each x G XA the probability

a(x) = ?»({*}) = Ô(xA„A)fAA(x). (2.12)

3. Nonstandard lattice models. We assume that the reader is familiar with the

foundations of nonstandard analysis as presented in [2], [15] or [17]. Let 911 be a

superstructure based on a set which includes all of the standard sets encountered in

§2. The nonstandard analysis will be carried out in a «-saturated nonstandard

model *9H of <9fL [17] where k is sufficiently large (to be specified shortly), but at

least N, so that * 911 is denumerably comprehensive.

Star transforms of standard entities t will be denoted by *t, but internal entities

will be denoted by bold face symbols. For example, if A is a standard set then its

*-transform in *<Dlt will be denoted by *A, but if a = {A¡\i G /} is a collection of

standard sets A¡ indexed by /, then we write *a = a = {A,.|i G 1} so that I =*/

and for i G / (such an /' is called standard), A, = *A¡.

As usual, Vor st(r) will be used to denote the standard part of a finite number

r G *R where R is the set of real numbers and we write r ~ í if °(r — s) = 0. If
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r G *R is positive or negative infinite, we also put "/■ = oo or V = -oo, respec-

tively.

The projective family ({XA, <3A),pAB} (A, B G /) has a *-transform

*{((XA, <5A),pAB) (A,BEI)} = <(XA, 9A), Pab>        (A, B G I).

By transfer we see immediately that each 9A is an internal algebra of subsets of XA,

but is not necessarily closed under countable unions (since this is an external

operation) and so is not necessarily a a-algebra in the standard sense. We will call

(XA, 9A) an internally measurable space. Similarly, the internal maps pAB: XB —> XA

(A, B G I) are measurable in the sense that pAB'(F) G$"b for all FefA and

Pab ° Pbc = Pac for A ç B ç C in I. On each internally measurable space (XA, 9A)

there are the sets F(XA, 9A), M(XA, 9A), and P(XA, <9A) of internal *R-valued

measurable functions, internal */?-valued measures, and internal */?-valued proba-

bility measures, respectively. If ¡i: 9A^>*R+ (the set of positive reals) is in

M(XA, 9A), then p is finitely additive in the usual sense, and if ft is in P(XA, 9A)

then /i(XA) = 1. All of these facts are immediate consequences of the transfer

principle.

We next show how to find a nonstandard replacement for the standard limiting

probability space (X, 9) of §2. Now the collection G of finite subsets of S is

partially ordered and directed upwards by C which is a concurrent binary relation

on G X G, and we conclude (since *C3TL is an enlargement) that there exist sets

SÍG'6 so that A <Z ti for all A G G; such sets are called infinite. For technical

reasons, having to do with the limiting significance of measures on (Xß, 9n) which

will be taken up in the next section, it is necessary to choose S2 to be a sufficiently

large infinite set, a question to which we now turn.

Let cof(C) be the collection of all cofinal subsets G' QG. To each G' we

associate a fixed infinite element Ae in *G', which exists by the argument of the

previous paragraph. The set of all such infinite elements is a subset of the infinite

elements of *G which we denote by ß,im. Note that card(cof(C)) = card(6!im).

Given a A G G, a pair ¡pA = {(/x^X <tf» (A G / and A G QA), where ¿iA G

M(XA, ?A) and tf G F(XA, <WA) is called regular if lim (iA(fA) (A -+ oo) in /

exists.3 The set of all regular pairs will be denoted by (3l. We let k be a cardinal

strictly greater than card(S u cof(C) u 'Si)- Given the sets S and Y, a suitable k

can be determined once and for all. We will suppose that *91L is ic-saturated.

If rA is the limit of the regular pair \pA then given an e > 0 in R there is an

element A(e, ^A, A) D A in / so that \nA(fA) - rA\ < e if A D A(e, ^A, A). By

transfer to *91t we see that given e > 0 in *R, A G *G, and ^A G **3l there is an

element A(e, i//A, A) in */ so that |jnA(fA) — i^l < e whenever A D A(e, i^A, A),

where i^ is the extension of rA and ^A = {(nA}, <fA>}- In particular this is true for

each standard >^A G *<3l (i.e. of the form ^A =*»i'A) and each A G G uC^. Let <$/

denote the standard elements in *'5l. Then cardC^U') = card(9l). Now let e > 0 in

-

3We write n(f) = S xS dV- for M e M{X, <5) and / e F(X, <5) and n(F) = n(Xf) where x^ is the
characteristic function of F £ f. Also lim rA (A —> oo in C) = r if given e > 0 in R there is an A0 G S'

so that \rA - r\ < c if A D A0, A e &', where 6' is cofinal in 6.
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* <3l be a fixed infinitesimal. For each ^A G <3l' and A G G uC^ we find an

element A(^A, A) = A(e, ^A, A) in */ as above and call the set of all such elements

&. Then card(6B) < k and the relation Ç is concurrent on (£. Since *<D\L is

«-saturated we can find an S2 G */ so that A <Z Í2 for all A G &. ß will be fixed

throughout the paper. From the above discussion we see that

fiâCâ)«^ (3.1)
for each regular pair \pA = {< fiA>, </A>} and A G G u Glim. This fact will be used

in the next section.

With £2 fixed as indicated we write X for X^ and denote 9a by 90 in analogy

with the algebra % of cylinder sets of the standard limiting space X. Denoting the

map pAa: X —»X,,, A <Z G®, by pA, we see that 90 consists of all internal cylinder

sets, i.e., sets of the form p^^G), G G9A, A Ç G^. Similarly all of the entities

introduced on (XA, 9A) in the last section (e.g. 9%, gA,fA, ZA, RA, etc.) extend to

internal entities 9a, g^, etc. Since Í2 will be fixed in the ensuing discussion, we will

suppress the dependence on ñ of transferred quantities, writing 9a, gA, fA, ZA, 17a,

and tA for 9£¡, g^, etc. To avoid a typesetter's nightmare we will use standard face

for symbols which should be boldface. Thus in ZA(y) we write y rather than y for

an element in Xa_A (we are already using A rather than A for an element in G).

Similarly we will write ZA(y) = 2 exp gA(_y X co) but, strictly speaking, 2, exp and

X should be boldface since they are nonstandard transfers of operations and

functions defined in the standard projective family \(XA, 9A),pAB} (A, B G /).

The context will settle all possible sources of confusion.

As it stands, the internal space (X, 90) is not a standard measurable space since

90 is only an algebra and not a a-algebra of subsets of X. Similarly the set

M(X, 90) consists of *Ä-valued (not Ä-valued) finitely additive (not countably

additive) "measures". We follow Loeb [10] and associate with (X, 90) the standard

measurable space (X, 90) by letting 9 be the a-algebra o(90) generated by 9.4

For each ¡i G M(X, 9) we may define the standard part °(iof ¡ion90 by

o  (f) = ( st M(F)    if f*(F)is finite> F e %'

{ oo    otherwise.

It is immediate that "¡i is finitely additive on ^0. Loeb showed that °¡i is, in fact,

countably additive if *91L is N,-saturated (which we have assumed) and so can be

extended to 9 by the Carathéodory Extension Theorem and so we have a map

L: M(X, 90) -* M(X, 9), (3.2)

where L(p) is the extension of °/m. Loeb also showed that if f G F(X, 90) and the

standard part °f of f is defined on X by

st f(x),   f(x) finite,

oo,    f(x) positive infinite,

— oo,    f(x) negative infinite,

then °f is ^-measurable, i.e. in F(X, 9).

°f(x) =

4Here we are using boldface to denote an external entity.
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We say that f is S-integrable with respect to p if °f is integrable with respect to

L(ji) and °[ji(f)] = L(/i)(°f). Loeb showed that f is S-integrable with respect to ¡i if

fi(X) is finite and f is bounded by a finite number (and thus in particular for

probability measures fi and f = Xr where Xf *s tne characteristic function of

F G 90). For general conditions on S-integrability see [1]. Thermodynamic quanti-

ties usually appear in the form °[/n(f)] and the question of 5-integrability only arises

if we want to identify this number as the integral L(/t)(°f); usually this will be

unnecessary.

It should be understood that the internal space (X, 90) and the standard space

(X, 9) work as a pair. The internal structure of (X, 90) is very rich and can be

effectively used in analysis; indeed, every entity which can be defined on (XA, 9A),

A G I, has an internal analogue on (X, 90), but in most cases these internal entities

on (X, 90) cannot be transposed to (X, 9). However, as we have seen, the measure

theory can be transposed. Thus (X, 9) is the repository of limiting measure

theoretic information on the underlying projective family {{XA, 9A),pAB} (A, B G

/) and this information is the central concern in statistical mechanics. We take

<(X, 9), pA> (A G I) as our analogue of the limiting configuration structure

<(*, 9),pA) (A G /) used in [13].

Now we turn to the definition of equilibrium states (Gibbs states in [13])

associated with a given interaction potential ($A ) {A G /).

3.1. Definition. (1) The nonstandard equilibrium states for <<i>/4) {A G /) are all

finitely additive set functions in P(X, 90) of the form ^(p) with A an infinite

element of 0$ and v G P(9A). We denote the set of all nonstandard equilibrium

states by G(<j>A).

(2) The generalized equilibrium states for (<¡>Ay (A G /) are all measures in

P(X, 9) of the form L(tA(p)) for A and v as above. The set of all generalized

equilibrium states will be denoted by G(<j>A).

Recall from [13] that a standard equilibrium state ¡x satisfies tA ° rA(n)(F) =

fi(F) for all A G G. In our situation we have an analogous fact; if ft = tA(p), A

infinite, is a nonstandard equilibrium state, then from (2.11) we have

Ia ° ^(h) =h,       A Ç Ä. (3.3)

The set G^) of nonstandard equilibrium states for (<¡>A} (A G /) consists of all

finitely additive *R-valued set functions on (X, 90) of the form ^(p) where A gC^

is an infinite internal subset of fi and c G P(^). By transfer of (2.12), each has a

density of the form

*£(x) = ô(xn_A)fA(x) (3.4)

for x G X, where Ô: X^^ -**R is an internal function satisfying ô > 0 and 2 8(y)

(y G Xß_A) = 1. The corresponding nonstandard equilibrium state p£ satisfies

"¿(F) - 2 o${x)       (x G F) (3.5)

for Fê?0. Finally, the generalized equilibrium states are all of the form p¡ =

L(p£) for some i>£ ëG(^).

A particularly important case is obtained when the function S is concentrated at
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a point y0 G Xs¡_A as will be seen in the next section. In that case we write 0a and

Va for 0a and »^ respectively if y G X satisfies ya_A = y0; obviously

aA(x)=,rA(>, {x}). (3.6)

It should be remarked that the nonstandard partition functions ZA(_y) exist only

in the nonstandard world of (X, 90), and there would be no purpose whatever in

taking the standard part of these functions since it would usually be infinite.

However these nonstandard partition functions can be used in intermediate calcu-

lations in the nonstandard world to obtain formulas for thermodynamic quantities

which do have standard meaning, a topic to which we now turn.

To begin, we present a nonstandard analogue of the information gain of two

measures as defined in §7 of [13]. Suppose that p = L(ji) and v = L(y) are two

measures in P(X, 9), where p and v are in P(X, 9a). Then p and v are internal,

•-finitely additive, */?-valued (probability) measures on (X, 90). For x G X, {x} is

in 90 and so we can define densities p: X -+*R and a: X —»*Ä associated with p

and v by putting p(x) = /*({*}) and a{x) = v({x}). For any A g6q we put

¡iA = pAS2(p), Va = pAii(v)- These measures have densities pA and 0a on XA. Suppos-

ing that (^(w) 7^= 0 for w G XA, we define

HA( p, r) - 2 «KgAXH'AW")       (w G X)

= 2 *(gA)("W)       (" e XA), (3.7)

where

*(/)(•)=/(•) log/(•) (3.8)

and

gA(w) - ^        (w G XA) (3.9)

and we putp log/; = 0 if p = 0. Notice that we also have

HA( p, *) - 2 *(gA)(wA)<r(w)        (w G X) (3.10)

where

*(/) = *(/)-/+ 1. (3.11)

The function * satisfies *P > 0, *(f) = 0 only if f = 1 and is *-strictly convex (all

of these by transfer). It follows that

HA(p, v)>0 (3.12)

and as on p. 116 of [13] we have

HA( p, v) « HA( p, v),       A ç Ä. (3.13)

Next we assume that there exists a fixed finite measure m defined on G (i.e., m:

G -> R+ with m(A) < oo for all A G G) satisfying m(A) > |A|, the cardinality of

A. The measure m extends to m: ß —»*Ä + and we define

m(A)

for any A G 6^.
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Next we introduce thermodynamic quantities. With p as before, we define the

nonstandard entropy of ¡x (or ¡i) on the element A G G^ by

sA^) = - "TaT 2 PA("0 logpV)       (w G XA). (3.15)
m(A)

Similarly we define the nonstandard specific energy for |ionA with respect to the

distribution y G X by

eA(M) = " m¿y2 ^(y°-* x w)pA(w)   (w G Xa)-      (3-16)

(eA implicitly depends on the interaction potentials <Ï>A, but we are not concerned

with that dependence here.) The nonstandard pressure on A with respect to_y G X is

defined by

P" = ü¿) l0g ZA(y)- (3-17)

Finally we define the nonstandard specific free energy of ju on A with respect to_y by

fA(M) = eA(itl)-sA(M). (3.18)

There is an important relationship between the information gain and the specific

free energy which will be used in §5, namely if p = v^ then «r^w) = t(ya_A X vvA)

and so

hA(M,^) = fA(/i) + PA (3.19)

Next we show that under Assumption 2.2, the above quantities are always finite.

3.2. Lemma. The quantity sA(/x) is always finite. Under Assumption 2.2, the

quantities pA, fA( ll), and eA( ft) are also finite.

Proof, (i) To bound sA(/i) we proceed as follows. Since pA(w) < 1 we have

0 < sA( ju). Now from the convexity of the function /(x) = x log x we see that

x log x>x— 1 on 0 < x which, setting x = p/q, yields

p log/> - p log q > p - q (3.20)

for/) > 0 and q > 0. Putting q = |XA|~',/> = pA(w) and summing over w G XA we

get

sa(m)< |^[-iog|xAr']=iog|r|

since log|A-A| = |A| log | Y\.

(ii) Under Assumption 2.2 we next bound the pressure PA. As in the proof of

Proposition 5.2 in [13], we have

\gî(*)\ < 2 |*c(*c)| (C 6 Va) < K\A\ (3.21)

and so by transfer Ig^x)! < AT|A| for AE^. Thus

ZA(y) < exp(/qA|)|XA|

and similarly ZA(y) > exp(- AT|A|)|XA|. Thus

- K < PA < K + log\Y\.
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(iii) Under Assumption 2.2,

|eA( p)| < |~.2 \ë\y X w)|pA(w)        (w G XA)

This completes the proof.    □

3.3. Definition. We define the generalized entropy JA(p), generalized specific

energy eA( p), generalized pressure PA, and generalized specific free energy fA( p) (on

A with respect to y G X) of a measure p = LQi) by the equations sA( p) = °sA( p),

ejin) = °ey(n), PA = °PA and//(p) = °fA(p) respectively.

The generalized quantities of Definition 3.3 are all ordinary real numbers by

Lemma 3.2.

4. Limiting significance of measures on (X, 9). In the first part of this section we

indicate the limiting significance of a certain class MS(X, 9) of measures in

L(M(X, 90)) for the underlying standard projective {(XA, SA),pAB} (A, B G /), by

showing that (a) and (b) of the Introduction hold for measures in MS(X, 9).

Secondly, we investigate connections between the measure theory (and equilibrium

states in particular) on (X, 9) and that on the standard limiting configuration space

(X, 'S). Thirdly, we show that there is a close connection between the generalized

thermodynamic quantities introduced in §3 and the standard ones introduced in

[13].
The class MS(X, 9) consists of all measures of the form L(p£e) where <pA>

{B G /, A C B and A G G') and G' is cofinal in G. Property (a) of the Introduc-

tion is established in the following theorem.

4.1. Theorem. Let {<p¿>, </*>} (Bel, A G G', A C B), with p¿ G

M(XB, 'Sg) and fB G F(XB, 'Sg), be given, where G' is cofinal in G. Suppose that

lim ¡x.B(fB) (B -+ oo in I) = rA exists for each A e. G' and lim rA (A -> oo in G')

= r. Then r = st[pA^ (fA<-*)\

Proof. Let r4 (A G<2') be the extension of rA (A G G'). By (3.1), r^ = pA<?(fAl?)

and r^ «¿ r since r = lim rA (A —» oo in G').   □

Note that if tAe is S-integrable with respect to pAc> (and in particular for finite

p^'(X) and finitely bounded f£e) then we can replace st[pAi>(fAe)] by p(/) where

p = L(p£e) and / = °fAe. Similar considerations apply throughout this section and

will not be explicitly stated.

Theorem 4.1 will be central to the results in this section. In spite of its simplicity,

it makes apparent the considerable technical advantages which result from working

on (X, 9) rather than the standard limiting space (X, 'S). To see this we review the

question of establishing the analogue of a special case of the theorem on (A', S).

Suppose that \lb = pB is independent of A and that lim ¡j.B(fB) (B —» oo in G) exists

for all A G G, A Q B and all f¿ of the form fA = xpAB\F) with F G (SA. The

problem is to find a measure p G M(X, 'S) so that n(pA1(F)) = lim ¡iB(fB) (B -^

oo  in  G) for all A  and F G 9A. A result of this sort is established by the
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Kolmogoroff theorem under the additional assumptions that the measures </iB)

(B G G) are probability measures and form a consistent family, i.e., that [iA(F) =

riB(pAJ(F)) for B D A and F G 9A (in which case nB(f¿) is independent of B and

lim ¡J.B(f¿) (B —» oo in G) automatically exists). In the more general situation

considered by Lenard in [9], in which ((XA, 9A),pAB) (A, B G /) is replaced by a

more general family ((X¡, 9¡), />,-,-> (i,j G /) where (X¡, 9¡) (i G /) is a measurable

space and / is partially ordered and directed upwards, the analogue of the

Kolmogoroff result does not even hold under the assumption of consistency unless

further assumptions of a topological nature are made on the spaces (X¡, 9¡) and the

measures, leading to other technical complications. However, our result can be

immediately generalized to that situation.

An even more serious difficulty is that there is no corresponding result without

the assumption of consistency of (ju.^) (A G G), and it is precisely this situation

that arises in the case of interacting particle systems, and, in particular, in proving

the existence of equilibrium states. In the general situation we have considered (in

which fij4 can depend on A) the problem is usually overcome by technical artifices

which eventually reduce the problem to the Kolmogoroff theorem, but this involves

technical complications which are evident in the proof of the existence of

equilibrium states in [13] (see also [7]). In our development the existence of

equilibrium states is immediate, and in addition, we have a simple representation

for each equilibrium state.

As an immediate corollary of Theorem 4.1 we have the following connection

with measures on (X, 9).

4.2. Corollary. If ¡ia G M(X, 9) and fA G F(X, 9) (A G G') and lim ^UÊ)

(5^oo in I) = iiAUA)for all A G G' and lim LiA(fA) (A -+ oo in G') exists then

st[/4e(fA<?)] = lim *AUA)      (A -> °° '« e')-

Systematic use of the following result yields property (b) of the Introduction.

4.3. Theorem. With \iB and fB as in Theorem 4.1, we have st[/t^(f^)] =

lim y¡.¿(fB), A -h>. oo, B -► oo, (A 6 6", B 6 /') where /' is cofinal in I and G" is

cofinal in G'.

Proof. Let e > 0 in R be given, and let A0 G 6' and B0 G / be fixed. With

r = st[fiAl?(fA'i)], the following internal statement is true in *(D1L: "there exists an

A D A0 in G' and a B D B0 in / so that \r - n¿(fB)\ < e" (take A = Ae and

B = fi). By transfer down to (DIL we see that there exists A D A0 in Q' and B D B0

in / so that \r — iiB{fB)\ < e which establishes the result by a standard argument.

D
Next we show how to transfer measures from (X, 9) to (X, 9) and vice versa.

The maps

*: M(X, 9) -* A/(X, 9)    and    0: Mf(\, 9) — Mf(X, 9)

(where the superscript/ denotes the set of finite measures) are defined as follows:

Let fi G M(X, 9); then the projection pA(ß) = ¡iA defined by iiA(F) = n(pA\F)),
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F G <SA, yields a consistent family < ¡xA > (A G /) and we let ^( p) = LQi^).

Similarly, let p G Mf(X, 9). The map p¿: X -» XA, A G /, is measurable, and the

probability measures (1 /n(K))pA(p) = vA yields a consistent family. By the

Kolmogoroff theorem there is a measure v G M(X, 9) so that ^ = pA(v) and we

let$(p) = p(X)y.

The following lemma shows that p and ^(p) and p and í>(p) agree on

"standard" cylinder sets. To make this precise, we define the collection 9S of

standard cylinder sets in 90 by

9S = (F <e90\ there exists G G 9A, A G /, and F = pAx(G)}.

The map

— ■  Jo ^ Ji

defined by £(F) = pAl(G) if F = p^"'(G) is easily seen to be a Boolean isomor-va

phism.

4.4. Lemma. The equations p(F) = *( ß)(Z(F)) and p(í(F)) = $( p)(F) /¡oW /or

a// F G %, p G A/(Af, <S) and p G A/'ÇX, 9).

Proof. Let F = pA\G), G G CSA, A G I. Since pÄ(p) = fiB, B G / is a con-

sistent family, we have ¡J-B(pAB\G)) = p(F) for ail 5 G /. By transfer, PnC^'íG))

= ß(F) and hence p(F) = ty( p)(c(F)). The proof of the second identity is similar.

D
We now use the mappings just introduced to establish a connection between

standard and generalized equilibrium states. First, two results, the first of which

will be used in §5.

4.5. Lemma. Let A G G be fixed. Under Assumption 2.1, given e > 0 in R there is

a A G G so that, if A G A Ç B G B' with B, B' G G, we have

¡"¿ix,,,,Pcb(G)) - ^Ê(xb^Pcb(g))\ < E

for any x G X and any G G ÍFC where C Ç A.

Proof. Find tj > 0 so that e2v - 1 < e. As in the proof of Proposition 5.2 in [13]

we see from Assumption 2.1 that S <$>D(xD) (D n A =£ 0) converges uniformly and

absolutely. Hence there is a A G G so that \g¿(xB.) - gB(xB)\ < 2|<f»0(x0)| (Z> n

A ¥= 0, D n (B' - B) ¥" 0) < e for any x G X and any pair B, B' satisfying

A G B G B'. For a specific x G X, B and 5', let gB(xB) - gB(xB) = 4>(xB,), and

put F = PcB(G), F' = p¿B\G) so that F" = pBB\F). Then

!**(**-. O - "¿(*a, F)| < 2 #(**--,, X w) - #(*,_,, X w)        (w G W)

where if = ^.(-V, ^") = ^b(xB' F) since C G B G B'. Continuing, we see that
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the left-hand side is

\expg¿(xB._<2 X w)      expgA(xB_A X w)

ZA(xB) Zj\xB)

e" expgA{xB_A X w)      expgA(xB_A X w)

(w G W)

(w G W)
e^ZA{xB) ZA(xB)

< e2v - 1

and we are through.    □

4.6. Definition. Let ß G M(X, 9). We say that a family <juB> (fisC) of

measures /% G M(XB, 9B) approximates ß, if, for each C G C, [ib(Pcb(G)) con-

verges to ß(p^\G)) as 5 -» oo for each G G 3^.

4.7. Lemma. // p G P(^) and vB = />B(j») G P(9Î) for fixed A G G, then

(tB(vB))> (B G G) approximates tA(v) as defined in [13].

Proof. Let C G G, G G 9C, and e > 0 in R be given. Using Lemma 4.5 we find

a A so that CçA and for all B and B' satisfying A Q B ç B',

\*¡(*w> F') - '*$(xB, F)| < e

where F = p¿¡¡(G), F' = p¿B\G), and we see immediately that l^'CvX^7') —

ia(^X-f)| < e- Thus tB(vB)(p¿B(G)) converges as B —> oo. Now by Proposition 5.3

in [13], gB(xB) converges to gA (uniformly in x), and by an argument similar to that

used in Lemma 4.5 we see that <nB (xB, F) converges to -ïïa(x, F) (uniformly in x)

where F = p¿l(G), and hence tB{vB){PcBx{G)) converges to tA(v){pçl(G)).    □

4.8. Theorem. Suppose that Assumption 2.1 is in force.

(a) If ß is a standard equilibrium state then there is a generalized equilibrium state

¡i so that ty( ß) and ft agree on 9S.

(b) If ii = L{iA{pA)), where A gG^ and A ^ fi and pA G P(9A), is a generalized

equilibrium state then í>( fi) is a standard equilibrium state.

Proof, (a) By Proposition 2.2 in [13], ß is characterized by the fact that

ß = tA(pA) for each A G G where vA is the restriction of ß to 9*. Now vB =

pB{vA) G P(XB, 9g) and we define ft = L(tA(i>)) where )- = ^andAe^t

Lemma 4.7 and Theorem 4.1 we see that

By

*(jï)(S(F)) - ß(F) = lim tA(vA)(F){A -» 00 in G) = ft(Z(F))

for all F = pA '(G), G G f4.

(b) Let p. = tA(»<), A G Gq and infinite, p G P(S^), and put ft = L(ji) and

4>(ft) = ft. We need to show that ß(F) = tA{vA){F) for each A G G, F G ^~'(G),

Cef^, where ^ is the restriction to 9a of ß. By (3.3), n(Z(F)) = ^(»^(¿(F))

where »^ is the restriction of ¡i to 9a . Thus if B D A,

ß(F) = *[fV)](F) = P*[rV)](/^(G))

-limt¿(p¿)(PA-B\G))(B

the last two equalities by Lemma 4.7.    □

ooine)=^(^)(^-'(G)),
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hA(ß,P)=-71rzHA(li,v),       A G G, (4.1)

This result shows the close connection between equilibrium states in the two

models. It also yields a simple proof of the existence of standard equilibrium states

(compare [13, §3]).

Finally we establish the connection between the nonstandard information gain of

§3 and the standard information gain h( p, v) as defined in §7 of [13]. Similar

results can be established for the other thermodynamic quantities and will not be

explicitly considered here.

It is relatively easy, using the results of §4, to establish a connection between

hA( p, v) for infinite A and the standard information gain h( p, v) as defined in §7 of

[13]. For p, v G P(X, 'S), the function h( p, v) is the limit as A —* oo (if it exists) of

m(A)

where

HA(ß,v)=U(gA)dv, (4.2)

gA = dßA/ dvA (the Radon-Nikodym derivative) and pA and vA are the restrictions

of p and v to 9(Ay Preston remarks that it is too much to expect the limit to exist if

A ranges over all elements in G, and restricts the limit to be taken over all cubes in

the case S = Zd. Thus we are really concerned with the limit along certain cofinal

subsets G' gG.

4.9. Theorem. Let G' be a cofinal subset of G. Suppose we are given collections

(HA}(BEI,A G GA ) and (vA > (B G /, A G GA) of measures in P(XB, 9B) such

that for fixed A, <Pg) (B G I) and (vB)> (B G I) approximate the restrictions fiA

and vA of two measures p and v in P(X, 9) to 9^Ay Then if h(fi, v) = lim hA(ß, v)

(A —> oo in G'), we have

h(ß,i>) = °hA?(tL,l>) (4.3)

where p = L(p), v = L(v) and p = n£e, v = v^1-*. Conversely if hA<?( p, v) is finite

then

°lA*( ju, v) = lim hA(ß, p)       (A-*ao in G")

for some cofinal G" G G'.

Proof. For fixed A G G ', a version of the Radon-Nikodym derivative gA is

Thus

Mr,?) = -^2*[r,(/';1({«'}))/^/';1({w}))]W^(/'",({«'}))
m(A)

(w G XA).

But also, if

A¿(M¿, v¿) = ~y 2*(s¿)(»'W(hO (w G XA)
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where g¿(w) = pB(wA)/aB{wA) and pB and aB are the densities of ¡iB and vB on

XA, then

hKti' VÍ) = ~mJÄ) 2$t í**(/'¿",({w}))/-*tó({«'}))]^tó({^}))

(w G A",,).

Since from Definition 4.6, ^(PÄßd™))) an^ "bÍ/'^bÍÍ**'})) approach

^(^"'(i^})) and ¡>a(pä\{w})) for each w G XA, we see that hA(iiA, vA) ap-

proaches /^(¡u, v) for fixed /l G G'. The result now follows from Corollary 4.2 and

Theorem 4 3    n

Note that the assumptions of Theorem 4.9 are satisfied if ¡xB = pA ( ft) and

vB = pA(v) (by projectivitity of the family (ft^) and (vA)), or if v — tA($),

f G P(X, 9a), is a standard equilibrium measure and ^ = tB(^B), ÇB = p(ïB) (by

Lemma 4.7).

Notice also that the finiteness of AAe(ft, v) guarantees the existence of

lim hA(ß, v) along a certain cofinal G" c G' but does not establish the uniqueness

of the limit. In §8 of [13] this question is addressed for S = Zd and any equilibrium

measure v. A nonstandard approach to this topic could be developed (for related

work in continuous statistical mechanics see [12]) but we will not pursue it further.

5. A variational principle. One of the more important results in the standard

theory of equilibrium states is the variational principle for lattice statistical mecha-

nics first presented by Lanford and Ruelle [8], and subsequently extended by other

authors (we refer to §§7 and 8 of [13] for the standard development). It provides a

partial physical justification for the abstract definition of equilibrium states. In this

section we will establish a variational principle of the same sort for our generalized

equilibrium states, thus showing that they are also intimately related to the physics

of lattice statistical mechanics. The discussion will also provide a good example of

the use of the nonstandard ideas presented so far.

To begin we need a basic inequality for the information gain of §3. Let A,

A G Qq with A n A = 0 and A u A = D. Then we have

HAu*( ft, v) - HA( n, v) - 2 <I»(qA'A)(w)g»(H0        (w G X)

= S *(qA-A)(»')gAKM"')        (w S X)      (5.1)

where

qA¿(w) = Í gD(wfl)/gA(wA)    if gVj * 0 (w G X), (5 2)

{ 0    otherwise.

If A,, . . . , A„ is a *-finite collection of disjoint sets in G^ with Tk = U *_i A,, and

r„ c A', we see from (3.13) and (5.1) that

HA'(/t, v) > HA'(ft, v) +  ¿  [ S *(qA^-')(H')gr'-'(>vrt )a(w) (w G X)].
k = 2

(5.3)

These results are simple combinatorial computations, and are the analogues of

Lemmas 7.4 and 7.5 in [13].
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We next suppose that there is a family H = {£} of bijections £: G —> G satisfying

the conditions

A n B « 0 implies £(A) n £(5) = 0 (5.4)

AGB implies |(/1) ç £(£)    and   £(5 - ^4) = |(5) - £(A). (5.5)

For example, // could be induced from a group of bijections from S to S as on p.

133 of [13]. We make the following assumption.

5.1. Assumption. The function m: G —» Ä of §3 is invariant under H, i.e.

m(£(A)) = m(A) for all i G H, A G G.

Associated with H we define the packing function nH: G x6-»JV (the natural

numbers) by

nH(A, A) = max{«: there exist £,, . . . , £„ G H so that

£,(A), . . . , i„(A) are disjoint subsets of A).      (5.6)

The set H extends in *<3H to H. Similarly, the function nH extends to nH:

6 X 6 -^ N. We make the further

5.2. Definition. Let G' be a cofinal subset of G. We say that G' is adapted to H

if there exists a strictly positive function a: G -> /? + so that for each A G 6 and

infinite A GÊ' we have

m(A)nH(A, Ä) > a(A)m(Ä). (5.7)

The assumption of adaptedness is slightly weaker than the assumption on p. 134 of

[13], which in this context immediately yields it by transfer.

A standard ingredient in obtaining a variational principle is the assumption of

some sort of translational invariance of the measures involved. It turns out that

something slightly weaker will suffice (this is also clear in the standard develop-

ment).

5.3. Definition. We say that the measures p and v G PCX., 9) are mutually near

//-invariant if for any £ G H and A, A G Gu with A n A = 0 for which ¿(A) and

1(A) G Ga,

2 *(flÈ(A«(A))(w)(gHA)(H'«A)))a(w) (w G X) ^0

whenever

2 *(qAA)(w)gV>(w) (w G X) =* 0.

In particular, if p = ¿(p^) and v = L(va) for families of measures (p^) (A G /)

and (yA > (A G /) on (XA, 9A), then this assumption is satisfied if each \iA and vA is

//-invariant.

For the proofs we need the following lemmas. The first is the finite analogue of

Lemma 7.3 in [13] and is proved by elementary calculus. The third is the analogue

of Lemma 7.9 in [13].

5.4. Lemma. Given e > 0 there is a Ô > 0 so that if \(w) (w G Q) is a discrete

probability measure on the finite set Q, and f: Q —> R+ is such that 2 ^(f)(w)X(w)

(w G Q) < Ô then 2|/(w) - l|X(w) (w G Q) < e.
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5.5. Lemma. Let p = t^(p') be a nonstandard equilibrium state with density p. If

A G A' is in 6a and F g9(A), G g9{U_A) where 9(A) = pA¿(9A) then

p(F n G) = 2 *o(w> F)p(w)       (w G G).

Proof. Using (2.11) we see that p = tA°rA;°pso that

p(x) = 2 «£(". {*}V°-V0-a)     (* e x).

Then

p(F n G) = 2 p(*)      (x g F n G)

= 2 [ 2 «£(*. {*})pö~ Vg-a) (* e f n G)]      (w G X)

= 2 «&*. F n G^Vo-a)      (w g x)

= 2 «âC*. F)pn"A(w„-A)     (w G G)

since ^(w, F n G) = 0 if w £ G and trA(w, F n G) = ^(w, F) if w G G since

FG^(A)andGG^(í2_A).    D

5.6. Lemma. Let A, A gQq with A n A = 0. Suppose that there exists a number

aAA > 1 /n *R such that for each F G9^A) we can find a function h: XA—»*/? with

(a^r'h^) < «*(*, f) < aA,Ah(>vA). (5.8)

Then for any generalized equilibrium measures, p = L(t¿(»^)) v = L(t^ (»»")) with

A Ç A' and A G A", we have

HAuA(p, »0-HA(p, ") <2logaAA.

Proof. Let p = t$ (v1), v = M^{y") with densities p and a and put A u A = D.

Then

g'Vj = pVJ/^K) = p(F n G)/KF n G)

where

F = PÂiKW)) eï(A)>        G = pAÍ21({>vA}) G^(S2_A).

From Lemma 5.5,

p(F n G) = 2 <{x, F)p(x)       (x G G)

< «a,a2 K*aM*)        (x e G)

= «A,Ah(wA)2 PW (X6G)

= aA>A/i(wA)p(G)

where  the third equality follows from G = pAo!({wA}).  Similarly,  i<F n G) >

(«a,a)"'1»(^KG) and so ¿>{wD) < (aA;A)2gA(*vA) from which qAA(w) < (aAA)2.

Then

H"( p, r) - HA( p, 0 = 2 <ï»(qA'A)(w)gA(w>(W)        (w G X)

<  2 »»g «A,A

and we are through.    □
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We now come to the main results of this section.

5.7. Theorem. Suppose that G' is adapted to H, and that fi G F(X, 9) and

v = L(p£e) are mutually near H-invariant. If /A<?(ju) + PAs = 0 then there is a

generalized equilibrium state f so that ft(F) = £(F) for all Y g9s.

Proof. Let A G 6 be given. From (3.19) we see that if A' = Ae then

HA'(ft, r)/m(A') = e is infinitesimal. Since G' is adapted to H, there exist a ""-finite

number n = nH(A, A') of elements £,, . . ., £„ in H so that i¡{A) = A, (/ =

1, . . . , n) are disjoint, Tn c A' where Tk = U *_i A, and m(A)« > a(A)m(A').

Also n is infinite since A is finite and A' is infinite. Then HA ( ft, v) < rjn where

T) = e m(A)/a(A) is again infinitesimal. From (5.3) we have

HA'(ft, v) +  2  [ 2 *(qA*'r*-')(w)gr'-'(wr4 )<r(w) (w G X) < i,/il.
*:=2

Thus there exists a A: satisfying n/2 < k < n (and hence infinite) for which

2 *(qA'r*-')(>v)gr*-'(wrt ,)a(w) (w G X)< 2tj

and hence the quantity on the left is infinitesimal. For this k we can find a £ G H

so that £(AJ = A and put £(Tk) = D and A = D - A. Notice that A = ¿(r^_,) by

(5.5), and D is infinite since k is infinite. Since ft and v are mutually near

//-invariant,

2 *(qA-A)(w)gV>(H0 (w G X) » 0

and so using the transfer of Lemma 5.4 one can show that

2 |qA'V) - i|g>X*0 (w g x) =* o

and so

2 |p(*0 - gVX"0| (w g f) ^ o

for any F G $"„. Now

2 g»(»0 (w G F) = 2 E„(xf|^(A))(»v)gA(wA)a(w) (W G X)

where E^^-l^)) is the transfer of the discrete version of the conditional expecta-

tion. But E„(xF\9w)(w) = KF n G)/«tVa) where G = p¿,'({wA}).

Suppose now that F G?F(A) so that F = pAS](F0) for F0 G9A, and put F' =

P/wJ(Fo)- By Lemma 5.5, KF n G) = 2 ir^x, F)o(x) (x G G). But by transfer from

Lemma 4.5,

-nA(xD,F')^^(x,¥) (5.9)

since D is infinite, and hence

v{Y n G) at 2 *d(xd> f'M*)        (* e G)

= <(wfl, F')«Va)>

so that EjXx^I^^Xh') ssí ir¿(wfl, F') and we conclude, using (5.9) again, that

2 p(w) (w G F) ~ 2 wA(w, F)p(w) (w G X).
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This is true for any F G 9W and hence

sup   |p(F) - 2 <(", F)p(w) (w G X)\~0. (5.10)
FeÇ,

(A)

Now (5.10) is true for any finite A and hence by Robinson's Sequential Lemma

([17, 6.4.1]), it is true for some infinite Ä. Then p(F) = f(F) for all F G9(A) and

hence for all FG^, where f = L(t^(p^_A)) is a generalized equilibrium state.    □

The converse of Theorem 5.7 would say that

//-(p) + />/- = 0 (5.11)

for all generalized equilibrium states p. That this will not be true in general is well

known. A recent paper by Föllmer and Snell [3] has established a version of the

converse by altering the definition of/. We note in passing that at least (5.11) holds

if p = L{y^e). A more general converse can be established under assumptions

similar to (7.25) and (7.26) in [13].

5.8. Assumption, (i) There exist functions y„ y2: 6$ —>*/? with y,(A)/m(A) ^ 0

(/ = 1, 2) for infinite A, such that if A G (2^ we can find A G(E^ with m(Ä — A) <

v,(A) so that if F G 9(A) then there is a function h: XA_A —>*R with

{exp(-y2(Ae,)))h(wÄ_A) < vfr(w, F) < exp y2(A(?)h(wA_A).

(ii) With p a generalized equilibrium state and v = vAe, the quantity hA_A<?(p, v)

is finite for any A D Ae..

5.9. Theorem.   Under Assumption  5.8, fAe(ii) + PAe = 0 for all generalized

equilibrium states p.

Proof. Let p = L(ji), p = ^'(i/), and v = L(v^e). From 5.8(i) find a Ä associa-

ted with A' u Ae-. By Lemma 5.6,

fA-(p) + PA* = hA-(p, v) < —l—HÄ(p, v)
npAg.)

m(Ae,)

~0

< z¿~: [m(Â -A<,)hA-A<?(p, v) + 2Y2(Ae,)]

and we are done.    □

The reader is invited to find the local conditions on (XA, 9A) which assure that

7.8 holds; in particular 7.8 will hold under conditions which guarantee (7.25) and

(7.26) in [13].

6. Concluding remarks. In this paper the ease of analysis on (X, 9) and the

richness of that structure have not been fully exploited since we have mainly been

interested in laying the foundations of the theory, and in establishing results

corresponding to those in [13]. A more detailed comparison of the nonstandard

technique with that of [13] is instructive, and we conclude with a few remarks in

that direction.
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First note that the standard existence problem for equilibrium states [13, §3] does

not occur in our development. Indeed, generalized equilibrium states exist with no

assumptions at all on the interaction potential. The crucial assumptions are used in

two places: Firstly, to show that each standard equilibrium state corresponds to a

generalized one we need Assumption 2.1 (note that Assumption 2.1 is used in [13]

to show that equilibrium states exist in lattice models). Even without Assumption

2.1 our generalized equilibrium measures would have limiting significance via the

results of §4. Assumption 2.2 enters more crucially in both the standard and

nonstandard development in establishing the existence (finiteness) of the thermody-

namic quantities of §3 and hence the connection with the real world.

Another significant difference between the approach of [13] and ours is that in

our development each generalized equilibrium measure ft has an explicit representa-

tion of the form ft = L(t£(p)) for some infinite A and i> G P(Xn, S^a_A)), and so

different generalized equilibrium measures (for different A and p) can be effectively

compared. In [13] on the other hand, an abstract characterization is given for

equilibrium measures, and then existence is demonstrated by showing that

lim wA (x, F) (A„ —» oo) exists for all F in a countable subset tf) of 9 for some

subsequence {A„} (see p. 36, [13]). From our viewpoint this existence proof singles

out a measure of the form ft = L(<n£(y, •)) for some infinite A. Since the technical

complications in [13] are considerable, the interrelationships between measures

obtained for different subsequences {A„} would be difficult to investigate.

Consider lastly our proof of the variational principle of §5. Not surprisingly the

proof is in some aspects similar to the proof of the corresponding result in [13]. But

the proofs of all of the necessary lemmas are transfers of finitistic arguments. We

are able to use systematically the fact that nonstandard measures on (Xq, 9a) have

densities. Thus the nonstandard methods have some attraction, at least from a

pedagogical standpoint. In addition, they are likely to be even more effective in

continuous statistical mechanics.
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