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ABSTRACT. We prove a generalization for infinite trees of Silver’s partition theorem.
This theorem implies a version for trees of the Nash-Williams partition theorem.

1. Introduction. First we establish some notation. An ordinal will be identified
with the set of smaller ordinals, and a cardinal will be an initial ordinal. For
example, 4 = {0, 1, 2, 3}; and w = 8 is the set of all nonnegative integers as well
as the cardinality of that set. If X is a set, then |X| is the cardinaltiy of X. If x is a
cardinal, then [X]* = {Y C X: |Y| =k}, [X]<" = (Y C X: |Y| <k}, and [X]<*
= [X]<* U [X]~

In [2], Erdés and Rado made the following definition: a family of sets § C [w]"
is Ramsey provided there exists X € [w]" with either [X]* C F or [X]** N ¥ = .
Erdos and Rado also proved that the axiom of choice implies that there exists
F C [w]™ that is not Ramsey.

However, [w]" is naturally embedded in 2° = { f: f is a function from w into 2},
and so we can consider [w]* with the induced topology, where 2“ has the
Tychonoff product topology. In this topology, the work of Nash-Williams [8] and
of Galvin and Prikry [3] shows that each Borel set is Ramsey. Silver [10] extended
these results to show that every analytic set is Ramsey (see Corollary 1.12 below).
And recently, Ellentuck [1] and others (see [5] and [11]) have found simpler proofs
of Silver’s result.

The primary result of this paper (Theorem 1.9 below) is a version for trees of
Silver’s theorem. This result for trees implies Silver’s theorem. Also, just as Silver’s
theorem implies the Nash-Williams partition theorem (Theorem 3.1 below) and
Ramsey’s theorem, so our result implies a version for trees of the Nash-Williams
theorem (Theorem 3.3 below) and a version for trees of Ramsey’s theorem
(Corollary 3.4 below). This last mentioned Ramsey’s theorem for trees was origi-
nally proved in [6].

In order to work with trees, we need several definitions. These are listed together
here for convenient reference.

Suppose P = (P, < ) is a partially ordered set. (We use a single symbol both for
a structure and for its underlying set.) If p € P, we write
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Pred(p, P) = {qg € P: g < p}, Pred*(p, P) = Pred(p, P) — {p},
Succ(p, P) = {q € P: q > p},  Succ*(p, P) = Succ(p, P) — {p}.

We shall be primarily concerned with rooted trees of finite height or of height w,
so the following definition of a tree will be used.

DEFINITION 1.1. A tree t = (T, < ) is a partially ordered set satisfying:

(1) T has a unique least element, called the root of T and denoted Root(T’), and

(2) for each t € T, Pred(z, T) is a finite chain, i.e., Pred(¢, T) is a finite, linearly
ordered set in (7, < ).

The elements of a tree T will sometimes be called nodes. If t € T, then the level
of t in T, denoted Lev(¢, T), is the cardinality of Pred*(¢s, 7). If n € w, T(n) =
{t € T: Lev(t, T) = n}, ie., T(n) is the set of nodes on the nth level of T. The
height of T is Height(T) = sup{|Pred(s, T)|: t € T'}. For example, if n € w implies
T(n) # <&, then T must have height w. A branch of T is a maximal chain in
(T,< >. We call T an a-tree (where a < w) provided each branch of T has
cardinality a. Thus each a-tree has height a, but a tree with height a need not be
an a-tree.

If s and ¢ are nodes of T, we say s is an immediate successor of t when s is
minimal in Succ*(¢, T), or equivalently, when ¢ = max{Pred*(s, T)}. We write
IS(2, T) for the collection of all immediate successors of ¢ in T.

If « is a cardinal (finite or infinite), and if a € w, an (a, k)-tree is an a-tree with
each nonmaximal node having exactly x immediate successors. An (a, < k)-tree is
an a-tree with each nonmaximal node having fewer than x immediate successors,
and an (a,< k)-tree is an a-tree with each nonmaximal node having at most &
immediate successors.

If 0<a< B <w we write Incr(a, 8) for the set of all strictly increasing
functions from a into S.

Below is a formal definition of when a tree S is strongly embedded in another
tree 7. Intuitively, for S to be strongly embedded in T, S must be a subset of T
with the induced partial order. S must preserve the branching structure of 7, i.e.
given a (nonmaximal) node of S, if that node has k immediate successors in 7', then
that node must have k corresponding immediate successors in S. Also, S must
preserve the level structure of 7, i.e. all nodes of S on a common level (of S) must
be from a common level in 7.

DEFINITION 1.2. Suppose S is an a-tree and T is a B-tree with0 < a < 8 < w. §
is strongly embedded in T provided the following hold.

(1) S C T, and the partial order on S is induced from 7.

(2) If s € S is nonmaximal in S and ¢ € IS(s, T) then Succ(¢, T) N IS(s, S) is a
singleton.

(3) There exists f € Incr(a, B) such that S(n) C T(f(n)) for each n € a.

The function f in (3) is called the level assignment function for S in T, and we
write f = LAF(S, T).

Given f € Incr(a, B), we write Str(T) for the collection of all a-trees strongly
embedded in the B-tree T that have f as level assignment function in 7. Also, we
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write

Su(T)= U Stry(T),
f ElIncr(a,B)

Str<¢(T) = |UJ Str(T),

n€Ea
Str<*(T) = Str*(T) U Str<*(T).

The proof we give of our main theorem involves consideration of finite se-
quences of trees. So we shall extend the above notation to finite sequences of trees.
Suppose d is a positive integer and {7;: i € d) is a sequence of B-trees for some
0< B <wlIf0<a< Bandf € Incr(a, B), then we write

Str(T;:i € d) = {{S;:i €d): S; € Str(T,) for each i € d}

I Str(T),

ied

Sui(T:ied)= U SulT:ie€a),
f €Incr(a,B)
Su<(T:ied)= J St'(T:i € d).
nEa

Str<*(T;: i € d) is defined similarly.

It should be noted that if S, R and T are w-trees with S € Str(T) and
R € Str,(S), then R € Str,(T) where h(n) = f(g(n)) for each n € w.

DEFINITION 1.3. We write Id for the identity function on w, i.e., Id: w — w with
Id(n) = n for each n € w. Thus Id|n, the restriction of Id to n, is the identity
function on n.

DEFINITION 1.4. Suppose s is an a-tree and T is a S-tree for some 0 < a < 8 <
w. Then S is a strong initial segment of T (denoted S < *T) provided S is the
unique tree satisfying S € Stryy (7).

DEFINITION 1.5. Suppose T is an w-tree and A € Str<¢(T). Then we shall write
Str(4, T) = {R € Stu“(T): A < *R}. So, in particular, Str(¢, T') = Str“(T). Also,
we shall write Dmt(A4, T) for the maximal tree of Str(4, T) and call Dmt(4, T) the
dominating tree of A in T, i.e.,

Dmt(4, T) = A U {Succ(t, T): ¢ is a maximal node of 4}
where Dmt(A4, T') has the partial order induced from T.

DEFINITION 1.6. Suppose that d is a positive integer, that (7;: i €d) is a
sequence of w-trees, n € w, f € Incr(n, w), and that 4, € Str(T,) for each i € d.
We shall write

Str(4, Toied)= U ( II str,(Dmt(4, T,-))).
g€E€Incr(w,w) \i€Ed
g|ln=1d|n

Intuitively, Str(4;, T;: i € d) consists of all sequences <{S;:: i € d) in
Str“(T;: i € d) that (for each i € d) have 4, being a strong initial segment of S;.

DEFINITION 1.7. Suppose T is an w-tree and R C Str’(T). We say R is T-Ramsey
provided there exits 7’ € Str®(T) with either Str(T") C Ror Str*(T) N R = &.
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Considering « with its usual ordering as the trivial (w, 1)-tree, then w-Ramsey
means just Ramsey in the traditional sense mentioned above.

DEFINITION 1.8. Suppose d is a positive integer and (T;: i € d) is a sequence of
w-trees. We say that a set R C Str*(7;: i € d) is completely {(T;: i € d)-Ramsey
provided the following holds. If {(S;: i € d) € SU(T;: i € d), and if 4;: i € d)
€ Str<“(S;: i € d), then there exists (R;: i € d) € Str(4;, S;: i € d) such that
either Str(4,, R: i €d) C Ror Str(4,, R:i€d)N R=.

If d=1s0o (T;: i €d) ={T,), we shall say R is “completely T,-Ramsey”
instead of saying R is “completely {7,>-Ramsey.” So R is completely T-Ramsey
means that for each S € Str*(T) and each A € Str<“(S), there exists S’ €
Str(4, S) with either Str(4, S) C R or Str(4, S’) N R = . Clearly, if R is
complete 7-Ramsey, then R is 7-Ramsey.

Given a sequence of w-trees {T;: i € d) where d is a positive integer, we shall
define a topology on Str“(7;: i € d) by taking {Str(4,, S;: i €Ed): {S;: i €d) €
Str“(T;: i € d) and {4;: i € d) € Str<*(S;: i € d)} as a basis. This topology will
be called the tree topology on Str*(T;: i € d). If ¢ is a single w-tree, then the tree
topology on Str“(T) has {Str(4, S): S € Str*(T) and 4 € Str<“(S)} as a basis.

For completeness, we also define the analytic sets in a topology. Suppose
T = (X, G) is a topological space, i.e., X is a set and G is the family of open
subsets X. Write F for the family of closed subsets of X. Suppose T is an arbitrary
(w, 8y)-tree, and B is the set of all branches of T. Then 4 C X is analytic in 7 if
there exists a function f: T — F such that

= L(00)

It is well known that every Borel set is analytic.
Using these definitions, we can state our main theorem.

THEOREM 1.9. Suppose T is an (w, < 8,)-tree and R C Str“(T) is an analytic set in
the tree topology on Str(T). Then R is completely T-Ramsey; hence R is T-Ramsey.

First let us see how Theorem 1.9 implies Silver’s partition theorem. If 4 and B
are subset of w, we write 4 < B to mean: for each a € 4 and b € B, we have
a <b.

DEFINITION 1.10. If 4 € [w]<* and X C w, then we say 4 is an initial segment of
X and write 4 < X provided there exists Y Cwwith4 < Yand4 U Y = X.

If we consider [w]" to be embedded in 2“ has the Tychonoff product topology,
then we shall call the induced topology on [w]* the classical topology. If for each
A € [w]<" we write

I, ={Y €[w]™: 4«7V}

then {I,: A € [w]<"} is a basis for the classical topology on [w]*.

If we instead consider w with the usual ordering to be the trivial (w, 1)-tree, then
the tree topology on Str“(w) = [w]" is finer (has more open sets) than the classical
topology. A typical basic open set for the tree topology on Str*(w) = [w]" is of the
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form
Jux={Y E[X]*: 4«7}

where X € [w]*™ and 4 € [X]<". We shall call the tree topology on Str*(w) = [w]"
the Ellentuck topology since it is identical to the topology on [w]" introduced by
Ellentuck in [1].

Since we have noted that « is just a particular (w,< 8j)-tree, we have the
following corollary to Theorem 1.9.

CoroLLARY 1.11 (ELLENTUCK [1]). If R C [w]* is analytic in the Ellentuck
topology on [w]', then R is Ramsey.

Since the Ellentuck topology is finer than the classical topology, (1.11) implies
Silver’s partition theorem.

COROLLARY 1.12 (SILVER [10]). If R C [w]" is analytic in the classical topology on
[w]", then R is Ramsey.

2. Proof of the main theorem. In this section, we shall give a proof of Theorem
1.9. In fact, we shall prove the stronger Theorem 2.1 below.

Suppose T = (X, G) is a topological space, i.e., G is the family of open subsets
of the set X. Remember that N C X is nowhere dense provided the closure of N
contains no nonempty open sets. A set M C X is meager if it is a countable union
of nowhere dense sets. And a set B C X has the Baire property provided there
exists an open set U € G such that BAU = (B — U) U (U — B) is meager.

THEOREM 2.1. Suppose d is a positive integer and {T;: i € d) is a sequence of
(w, < N)-trees. Then a set R C Str*(T;: i € d) is completely {T;: i € d)-Ramsey if
and only if R has the Baire property in the tree topology on Str*(T;: i € d).

It is well known (see Kuratowski [4, p. 94]) that each analytic set in a topology
has the Baire property in that topology. Using this fact and taking d =1 in
Theorem 2.1, we obtain Theorem 1.9. So we turn to the proof of Theorem 2.1. Our
proof of (2.1) combines the ideas of Ellentuck [1], of Galvin and Prikry [3], of
Nash-Williams [8] and of this author [6].

We shall need the following “pigeon-hole principle for trees” in the proof of
Theorem 2.1. A proof and the history of Theorem 2.2 can be found in §2 of [6].

THEOREM 2.2 (HALPERN-LAUCHLI-LAVER-PINCUS). Suppose d is a positive integer
and {(T;: i € d) is a sequence (w,< R )-trees. If F: Str'(T;: i € d) > 2 then there
must exist k €2 and (S;: i € d) € Su“(T;: i € d) such that F has the constant
value k on Str'(S;: i € d).

We shall also need the following strightforward lemma.

LEMMA 23. If T is an (w,< R)-tree, if t €T, and if f € Incr(w, w) with
f(0) = Lev(t, T), then there must exist S € Str{T) with Root(S) = t.
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DEFINITION 2.4. Suppose that d is a positive integer and {T;: i €d) is a
sequence of (w, < N)-trees, and that R C Str“(T;: i € d). Also, suppose that {S;:
i€dyeSu“(T;:i€d)and {4;: i €d) € Str<“(S;: i € d). Then {S;: i €d)
accepts {A;: i € d) with respect to R provided Str(4;, S;: i € d) C R. We say {S;:
i € d) rejects {A;: i € d) with respect to R provided that each (R;: i €d) €
Stre(S;: i € d) with {4;: i € d) € SU<“(R;: i € d) does not accept {A,;: i € d)
with respect to R.

When it is clear which set R is being considered, we shall omit the phrase “with
respect to R”.

The following lemmas build up to a proof of Theorem 2.1. In Lemmas 2.5
through 2.14 we assume that {7;: i €d), R, {A;: i € d) and {S;: i € d) are as
described in the hypothesis of Definition 2.4.

LeEMMA 2.5. If {S;: i € d) accepts (or rejects) (A;: i € d), then each
(R:iE€d)y eSu“(S;:i€d)
with (A;: i € d) € Su<“(R;: i € d) accepts (or rejects, respectively) {A;: i € d).

LEMMA 2.6. {(S;: i €d) accepts (or rejects) {A;: i €d), if and only If,
(Dmt(4,, S;): i € d) accepts (or rejects, respectively) (A;: i € d).

LEMMA 2.7. There exists {R;: i € d) € Str(A;, S;: i € d) such that {R;: i € d)
either accepts or rejects A;: i € d)

The above lemmas are all immediate from Definition 2.4. For the next lemma,
we introduce an additional definition. If {S;: i € d) either accepts or rejects {(A;:
i € d), then we say that {(S;: i € d) decides {A;: i € d).

LeMMA 2.8. Given (T;: i € d) as in Definition 2.4, there exists
(R:i€d)yeSu“(T;:i€d)
such that (R;: i € d) decides each {B;:i € d) € Str\(R;: i € d).

The proof of Lemma 2.8 is not difficult. One recursively picks an array of trees
{T(i, n): i €Ed, n € w) such that for each i € d, the sequence {(7(i, n): n € w)
decreases as a function of n, i.e., T(i, n + 1) C T(i, n). Eventually it will be that

R = (N TG, n).
new
One can assure that the R; so defined are indeed (w, < N)-trees (and are strongly
embedded in the T;) by choosing the T(i, n) with T(i, j)(n) = T(i, n)(n) for all
J > n, ie., the nth level of T(i, n) determines the nth level of all 7(i,j) withj > n,
and hence the nth level of R,.

Because of Lemma 2.5, we can assure that (R;: i € d) decides each (B;:
i € dy € Str'(R;: i € d) by selecting the T(i, n) so that {T(i, n): i € d) decides
each (B;: i € d) € Str'(T(i, n): i € d) with B, C T(i, n)(n) for each i. (Then
{T(i, n): i € d) automatically decides all {B;: i € d) with B; C T(i, n)(j) for
some j < n.) Such a selection of the 7(i, n) is easy to make using repeated
applicatons of Lemma 2.7 (and of Lemma 2.3).
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LEMMA 2.9. Given {T;: i € d) as assumed in Definition 2.4, there exists
(R:i€d)yeSu“(T;:i€d)

such that either (R;: i € d) accepts all {(B;: i €d) € Str'(R;: i € d) or {(R;:
i € d) rejects all (B;: i € dy € Str'(R;: i € d).

The proof of Lemma 2.9 is easy. One need only apply Theorem 2.2 (Halpern-
Lauchli-Laver-Pincus) to the result of Lemma 2.8.

LEMMA 2.10. Given {S;: i € d) as assumed in Definition 2.4, if (S;: i € d) rejects
(p: i € d), then there exists (R;: i € d) € Str“(S;: i € d) such that (R;: i € d)
rejects all (B;: i € d) € Str'(R;: i € d).

The {(R;: i € d) from Lemma 2.9 must satisfy Lemma 2.10; otherwise Lemma
29 yields that (R: i €d) accepts all (B;: i €d) € Str'(R;: i € d). Then
Str*(R;: i € d) C R, and {S;: i € d) would not reject {¢p: i € d).

LEMMA 2.11. Given {S;: i € d) and {(A;: i € d) as in the supposition of Definition
2.4, let N = Height(A)). If (S;: i € d) rejects (A;: i € d), then there exists

(R:i€d) EStr(4,, S;:i €d)
such that {R;: i € d) rejects all (B;:i € d) € St¥*(R;: i € d) with A, < *B, for
each i € d.
If (S;:i€d) and {A4;: i € d) satisfy the hypothesis of Lemma 2.11, then we

can assume A4; < * §; for each i € d. Letting N = Height(A4,), we can write each
S; — A; as a union of disjoint sets

S, — A; = U {Succ(a, S;): there exists b € A,(N — 1) witha € IS(b, S;)}.
We shall concentrate on the array of trees
{Succ(a, S;): i € d and there exists b € A(N — 1) witha € IS(b, S))>. (1)

(We consider Succ(a, S;) a tree by giving it the induced partial order.) Since (1) is
cumbersome to write, we shall make the notational convention that M, =
U sesv-1y IS(b, S), so (1) becomes

{Succ(a, S;):i € d,a € M,). 2)
We define
R’ C Str*(Succ(a, S): i € d,a € M)
by {Q(a,i): i€Ed, a€ M;) € R’ if and only if {(Q(a,i): i Ed, a € M) €
Str“(Succ(a, S)): i € d,a € M;) and {(U,ep, Q(a, ) U 4;: i Ed) € R. Then to

prove Lemma 2.11 one applies Lemma 2.10 to the sequence of trees (2) and the set
R’

LEMMA 2.12. Given {S;: i € d) and {A;: i € d) as assumed in Definition 2.4,
suppose {S;: i € d) rejects {C;: i € d), N is a positive integer, Height(C,) = N,

(Cried)y eStM(4,: i € d),
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and every maximal node of C; is also maximal in the corresponding A;. Then there
must exist (R;: i €d) € Str(A4;, S;: i € d) which rejects all {(B;: i€d) €
St *!(R;: i € d) with C; < * B, for each i € d.

Lemma 2.12 is a straightforward generalization of Lemma 2.11. Using a recur-
sive definition similar to the one in the proof of Lemma 2.8 along with repeated
applications of Lemma 2.12, one can prove the following lemma.

LEMMA 2.13. Given {S;: i € d) as in Definition 2.4, if {S;: i € d) rejects {p:
i €d), then there exists {(R;: i € d) € Str*(S;: i € d) such that {R;: i €d)
rejects all (B;: i € d) € Str<“(R;: i € d).

Also, just as Lemma 2.10 was generalized to Lemma 2.11, so from Lemma 2.13
we obtain the following lemma.

LeMMA 2.14. Given {S;: i € d) and {A;: i € d) as in Definition 2.4, if {S;:
i € d) rejects (A;: i € d), then there exists

(R:i€d) eStr(4, S;:i €d)

such that {(R;: i € d) rejects all {C;: i € d) € Str<“(R;: i € d) with A, < * C, for
each i € d.

We shall present more detailed proofs of the following lemmas.

LEMMA 2.15. Suppose d is a positive integer, {(T;: i € d) is a sequence of
(w0, < Ny)-trees, and that R C Str*(T;: i € d) is an open set in the tree topology on
Str*(T;: i € d). Then R is completely {(T;: i € d)-Ramsey.

ProoF. Suppose that R and {T;: i € d) satisfy the hypothesis. Also, suppose
(SpiedyeSuT:ied)and(4;:i € d) € SU<“(S;: i €d).
If some (R;:i € d) € Str(A4,, S;: i € d) accepts (A,;: i € d), then

Str(A4;, R: i €d) C R,

and we are done.

Otherwise S;: i € d) rejects {A;: i € d). So apply Lemma 2.14 to obtain {R;:
i €d) €Str(4;, S;:i € d) such that (R;: i € d) rejects each {C;: i€ d) €
Str<¢(R;: i € d) with 4; < * C, for each i € d. We claim Str(4;, R: i Ed)N R =
a.

Suppose not and pick <Q;: i € d) € Str(4,, R;: i € d) N R. Since

Str(4,, R:i €d) N R

is open, we can find a basic open set Str(B,, P;: i € d) with

(Qii€edyeSu(B, P:i€d)CSt(A,R:ied)n R.
In fact, we can assume 4, < * B; <* P, for each i €Ed, and (P: i €d) €
Str(A;, R;: i € d). Then (P;: i € d) accepts (B;: i € d), but this contradicts the
requirement that (R;: i € d) rejects (B;: i € d). The contradiction proves the
lemma.
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LEMMA 2.16. Suppose {T;: i €Ed) is a finite sequence of (w,< Ny)-trees, and
N C Str*(T;: i € d) is nowhere dense in the tree topology. Then for each {S;:
ied)eSu(T;:i € dyand each{A;: i € d) € SuU<“(S;: i € d), there must exist
(R:i€d)y€Str(4,, S;:i € d)withStr(A, R:i€d)yNn N =0.

This is immediate from Lemma 2.15 applied to the complement of the closure of
N.

LemMA 2.17. Suppose {T;: i € d) is a finite sequence of (w,< R )-trees; then
M C Str®(T;: i € d) is meager in the tree topology if and only if M is nowhere dense
in the tree topology.

ProOF. If M C Str(T;: i € d) is nowhere dense, then M is trivially meager.

So suppose M = U ,¢, N, where each N, C Str“(T;: i € d) is nowhere dense.
In order to conclude that M is nowhere dense, it suffices to show that for each
nonempty, open R C Str“(T;: i € d), there exists a basic open neighborhood
Str(A4;, R;: i € d) with Str(4;, R: i € d)C R — M.

So assume such R is given, and pick {(S;: i €d) € Str*(T;: i € d) and {4;:
i €d)y € Str<¥(S;: i € d) so that Str(4,, S;: i € d) C R. Let Height(4,) = H, for
eachi € d.

By induction on n, n € w, we shall define two arrays of trees, {T(i, n): i € d,
n € w) and {P(i, n): i € d, n € w), such that the following conditions hold for
eachn € w.

@ <T@, n):ied)eStu(d,S;:i €d).

) (P(,0):i€d)=CA;:i €d),and if n > 1, then for each i € d, P(i, n) =
U rxen+u TG, n — 1)(k), and P(i, n) has the induced partial order.

(c)If n > 1, then

(T(i,n):i€ed) € Str(P(i, n), T(i, n — 1): i €d).

(d) Suppose H < k <n+ H and (B;: i € d) € Str’*"(P(i, n): i € d) with 4,
< * B; for each i € d. Then for every {Q;: i € d) € Str(B,;, T(i, n): i € d) with
Q, N P(i,n) = B; foreach i € d, we have {(Q;: i Ed) & N,.

If n = 0, then condition (b) defines (P(i, 0): i € d) = {(A4;: i € d). So we can
apply Lemma 2.16 to get <(7(i,0): i €d) € Str(4,, S;: i € d) such that
Str(A,, T(i, 0): i € d) N Ny = @.

Given n > 1 and the trees T(i, k) and P(i, k) for each i € d and k € n, we want
to select 7T(i, n) and P(i, n) for each i € d. Now condition (b) determines {P(i, n):
i € d> and hence T(i, n)(j) for each j € n + H because of condition (c). So it
remains to select 7(i, n)(j) forj > n + H.

Let P'(i,n) = U ycpsn+1 TG, n — 1) k) for each i € d, and let

C(n) = {<C(i): i € d) € SU<"*H*Y(P'(i, n): i € d): for eachi € d,
4; < * C(i) and C(i)(Height(C(i) — 1)) € P'(i, n)(n + H)}.

Let K = |C(n)| and enumerate C(n) as {C(p): 1 < p < K} where C(p) =
{(C(p,i):iEd).
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By induction on p, p € K + 1, we shall define trees 7(i, n, p) such that the
following conditions hold for eachp € K + 1.

(¢) T(i,n,0) = T(i,n — 1) foreachi € d.

® Ifp > 1,then {T(i, n,p): i € d) € Str{(P(i, n), T(i, n,p — 1): i € d)).

(g) Write B, = C(p,i) n P(i,n), and H(p) = Height(C(p, i)), and I(i) =
C(p, )(H(p) — 1) foreachi € d.

If

V(i) = B, U ( U (Succ(a, S) n T(i, n,p):a € 1(1)}) (1
has the induced partial order, then
Str(B;, V(i):i€ed)n N,=0.
Condition (e) defines 7(i, n, 0). So suppose p > 1 and the trees T(i, n, q) have

been defined for i € d and g € p. We shall use the notational conventions made in
the first sentence of conditions (g). Let

U(i) = B, U ( U {Succ(a, S) N T(i,n,p — 1):a € I(i)}).

Then apply Lemma 2.16 to {U(i): i €d) and obtain <(V(i): i €Ed) €
Str(B;, U(i): i € d) so that

Str(B;, V(i):i€d)n N, =&.
But then we can use Lemma 2.3 to find
{T(i,n,p):i €d) € Str(P(i, n), T(i, n,p — 1):i € d)
such that for each i € d and each a € I(i),
Succ(a, S;) N T(i, n, p) = Succ(a, S;) N V(i).

This assures that equation (1) holds, so the conditions (f) and (g) hold.

When the induction on p € K + 1 is complete, we set T(i, n) = T(i, n, K), so
the conditions (a) — (c) follow immediately. And condition (d) follows from
condition (g) after a moment of thought. So we have completed our induction on
n € w.

By conditions (a)—(c) we can set

R = () (T(i,n)) = 4, U ( U TG, n)(n+ H - 1)) = U P@,n)
n€Ew nEw nEw
foreachi € d,and get (R;: i €d) € Str(4,, S;: i € d).

Now, it is clear that Str(4;, R: i € d) C Str(A,, S;: i € d) C R, and we claim
Str(A;, R;: i € d) N M = & (which, if true, proves the lemma). Indeed, suppose
(Q:i€d)€eSu(A, R:i€d)n N, for some n € w. Let B, = Q, N P(i, n) for
eachi € d. Then (Q;: i € d) and (B;: i € d) satisfy the hypothesis of condition
(d), and we conclude {Q;: i € d) & N,. This contradiction proves the lemma.

Lemmas 2.16-2.17 enable us to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Suppose (T;: i € d) is a finite sequence of (w,< 8-
trees.
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If R C Su“(T;: i € d) has the Baire property (i.e, RAU=(R - U)u (U —
R) is meager for some open set U), then we want to show R is completely (7;:
i € d)-Ramsey. Now Lemma 2.17 states that RA U is in fact nowhere dense (in
the tree topology). So suppose {S;: i €d) € Str*(T;: i € d) and {4;: i €d) €
Str<¢(T;: i € d). Since U is open, Lemma 2.15 implies there exists (R;: i € d) €
Str(4;, S;: i € d) with either Str(4,, R:i €d) C U or Str(4, R:i€d)yn U=
<. But the fact that RA U is nowhere dense and Lemma 2.16 yield {Q,;: i € d) €
Str(A4;, R;: i € d) such that

Str(4,, Qi €d)n (RAU) =&.
Thus Str(4,, R;: i € d) C U implies Str(4;, Q;: i € d) C R, while
Str(4, R:i€d)NU=O
implies Str(4,, Q;: i Ed) N R = .

Conversely, suppose R is completely (T;: i € d)-Ramsey. Let int(R) be the
interior of R. We shall show that R — int(R) is nowhere dense. To show this, it
suffices to show that for each nonempty, open set U, there exists a basic open set
Str(A, R;: i € d) C U — (R — int(R)).

Indeed, given nonempty open U, pick (S;: i € d) € Str’(T;: i € d) and {A4;:
i €d) € Str<“(S;: i € d) such that Str(4,, S;: i € d) C U. Since R is completely
{T;: i € d)-Ramsey, there must exist (R;: i € d) € Str(A,, S;: i € d) with either
Str(4;,, R: i €Ed) C R or Str(4;, R: i €d)Nn R=. In the first case,
Str(A4;, R;: i € d) is open, so Str(4, R;:i € d) Cint(R). So in either case,
Str(A4;, R;: i € d) C U — (R — int(R)). This complete the proof of Theorem 2.1.

3. A Nash-Williams partition theorem for trees. A family of finite sets @ C [w]<"
is said to be thin provided it is not the case that there exist distinct sets 4, B € @
with 4 < B. In [8], Nash-Williams proved the following generalization of Ramsey’s
theorem.

THEOREM 3.1 (NASH-WILLIAMS). Suppose that @ C [w]<" is thin, that r is a
positive integer, and that @ = U ;c, C;. Then there must exist X € [w]™ and k € r
such that @ N [X]<" C C,.

We shall show that Theorem 1.9 implies a generalization for trees of Theorem
3.1.

DEFINITION 3.2. Suppose that T is an w-tree. A family of subtrees % C Str<“(T)
is said to be rhin provided that it is not the case that there exist distinct trees A,
B e % with4 < *B.

THEOREM 3.3. Suppose that T is an (w, < 8)-tree, that B C Str<®(T) is thin, that
r is a positive integer, and that B = U ;c, C;. Then there must exist S € Str*(T)
and k € r such that ® N Str<“(S) C C,.

Theorem 3.3 becomes Theorem 3.1 if we take 7 to be the trivial (w, 1)-tree, i.e.,
T = w. Also, note that for each n € w, it is clear that Str"(7) is a thin family of
subtrees whenever 7T is an w-tree. Hence, we have the following generalization for
trees of Ramsey’s theorem.
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COROLLARY 3.4. Suppose that T is an (w,< R)-tree, that n and r are positive
integers, and that Str"(T) C U ;¢, C;. Then there must exist k € r and S € Str“(T)
with Str"(S) C C,.

A finitary version of (3.4) and related results can be found in [6].
PrROOF OF THEOREM 3.3. Suppose that 7 and % satisfy the hypothesis. By a
standard argument, we may assume that r = 2. So suppose B = C, U C,. Define

P = {R € Str*(T): there exists A € C,with4 < *R}.

Since C, C Str<“(T), it must be that P is an open set in the tree topology on
Str®(T). Thus Theorem 1.9 (or Lemma 2.15) implies that there exists S € Str*(T)
with either Str“(S) C Por Str*(S) N P = .

If Str“(S) C P, then the fact that % is thin requires % N Str<“(S) C C,.
Similarly, if Str*(S) N P = &, then Cy N Sr<(S) =, so B N Sr<“(S) ¢ C;.
This proves Theorem 3.3.
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