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MULTTVARIATE REARRANGEMENTS AND BANACH FUNCTION

SPACES WrrH MIXED NORMS

BY

A. P. BLOZINSKI

Abstract. Multivariate nonincreasing rearrangement and averaging functions are

defined for functions defined over product spaces. An investigation is made of

Banach function spaces with mixed norms and using multivariate rearrangements.

Particular emphasis is given to the L(P, Q; •) spaces. These are Banach function

spaces which are in terms of mixed norms, multivariate rearrangements and the

Lorentz L(p, g) spaces. Embedding theorems are given for the various function

spaces. Several well-known theorems are extended to the L(P, Q; *) spaces. Prin-

cipal among these are the Strong Type (Riesz-Thorin) Interpolation Theorem and

the Convolution (Young's inequality) Theorem.

1. Introduction.

1.1. Let f(x), x = (x,, . . . , xn) be a measurable function on a totally a-finite

product space (B, ¡i) = ( X B,-, X ft,). Consider complex valued measurable func-

tions f(x) which are finite almost everywhere and which, for some a > 0, Xa[o) =

H{x: \f(x)\ > a) is finite. The nonincreasing rearrangement of f(x) on (0, oo) is

given by f*(u) = inf{a: \a[o) < u], u > 0. Since many operations with functions

defined on product spaces are iterative, C. J. Neugebauer suggested that it should

be possible to obtain multivariate rearrangements by such a process. We make our

definition in §2. As defined, the function f*(t), t = (f,, . . . , tn), t¡ > 0, / =

1, . . . , n, will be a rearrangement of the function f(x) which is nonincreasing in

each of the variables t,. The method of definition is iterative and consistent with the

one variable method. The function f*(t) is shown to enjoy the same basic properties

of its one dimensional counterpart f*(u), u > 0. The functions f(x) and f*(t) are

shown to be equimeasurable with respect to their product measures. This in turn

leads to a basic inequality relating the functions/*(/), / = (r,, . . . , t„), and f*(u),

u > 0. Importantly, a method is obtained for putting the terms of multivariate

simple functions in decreasing order.

The mixed norm spaces Lp were introduced by Benedek and Panzone [1].

Banach function spaces were introduced by Luxemburg [12] and Banach function

spaces which are rearrangement invariant by Luxemburg [13]. In §3, we construct

the Banach function spaces with mixed norm which are appropriate to multivariate

rearrangements. Comparisons are made between these spaces and Banach function

spaces with mixed norms in the ordinary sense (of [1]). The basic properties of the
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various mixed norm spaces are established. In a final result of the section, the

various mixed norm spaces are placed in context as intermediate between the

tensor projective cross product of their underlying function spaces and the space of

bounded integral operators between Banach function spaces.

The Lorentz L(p, q) spaces were introduced by G. G. Lorentz. In [11], where

R. A. Hunt collects his interpolation theorems, the L(p, q) spaces are investigated

in some detail. In some respects the Lorentz L(p, q) spaces play a central role in

the study of Banach function spaces. Oftentimes, the methods used to investigate

the L(p, q) spaces are useful for obtaining results for more generalized Banach

function spaces. And results for the L(p, q) spaces often have natural analogues in

the more generalized settings. The remainder of the paper is devoted to an

investigation of multivariate versions of the L(p, q) spaces. These are the Lorentz

L(P, Q) and L(P, Q; *) spaces. The former are mixed norm spaces in the ordinary

sense (of [1], using L(p, q) spaces). The latter are mixed norm spaces using

multivariate rearrangements and the L(p, q) spaces. In §4 the results of §§2 and 3

are applied to define and investigate these particular spaces. Containment relation-

ships are provided for the L(P, Q), L(p, q) and L(P, Q; *) spaces.

§5 contains the applications and main results. These consist of several well-

known theorems which are extended to the L(P, Q; *) spaces. In these regards and

as a main result, the Strong Type (Riesz-Thorin) Interpolation Theorem [11] is

extended to the L(P, Q;*) spaces. The proof is made possible by the use of

rearrangable simple functions, which are introduced in the paper, and use of the

corresponding L(p, q) proof given in Hunt [11]. Included also are extensions of the

Convolution Theorem [16] and the Theorem on Fractional Integration [16].

Banach function spaces with mixed norm have been of continuing interest to

several authors. Though much has been written on the subject, the use of multi-

variate rearrangements in the study of such spaces and our unified treatment are

apparently new. In these regards we should mention the works of C. Ballester de

Pereyra [7] and D. L. Fernandez [8]. In [8] Fernandez introduces the L(P, Q; *)

spaces using the Peetre AT-functional and for a main result extends an L(P, Q)

Marcinkiewicz type interpolation theorem of de Pereyra. Their interpolation theo-

rems are in terms of four endpoint conditions (for dimension n = 2). The Riesz-

Thorin Theorem mentioned above is of the sort in [1] where only two endpoint

conditions are used. In this respect the two sets of results are noninclusive of each

other. Also, some basic results for the L(P, Q) and L(P, Q; *) spaces are presented

in [8]. However, due to certain assumptions that the author makes, the proofs there

are not always complete.

Beyond use of the above mentioned references [1], [11]—[13], the presentation

presupposes only a knowledge of basic measure theory [9].

2. Preliminaries.

2.1. Averaging operators. We begin by extending some standard definitions and

known facts about rearrangements of functions of one variable to the multivariate

case. For the sake of simplicity, this will be done first for the case of two variables.

Let B, and B2 be nonnegative, separable, a-finite measure spaces with measures /x
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and p respectively. The spaces B, and B2 are assumed to be either nonatomic or

purely atomic with each of the atoms having equal measure. The functions f(x, y)

are complex valued and defined on the product space (B, X B2, ju X v); see [9]. It

will often be convenient to suppress mention of a particular underlying measure.

This will particularly be true whenever a given measure fi (or v) is replaced by

Lebesgue measure dm on (0, oo). When this occurs it will be clear from the context.

With this in mind we will often put (i(E) = \E\ and d¡i = dx (similarly for the

measures v, dm and the product measures). If |T| > s, s > 0,and the set E depends

on the parameter s, we put E = Es. If in addition a second parameter is involved in

the indexing of E, say t, E will be written E = E(s; t).

The distribution function of f(x,y) in the first variable and on (0, oo) is defined by

Xf(a,y) = /n{x EB,: \f(x,y)\ > a),        a > 0.

The nonnegative nonincreasing rearrangement of f(x, y) in the first variable is

defined by

f*(s,y) = inf{a > 0: Xf(a,y) < s),        s > 0.

The averaging function of f(x,y) in the first variable is defined by

fr(s,y) = sup
E

where E = E(s : y), E c B,, \E\ > s. For future reference, note that the sets E

depend both ons,j > 0, and the alternate variable >\

Some important properties of these functions are contained in our first lemma.

Lemma 2.1. Let E c B, be a measurable set; then

I- iE\Kx>y)\ dx < fl0E}P(s,y) ds, with equality if E = B,.

n. iE\fU,y)g(x,y)\ dx < J^r(s,y)g*(s,y) ds.

III. r(s,y) = [r(-,y)]*(s,y)and\A-o,y) = \r(,y)(o,y).

IV. Put \f = \A[a,y) and \r = Xr(.y)(a,y); then Á^(s,y) = \(s,y) = f*(s,y),

a.e.

After obtaining a rearrangement of f(x, y) with respect to the first variable, the

new function f*(s,y), by holdings fixed, can then be rearranged with respect to the

second variable y. Doing this we obtain the function

r(s,t) = [r(s,-)]*(t),    s>o,t>o,

which is the nonnegative nonincreasing rearrangement of f(x,y) in the first

variable followed by its rearrangement with respect to the second variable.

Throughout 0 < s, t, u, v < oo, x G B,; y G B2. Use of these variables with

functions will be as with the functions (f(x, y), f*(s, y), f*(s, t)) given above.

The order in which the rearrangement is taken is fundamental, because in

general a different function is obtained if the order of rearrangement is reversed.

This can be seen by considering the example f(x, y) = "2fj C(i,j)xE(¡¡)(x,y),whexe

E(i,j) = [/ - 1, 0 x [/• - 1,/) and C(l, 1) = 1, C(l, 2) = 4, C(l, 3) = 3, C(2, 1) -

5, C(2, 2) = 2, C(2, 3) = 6. Here, the easiest way to obtain the rearrangement

hlJ*"-™dx
w
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functions for f(x,y) is to form the matrix array (C(i,j)). Rearrangement with

respect to a given variable then corresponds to putting the entries of a given

column or row in descending order.

Associated with a function f(x,y) are two basic multivariate averaging operators

¿(*> 0-[/,(».-)],(')    and   f?*{s, 0-{^/'j[Vr(w> batido}* ',

where/,(i, f) = /(j, /) and/**(*, f) = /**(s, r); * > 0, í > 0.

The basic properties of the rearrangement function and the various averaging

operators are contained in the next

Lemma 2.2. I./*,/,/"* are nonincreasing functions in s and t, s > 0, t > 0.

II. If \f(x,y)\ < \g(x,y)\,thenr < g*Jr < gr and ft* < g** ■_

in./' < /, </",/„< l^ndf** < f**, 0 < r, < r2 < oo, (/ + g), < / + g„
i < r < oo «k/ (/ + g); < /; + g;, o < /• < 1.

IV. (/ + g)*0, + í2, f, + /2) < /*(>„ /,) + g*(s2, Í2).

Proof. Parts I and II follow directly from the one dimensional proofs and

iteration. Part III also follows directly, except careful use is required of the notation

and definitions. This is especially the case with respect to use of the underlying sets

E used in defining the averaging functions/. For part IV, the one dimensional case

implies (/ + g)*(s, + s2, y) < f*(su y) + g*(s2, y). Therefore,

(/+ *)•(*, + s2, /, + fj) < [f*(sv O + g*(s2r )]*('. + h\

After repeating the above steps, the proof follows.

We remark that in practice the functions f* and ft* are most convenient for

defining norms (quasi-norms) on function spaces and working with norm type

inequalities. In particular, the function/** is especially suited for applications of

the Hardy inequalities; see [4], [11]. The operator / is useful because it avoids

difficulties which occur when the underlying measures are atomic and leads to a

metric or a norm (a triangle inequality is satisfied) on the various function which

will be considered. For some purposes fr is more closely related to the function

f(x, y) than are the functions/* and/**. Moreover,

tsf(s, t) a K(t; K(s;f(s,y))),    where K(u; f) = inf(||/,||L, + u\\f2\\L.)

is the classical Peetre Ä-functional [4]. This shows that fr(s, t) is useful for

investigating and possibly obtaining multivariate versions of some of the known

classical operators. For instance, see [4] or Lemma 5.2.

Lemma 2.3. If f(x,y) and fk(x,y), k = 1, 2, . . . , are positive functions such that

fkVpointwise, thenft\ft, (fk)rtfr and (fk)**'[ft*,pointwise a.e.

Proof. The monotonicity of the measure ft implies that, for a > 0,

Xj(a,y)'\XA[a,y) as k tends to infinity. Repeating the procedure with Lebesgue

measure on [0, oo) and still keepings fixed, A, (s,y)"\Xx (s,y) as k tends to infinity.

By Lemma 2.1.IV, ft(s, y)']f*(s, y) pointwise a.e. Finally, by holding s fixed and
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repeating the procedure with respect to the second variable y, the conclusion

follows for rearrangement functions.

The proof for the averaging functions follows by monotonicity and a straightfor-

ward application of Fatou's lemma. This completes the proof.

A function f(x) defined over a measure space (B, u) is equimeasurable with a

function g(x) defined over a measure space (T, w) if Xa[o) = Xg(a), a > 0, where

Xf(o) = n{x: \f(x)\ > a] and Xg(a) = u{z: \g(z)\ > a). In this sense a function

f(x,y) and its rearrangement functions f*(s, y) and/*(s, /) are equimeasurable with

respect to their product measures. M. Milman suggested the shortened proof of the

following.

Theorem 2.4. I. Let g — ft(s,y) and ft(s, t) be rearrangement functions for the

function f(x,y). If a > 0 and

K(°) = !{(*.*) G[0, oo) X 22:g(s,y)>a}\,

Xf(a) = \{(x,y) EÖ.X B2: \f(x,y)\ > a}\,

Xr(a) = \{(s, t) G[0, oo) X [0, oo):/*(j, t) > a}\,

then Xa[o) = Xg(a) = Xr(a).

II. Moreover,

jP*(A,0<(¿/Jf/"(«)*}    r>        0<r<oo,

where ft(u), u > 0, is the one-dimensional rearrangement of the function f(x,y).

Proof. For the proof of I it is enough to show that Xa[cs) = Xg(a). Put E =

{(x,y): \f(x,y)\ > a) and E* = {(s,y): g(s,y) > a}. Foxy in B2 put Ey = {x G

B,: (x,y) G E) and E* = {s G [0, oo): (s,y) G E*}, By Lemma 2.1.III, n(Ey) =

m(E*), where m is Lebesgue measure on [0, oo). We have

(M X v)(E) = f v(Ey) dy=\  m(Ey*) dy = (m X v)(E*).

Part II. The corresponding single variable statement of Lemma 2.1.1 implies

Part I above implies that [/*(-,-)]*(") =/*(")> « > 0, since two functions which

are equimeasurable have the same rearrangement function on [0, oo). This proves

the theorem.

2.2. Simple functions. By an ordinary simple function we mean a function f(x, y)

which can be put in the form

N

J\x,y) =  2   CkXEk(x,y),
k-l

where the coefficients are complex valued, x^ is the characteristic function of the

set E, the sets Ek are disjoint, measurable and contained in a common rectangle /
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of finite measure (here / is of the form E X F, where E c B,, F c B2 and

\E\ < oo, \F\ < oo).

By a rectangular simple function is meant an ordinary simple function which can

be written in the form

N,M

f(x,y) =   2    C(i,J)xEl(x)xFj(y)>
■y-i

where E¡ c B,, |£;.| < oo, Fj c B2, |f}| < oo, i = 1, . . ., A/,/ = 1, . . . , M.

For rectangular simple functions some of the coefficients may equal zero. The

sets over which these functions are defined are assumed to have coordinate

projections which are nonoverlapping. They may be viewed as disjoint rectangles in

B, X B2.

It is not hard to show, see [9]: given a measurable function f(x, y) defined on

product space B] X B2, then there is a sequence of ordinary simple functions

fk(x,y) for which fk -»/and |/A|t|/| pointwise. Here then, Lemma 2.3 applies.

As for rectangular simple functions, let f(x,y) = 2 CkxE be an ordinary simple

function. By the properties of the product space B, X B2, [9, pp. 137-140]

OO 00

Ek =  P! E(k,j),        E(k,j) =  (J E(k,j,p),        k=l,...,N,

where each E(k,j,p) is a rectangle and / d E(k,j,p). By working with sets of the

form E(k, J, P) = n/=t U'_i E(k,j,p) and using the ring properties of the

collection of rectangles in B, X B2, it is a straightforward process to construct a

sequence of rectangular simple functions /„ such that f„^>f pointwise a.e. This can

be done in such a way that the functions /,, / are uniformly bounded on the

rectangle /. This discussion shows that rectangular simple functions are useful in

context with those function spaces where a Lebesgue dominated convergence

theorem holds.

If f(x, y) = 2 CkxE is an ordinary simple function with its coefficients re-

arranged so that \C{\ > \C2\ > ■ • ■  > \CN\, then

/*(«)- 2 IQM«),    ">o,
k=\

where ££ is the interval fâz\\E,\, 2*_i|£,|), k = 2, . . . , N, and E* = [0, |£,|). A

corresponding multivariate representation requires a definition and a little more

effort.

Definition 2.5. By a rearrangeable simple function we mean a rectangular simple

function f(x, y)for which

I. The values \C(i, i)\ are all nonzero and distinct.

II. \Ej\ = a, \Fj\ = ß, some a > 0, ß > 0 and for each i,j.

The assumptions of Definition 2.5 are reasonable. The measure spaces consid-

ered are nonnegative, separable and a-finite. They are assumed to be either

nonatomic or purely atomic with each of the atoms having equal measure. If the

spaces B, and B2 are purely atomic then condition II is already satisfied. For the

nonatomic case and without loss of generality assume that both B, and B2 are
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nonatomic. Let/(x, y) be a rectangular simple function all of whose underlying sets

have rational measure. There are a fixed number of corresponding underlying sets

from the measure spaces (B,, 11) and (B2, v). These can be subdivided into a finite

number of sets with all of the subsets of B, having equal measure and similarly for

the subsets of B2. This done, such a function/(jc, v) can then be expanded so that

the resulting function is again a rectangular simple function which satisfies condi-

tion II of Definition 2.5. In those instances where duplications occur with the

coefficients it is possible to approximate the coefficients with coefficients uniformly

close to the given coefficients but all of distinct nonzero absolute value. This

includes those case where C(i, j) = 0. The result is a rearrangeable simple function.

By working with expanding rectangles having sides with rational measure, any

rectangular simple function can then be obtained as a pointwise limit of a sequence

of such functions (and with the uniformity properties obtained earlier with conver-

gence between the ordinary and rectangular simple functions).

Requiring that the coefficients of rearrangeable simple functions be distinct and

nonzero could be omitted. The advantages of these restrictions are purely of a

technical nature and lead to the rather nice form of the representation Theorem 2.6

which follows. They allow the coefficients and underlying sets to be easily traced

and uniquely indexed. This facilitates any computations made with these functions.

Beyond this, the uniqueness property will be required for the proof of one of our

main results, Theorem 5.1.

Though we do not consider the topic here it is useful to note that Theorem 2.6

shows that rearrangement simple functions lend themselves naturally to a study of

rearrangements and multi-indexed sequence spaces. We state our theorem.

Theorem 2.6. Let f(x, y) be a rearrangeable simple function as in Definition 2.5,

then

f{x, y)-e> •***">   t   K(n,m)xB(n,m)(x,y)
n,m = 1

where B(n, m) = {(x, y): \f(x, y)\ = K(n, m)} is exactly one of the sets of the form

E¡ X Fj, G B, X B2, 1 < i < N, 1 < j < M, without repetitions or omissions. Corre-

spondingly K(n, m) = C(i,j). The coefficients K(n, m) are positive and decreasing for

increasing choices of either of the indices n, m, where n = 1, . . ., N, m = I, . . . , M.

Moreover,

N,M

/*(■*> t) =    2    K(n, m)xB.(n,m)(s, 0*
/i,m= 1

where B*(n, m) = [a(n - 1), an) X [ ß(m - 1), ßm).

Proof. Let/(jc, y) be a rearrangeable simple function; then

f(x,y) = S( 2 \C(i,j)\xEl(x)yFj(y).

For a given choice of y, exactly one of the characteristic functions Xp{y), F = FJt is

nonzero. After rearranging and putting the terms in decreasing order we obtain
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\f(x,y)\ = 2^_, K(n,j)xE(njy(x), where E(n,j) = £,,, some /', Ï = 1, . . . , N, with

each set E¡ appearing exactly once in the rearrangement. E(n,j) depends upon

which of the terms x>(>0 ^ 0, F = Fj. The relation between n and Ï is determined

by a permutation of the numbers (1, . . . , N) and is indexed by the indices j,

1 < j < M. It is not difficult to see

r(s,y) =   2    Kin'iïXs-inA^XFjiy)'
nj= 1

where E*(n,j) is the interval [a(n - 1), an).

The function /*(i, v) has the same basic form as the function f(x, y), with the

intervals [a(n — 1), an) playing the role of the sets E¡ and the variable s replacing

the variable x. The same construction can then be repeated with the function

ft(s,y) and with respect to the variable v. Since ft(s, t) = [ft(s,-)]*(t), the func-

tions ft(s, t) and ft(s, y) in rearranged form, their coefficients, underlying sets and

indices are related to each other similarly as are the functions f(x, y) and ft(s, y).

Moreover, because the process is iterative, the rearrangement of the terms of

ft(s,y) are reflected in kind by a rearrangement of the terms of f(x,y). Following

on these remarks the proof can be completed in a straightforward fashion.

3. Banach function spaces and mixed norms.

3.1. Banach function spaces. The purpose of this section is to use multivariate

rearrangement and averaging functions to define Banach function spaces with

mixed norm. In order to do this it is necessary to begin with a short discussion of

Banach function spaces. These spaces were introduced by Luxemburg [12], [13].

The presentation is drawn directly from these references.

We consider normed (quasi-normed) function spaces X = A^B, u) with norm

(quasi-norm) \\f\\x, for functions f(x) which are measurable. The measure space

(fl, a) is either nonatomic or discrete (purely atomic with a countable number of

atoms of equal measure) and the function space X is rearrangment invariant. That

is, if f(x) is equimeasurable with g(x), then \\f\\x is equivalent to \\g\\x. Such a

space is a Banach function space (with Fatou norm) if:

I. I/I < | g| a.e. x, g G *, implies/ G X and \\f\\x < \\g\\x.
II. xE e X whenever xE is tne characteristic function of a set of finite measure

(if B is a product space we require E g I, for some rectangle / of finite measure).

III./ G X implies/is locally integrable (fx¡ G X if B is a product space).

IV. If 0 < /J/pointwise, then H/J^II/IIa- as k -> oo.

These spaces are norm complete. A Banach function space has absolutely

continuous norm if for each / G X and every sequence of measurable sets Ek for

which Ekl<b, then ll/x^H* —> 0, E = Ek, as k tends to infinity. This condition

implies that a Lebesgue dominated convergence theorem holds. Namely, if fk —*f

pointwise a.e. and |/t| < |g| for some g in X, then \\fk — f\\x -* 0, as k -» oo. It

follows from the discussion in §2 that the simple functions are dense in such

spaces.

Luxemburg [13] showed that for each rearrangement invariant Banach function

space (as described here) there exists a corresponding rearrangement invariant
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Banach function space X(*) defined for all real valued Lebesgue measurable

functions on the interval (0, /x(B)) with the property \\f\\x = ||/*||a-(.). For conveni-

ence and when there is not danger of ambiguity we will sometimes put ||/*||jr =

11/* 11 *•(,). Hexeft(s) represents the one variable rearrangement of the function/(x).

Let/(x) be a measurable function. The first and second associated norms of f(x)

are defined by

\\f\\x. = supí/|/g|¿«: ||g\\x< l}, (3.1)

\\f\\x.. = sup{f\jg\du: || g\\x,< l} (3.2)

with A" and X" being the corresponding function spaces of all measurable/(x) with

finite norm. These spaces are also rearrangement invariant Banach function spaces.

Moreover,

f\fg\du<\\f\\x\\g\\x,   (Holder's inequality), (3.3)

\\f\\x, = sup{ f™ft(s)g*(s) ds: \\g\\x < l), (3.4)

\\f\\x„ = sup{ f™ft(s)g*(s) ds: \\g\\x, < l). (3.5)

If |B| is finite then L°° c X c L\ continuously. X' is a closed subspace of X*,

the Banach dual of the space X. If X has absolutely continuous norm, then

X' = X*. A deep result of Lorentz and Luxemburg [13] is that \\f\\x- = \\f\\x-

By using the properties of X and its associated spaces it is not hard to show that

a Minkowski integral inequality holds. Namely, if f(x,y) G X for each y and

II/('».v)!!* G Lr,0 < r < 1, where Lr is classical Lebesgue space, then

II ll/ll^ll* < II ll/IUL- (3.6)
We remark that some well-known examples to which these discussions apply are:

the classical Lp spaces, the Orlicz classes A^, C) [21], the Lorentz-Zygmund

spaces //"(Log L)a [2], the Lorentz Aa(X) spaces [19] and the Lorentz L(p, q)

spaces [11]. For certain choices of say the underlying Young's function, fundamen-

tal function or certain choices of the indices, several of these function spaces satisfy

Hardy type inequalities. In these cases,

\\n\x< wsrwx < c\\f*\\x- (3-7)
for some r, 0 < r < oo (may choose 0 < r < 1) and some constant C independent

of the function f(x).

3.2. Mixed norm spaces. Let X = X(QV ri) and Y = Y(Sl2, v) be rearrangement

invariant Banach function spaces with corresponding Luxemburg representations

X(*) and Y(*). As before, let f(x, y) be a measurable function defined on the

product space (B, X B2, n X v). The mixed norm (quasi-norm) space Y[X], in the

sense of Benedek and Panzone [1], is:

Y[x] = if- 11/11 n*] = II \\Ä;y)\\x\\r< °°}- (3-8)
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Using Luxemburg representations,

ll/llr[x, = ll(ll/*(-,>')llx(.))*(Olly(.)-

We denote the space Y[X] (*) by

y[x](*) = {/ H/Hnxx.) = H/*(* Ollmi = II H/"(s> OH*.)!!*« < °°}-

(3.9)

Using iteration and the remarks made so far it is not difficult to verify that both

Y[X] and y[A"](») are Banach function spaces, though not necessarily rearrange-

ment invariant. We omit the details. Moreover, if X and Y have absolutely

continuous norms, then so do the spaces Y[X] and yfA'K*). Since these spaces in

turn satisfy the Lebesgue Dominated Convergence Theorem, it follows that the

ordinary, rectangular and rearrangeable simple functions are dense in such spaces.

If X and Y satisfy the Hardy inequalities, then Lemma 2.2.III, (3.6) and (3.7)

imply

\\r\\nxi < WfrWnx] < lUTfliw < C\\f*\\nxi, (3.10)
some r, 0 < r < oo (may choose 0 < r < 1) and some constant C independent of

the function f(x, y).

The corresponding associated spaces of Y[X] and y[A"](*) are denoted by

(Y[X])', (Y[X])" and (Y[X](*))', (Y[X](*))" respectively. The associated spaces of

X and Y with mixed norm are defined to be Y'[X'], Y"[X"] and Y'[X'](*),

Y"[X "](*).

For two functions f(x, y) and g(x, y), Lemma 2.1.II and Theorem 2.4.II imply

00       oo

ff\f(x,y)g(x,y)\dxdy<J   f    ft(s, t) g*(s, t) ds dt

< T ft(u) g*(u) du, (3.11)
•'n

where ft(u) and g*(u) are the one variable rearrangements of/and g. This in turn

readily leads to a wealth of relationships between X, Y and the various associated

spaces defined above. For the sake of brevity we only list four of the most

important.

Theorem 3.12. l.(Y[X])' = Y'[X'].

II. (Y[X](*))'= Y'[X'](*).

If X and Y have absolutely continuous norms, then

lll.(Y[X])' = (Y[X])* = Y*[X*].

IV. (Y[X](*))' = (Y[X](*))* = Y*[X*](*)

where X* and Y* are the Banach dual spaces of X and Y respectively.

Proof. The proof of III and IV follow immediately from I, II and the previous

discussions. We prove II; the proof of I is similar. Inclusion of r"[A"](*) follows

easily by (3.11) and successive applications of Holder's inequality. For the reverse

inclusions let f(x,y) G (Y[X](*))' and let / = /, X /2 be a rectangle in B, X B2
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\\(fx,)*\\xMv = sup ('"''sup [lI'l(fXins, t) g(s, t) ds h(t) dt,

with finite measure; then

sup I
/0        g   Jo

where ||g*(-, OII*(.) < I> 11^*11 ym < I and whose support is contained in the

rectangle [0, |/,|) X [0, |/2|). For each e > 0 there exist measurable functions g(s, t)

and h(t) as above so that the quantity on the right is majorized by

i'72' f I7,l(/X,)*(*, t)g*(s, t)h*(t) dsdt+ (l'2leh*(t) dt + e.

Since || g*(s, t)h*(t)\\ Y[X^.) < 1'tms is majorized by

^.00 ^.00

sup /     /    (fxi)*(s, t)k(s, t)dsdt + e\\h*X[o, \i,\)\\L< + e.
k •'o   Jo

Since Ly(#)(0, |/2|) c L\0, \I2\), this is majorized by

W(fXi)*\\iY[x]Y + eK \\h* II r(.y

This in turn is less than or equal to H/'lljy^])' + e-^ + e, where the constant K

depends only on Y and the rectangle /. By letting e —» 0 followed by letting

/fB, X B2 on the left, we obtain \\ft\\ y\x\ < II/'IIîkia'])'. This completes the proof.

3.3. Inclusions. Let X and Y be rearrangement invariant Banach function spaces.

Let A" be the first associated space of X. If X has absolutely continuous norm then

X' = X*. A natural context for the spaces Y[X] and y[Ar](*) are as intermediate

spaces between the function space I(X', Y) consisting of kernels of integral

operators which are bounded from X' to Y and the function space X ®y Y, which

is the completion of the algebraic tensor product of X and Y in the greatest cross

norm y. For a more detailed treatment of integral operators and tensor products

see [14], [17], [18]. The statement of this is formally given in

Theorem 3.13. With continuous embeddings,

I. X ®y Y C Y[X] G I(X', Y).

II. X <8>y Y G Y[X\(*) c I(X', Y).

Proof. We prove only II; the proof of I is well known and done similarly. Recall

that if k(x,y) G I(X', Y), then an operator Tk: X' -» Y is defined by

Tkf(y)= [ k(x,y)f(x)dx,     /er.

The norm of the operator is || Tk\\ which is the supremum of al values || T,J\\ Y for

which    ||/|jx.   = HJHIjrw  <   1-      For   such    a   function   /(*),    \\TJ\\r  =
||/B k(x, y)f(x) dx\\ Y. Lemma 2.1.II and (3.2) imply this is majorized in order by

Il f °° k*(s,y)ft(s) ds     = sup f   f°°k*(s,y)ft(s)dsg(y) dy.
\\Jo y       s  Ja2Jo

<  SUp  r Ck*(S, t)ft(s)g*(t) ds dt,
g  Jo   Jo

where \\g\\x, = \\g*\\x. < I. Since \\ft(s)g*(t)\\Yw.) < !» Holder's inequality im-

plies || TiJW y < ||Ai*|| Y[xy,,y This proves the second inclusion.
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For the first inclusion, let h(x, y) be a function which can be represented by a

terminating sum of the form h(x,y) = 2 fk(x)gk(y), for which H/iH^g, Y =

inf 211/-1|^ Uglily is finite, where the infimum is over all such representations for

h(x,y). It is not difficult to see that for each such representation, h(s, t) <

2Ä(j)&(0 and \\h\\ Y[XKt) < 2||/JA.(.)||gt|| n,y If the Hardy inequalities hold for

X and Y, then \\h*\\ Y[X] < C\\h\\x^Y. This implies Y[X](*) 3 X <8>y Y.

If X and Y are rearrangement invariant Banach function spaces defined on

[0, oo) and Y[X] is rearrangement invariant, it is immediate that Y[X] = Y[X](*).

In the next section we show for certain function spaces X, Y where Y[X] is not

necessarily rearrangement invariant that containment relationships can exist be-

tween Y[X] and Y[X](*). Moreover, if X = L"[0, oo), 1 < p < oo, and Y =

L°°[0, oo),  then using Theorem 4.5  and an example of the form f(x, y) = y,

0 < xyp < 1 and zero otherwise, shows that containment can be proper.

Remark. The results obtained so far carry through to product spaces of dimen-

sion n, n > 2.  If (B, ri) = ( X "_, B„ X "_, ju,,) is such a  space,  then let f(x),

x = (jc„ . . . , x„), be a complex valued measurabe function defined on (B, u). By

iteration we define the nonnegative, nonincreasing rearrangement of f(x), up to k,

1 < k < n and in the order (1, . . . , A;), to be

/*(/„ ...,tk,xk+v...,x„)=[--- [/*0,,-)]*(<2>') • • • ]*('*> **"+i. • • • > xn),

where r, > 0; i = I, . . . , k, and ft(t) = ft(tx, . . . , tn). The averaging operators

fr(tv . . . , tk, xk+l, . . ., xn) and/(0 are defined similarly. The averaging operators

ft* are also defined naturally. And explicitly

/"(') -[(< •   •   '   '«)"' P '   •   •    i''^M" ■■■^n)dul,..., duV/r.
Jo Jo

The natural order of indexing (I, . . . , k) was picked above. This will be

sufficient for our purposes. Continuing, let A", be rearrangement invariant Banach

function spaces defined on the measure spaces (B,, fi¡) and with corresponding

Luxemburg representations A,(*); /,...,«. The mixed norm space X and the space

X(*) are defined in the natural way by putting X = Xn[ ■ ■ ■ [A'2[A"1]] • • • ] and

A» = X„l ■ • • [A-2[A-,]] • • • ](*).
Throughout the rest of our discussions we will assume that the results of §§2 and

3 have been extended to the multivariate case n, n > 2. Doing this is a straightfor-

ward process and for the most part simple induction suffices. Verification of the

details is left to the discretion of the reader.

4. Lorentz spaces L(P, Q; *).

4.1. The remainder of the paper will be devoted to a discussion of the Lorentz

L(p, q) spaces and mixed norms. These function spaces are one of the main topics

of the paper and a main application of the ideas presented so far. Let f(x),

x = (xv . . . , xn), be measurable and finite a.e. and let/*(i), / = (r,, ...,/„) be its

nonincreasing rearrangement. Let L(px, <?,), . . . , L(pn, qn) be Lorentz L(p, q)

spaces with quasi-norms || g*\\*q-; see [11]. The Lorentz mixed norm space L(P, Q)

and the Lorentz space L(P, Q: *) are defined by
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L(P,Q) = L(pn,q„)[ ■ ■ ■ [L(p2,q2)[L(pl,ql)]] ■ ■ ■  ],

L(P, Q; *) = L(pn, qn)[ ■ ■ ■ [L(P2, q2)[L(px, qx)]] ■ ■ ' ](*)

respectively, where P = (px, . . . ,p„), Q = (qx, . . . , q„) and the quasi-norms are

denoted by ||/||*,e = \\f\\*UP,Q)and \\ft\\*PQ = ||/*|| V,C;.)-
Throughout the paper the letters P, Q, . . . , R will denote «-tuples, n > 1,

P = (px, . . . ,pn), . . . , R = (r,, . . . , /•„). Moreover, if $(/>, 9, . . . , r) is a relation

among numbers, 5>(R, Q, . . . , R) will mean $(/>,-, <?,, . . . , r¡) holds for each i =

1, . . . , n. An example is: if p' = p/(p — 1) is the conjugate value foxp > 1, then

P'(P — 1) is the n-tuple whose components are the conjugate values of the

components of P.

In previous sections the discussions were presented primarily in terms of the

/i-dimensional case n = 1 or n = 2. Here, for the sake of future reference and

because it is no more difficult, the discussions will be in the context of dimension n,

n > 1. Also, in subsequent sections we present our main results and some of their

applications. These will be given for L(P, Q; *) spaces. For this reason the

discussions will be restricted primarily to these function spaces. The reader should

note however, in view of the previous discussions in §§2 and 3, that several of the

statements of this particular section carry over in a straightforward fashion to the

L(P, Q) spaces.

Following directly in the discussions of §3 and the known properties of the

L(p, q) spaces: If 1 < p < 00, 1 < Q < 00, then L(P, Q; *) with quasi-norm

||/*||*e is a Banach function space. Here it is required: if/?, = 1 some /', then q¡ = 1

or if Pi = 00 some /', then q¡, = 00, / = 1, . . ., n. Those spaces where 1 < p < 00,

1 < Q < 00, have absolutely continuous norm, which implies L(P, Q; *) =

L(P', Q'; *), where \/P + \/P' = 1 and 1/(2 + l/Q' = 1. In addition, the set of

ordinary, rectangular and rearrangeable simple functions are dense for this particu-

lar choice of indices. If q¡ = 00, some /, / = 1, . . . , n, then as with the one-dimen-

sional case L(p, q), the dual of L(P, Q; *) cannot be expected to be L(P', Q'; *)

and the collection of simple functions do not form a dense subset.

Holder's inequality takes the form

f\f(x)g(x)\ dx< r ■ ■ ■ /">(/„..., tn)g*(tx, ...,o dtx ■ ■ ■ dtn
J JQ J0

< ll/*llîellS*llî'G.. (4.1)

It is worth mentioning that, as in [11], it is possible to consider L(P, Q; *) spaces

for 0 < P < 00, 0 < Q < oo. Choose r, 0 < r < 1, where r < P, r < Q, then it can

be shown that d(f, g) = \\(f — g)r||*g defines a metric on L(P, Q; *). Moreover,

Lemma 2.2.Ill, Minkowski's integral inequality and the Hardy inequalities [11]

imply

\\r\\pQ < U\\%a < \\ft*\\*PQ < c\\ft\\*PQ, (4.2)

where C is independent of the function/. Completeness with respect to the metric

and density of the simple functions, 0<R<oo,0<o<oo can be shown to

follow.
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Lorentz L(P, Q; *) spaces with different indices are related in some special case.

if o < öi < Qi < °°,tnen

L(P, Qx; .) c L(P, Q2; *),   with \\ft\\*PQ2 < C\\ft\\*PQi, (4.3)

where C depends only on the indices. If for each i, /t,(ß,) < oo, 0 < Px < P2 < oo,

0 < Qx, Q2 < oo, then

L(P2, Q2; *) G L(PX, Qx; *),    with \\ft\\*P¡Qt < C\\ft\\\02, (4.4)

where C depends only on the indices and the measure space B. If /i, = oo, then

(4.4) can be modified in the obvious way by requiring that the /th components of

Px and P2 be equal and that the /th component of Q2 be less than or equal to the

/th component of Qx. Both (4.3) and (4.4) can easily be verified by using iteration

and the one variable proofs given in [11]. The details are omitted.

The spaces most closely related to the L(P, Q; *) spaces are the Lorentz L(p, q)

spaces and the Lorentz mixed norm spaces L(P, Q). The following theorem

provides containment relationships between these various function spaces.

Theorem 4.5. I. // P = (Px, . . . ,Pn), Q = (qx, . . . , qn); 1 < P < oo, 1 < Q <

oo and

max    {<?,}<   min  {/>,},        \/P + \/P' = 1, \/Q + l/Q' = 1,
l<i'<n—1 2<j<n

then L(P, Q; *) c L(P, Q) and L(P', Q') c L(P\ Q'; *).
II. LetP = (p, . . . ,p), Q = (q, . . . , q) and Q = (q, oo, . . . , oo). Then L(p, q)

G L(P, Q; *). If (B, fi) is Euclidean n-space with Lebesgue measure and if p ¥= q,

q ¥= oo, then L(P, Q; *) ^ L(p, q) and neither space contains the other.

III. If Pi = q¡ = p; i = 1, . . . , n, so that P = Q = (p, . . . ,p), then L" = Lp(*)

= L(p,p) and Lp = Lp(*) = L(P, P; *) = L(P, P) with equality of the norms

(quasi-norms).

Proof. We prove the left inclusion of part I first and do it by majorization of

norms. The proof is by induction on the number of variables. Since L(P, Q; *) =

L(p, q), if P = p, Q = q, the case for n = 1 is obvious. Suppose continuous

inclusion has been shown for « — \,n > 2. Then

ll/llw.e) < C|| || • • • \\ft(tx, ...,/„_„ x„)||*i?, • • • ||£_,,,_,||*L(P^

where C depends only on P and Q. Put

F(t2, ...,tn_x, xn) = \\ft(-, t2,..., tn_x, x„)\\*¡q¡.

Again by the hypothesis and after noting the function F is already nonincreasing in

the variables t2, . . . , tn_,, the last term is majorized by

en--- itiif'O*...,oh;ji•• • ii£,„.
Consider the function F*,

F*(t2, ...,/„)< sup
JË7\IEF^2' ' " ' ' '"-" ■*")''***"

where the supremum is over all sets E = E(tn; t2, . . . , t„_x), \E\ > tn. Put r•«■ q,:

iA
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then Fubini's theorem and Lemma 2.1 imply F* is majorized by

W'
Tj""\\n-,t2,...,un)\\*;tqydun

n    0

If r > 1, it is not difficult to show that

ft*(u) < 2u'1/r f" v-1/r'ft(v) dv,       0 < u < oo, \/r + \/r' = 1.

This implies the last expression is majorized accordingly with r = qx. After sub-

sisting back followed by successive uses of Minkowski's integral inequality,

l«*e) < C|K'/'/'" tf/'w- *• \\ft(-,un)I*    • • • II* du II*   .
'P\1i uPn-i1„-i        n"P„1„

Since r = qx <pn the conclusion follows by Hardy's inequality [11].

The inclusion on the right in part I follows by a simple duality argument which

makes use of Holder's inequality and the inclusion on the left. We omit the details.

Part II. By Theorem 2.4,

/**(') <

With a change of variables,

(tn---txr r-'"" f*r(u) du
\/r

ii/**(-,'2, • • •, on;, < (>„ • • • 'jV-'^ii./roiiw
This implies ||/**(-, . . . , -)\\*Pq < \\ft*(-)\\pq and L(p, q) G L(P, Q; *). The sec-

ond statement of part II follows directly from a lemma given by Cwikel [6]. The

result there was given for L(P, Q) spaces. But since his constructions were in terms

of multivariate nonincreasing functions, the examples apply equally well to the

L(P, Q; *) spaces.

The second equality on the right of part III can be easily verified by repeated use

of Fubini's theorem and Lemma 2.1.1 in comparing norms. The other equalities are

equally easy to verify. Again, we omit the details. This completes the proof of the

theorem.

5. Applications.

5.1. An interpolation theorem. In this section we extend the Strong Type (Riesz-

Thorin) Theorem to the L(P, Q; *) spaces. See [11]. The theorem will be given for

a sublinear operator T which maps measurable functions on an «-dimensional

measure space X B, into measurable functions on an w-dimensional measure space

X T. An operator T is sublinear if whenever 7/ and Tg are defined and c is a

constant, then T(f + g) and T(cf) axe defined with

\Hf+g)\< \Tf\ + \Tg\    and    \T(cf)\ < \c\ \Tf\.

Theorem 5.1. // T is a sublinear operator and \\(Tf)*\\*P,Q, < Cj\\ft\\*PQ,j = 0, 1,

then

\\(Tf)*\\*P.Q, <CC0'-'Cf||/*||îe

where \/P = (1 - 0)/P0 + 9/Px, \/P' = (1 - 9)/P¿ + 0/P¡, \/Q =

(1 - 9)/Q0 + 9/Qx, \/Q' = (1 - 9)/Q¿ + 9/Q[, 0 < 9 < 1.
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The lengthy proof is deferred to the Appendix 5.4.

5.2. Convolution of functions. Let B = R" be Euclidean «-space with Lebesgue

measure. The ordinary convolution of two measurable functions/and g defined on

R" is given by (/* g)(y) = fR-f(x)g(y - x) dx, whenever the integrals exist and

are finite. The authors of [16], [3] and several others have written extensively on

operators which are generalizations of ordinary convolution. For the purposes of

this paper the discussion is restricted to ordinary convolution. The next lemma

extends the basic convolution lemma [16] to the L(P, Q; *) spaces.

Lemma 5.2. Ifh(y) = (/ * g)(y), then
— r°° z*00 -

«(')</     •••  J   f(u)g(u)du,

where u = (ux, . . . , un), du = dux • • • dun.

Proof. It is sufficient to consider the case n = 2. The case for n > 2 follows by

induction. Fix tx > 0, t2 > 0 and let E c R, E = E(tx; Vj), \E\ > tx; then

-¡"FT Í f*g(yi'y2)dyx < f TFT f r l/(^i, ^2)^(^1 ~yi,x2 -y2)\dxxdyxdx2.
\tL\ JE JR \tL\ JEJR

By taking supremums first on the right and then on the left,

h{tx,y2) < j I j f(xx, x2)g(--xx,y2 - x2) dxx |(r,,>>2) dx2.

By the one variable proof [16],

< f Í   /("i> x2)g(ux,y2 - x2) dux dx2.
JRJtl

The proof is completed by using Fubini's theorem and repeating the procedure

above with respect to the second variable.

The convolution theorem is as follows.

Theorem 5.3. If h = f * g, f G L(PX, Qx; *) and g G L(P2, Q2; *), where 2 >

\/Px + \/P2 > 1, 1 < Px, P2 < 00, then h G L(R, S; *), where l/R + 1 = 1/R,

+ \/P2andS > 1 is such that 1/ß, + l/£?2 > 1/S. Moreover,

\\h*\\*Rs <C\\ft\\*iQ¡\\g*\\*P2Qi,

where C depends only on the indices.

Proof. As before, it is sufficient to prove the case n = 2. By Lemmas 2.2.III and

5.2, h*(tx, t2) < /£ /*/**(«„ u2)g**(ux, u2)dux du2. By Minkowski's integral in-

equality

ll^O.yiU < ¡"ICft*(ux,u2)g(ux,u2)dux *
Jh   IK(.)

By the one variable proof [16],

< f°°\\r*(-,u2)\\Puqjg**(-,u2)\\Pi2qndu,

Here, Px = (pxx,p2X), P2 = CPn.^)* ßi = (an> «21). Ô2 = (ln> In)- The Pr°of is

du2

*2-
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completed by repeating the same procedure with respect to the second variable.

5.3. Fractional integration. Let B = R". We consider convolution of functions

with a kernel of the form

K(x)=t^,       0<a<n,
\x\

where |jc| = (x2 + • • • + x2)i/2, Kna is a constant depending only on n and a. For

the given choice of a choose any P = (px, . . . ,pn), 1 <pt < oo, 1 < / < n, for

which a = 2 a,, a, = l/p[, \/p[ + l/p¡ = 1. From the inequality \x¡\ <

(x2 + ■ ■ ■ + x2)l/2, 1 < / < n, it is not difficult to show that

1                1                          1-=-<-.
2 l/p, I v |l//>, .  .   .   Iv- |l//>„\x\~-'-        X xS

This implies the kernel Ka(x) is in L(P, oo; *) for a = n — 2 1//»,-. We remark that

in the L(/>, <?) version [16], the kernel is shown to be in L(p, oo), where p =

n/(n — a). This is analogous to our special case/?, = • • • = pn = n/(n — a).

For a function f(x) the ordinary fractional integral/, of order a for the function/

is the ordinary convolution of / with a kernel of the form Ka(x) (i.e., fa =

/ * Ka). Using the Convolution Theorem 5.3 and following the statements given

above, the L(P, Q; *) analogue of the fractional integration theorem take the

following form.

Theorem 5.4. Iff G L(P, Q; *) on R" and fa is its ordinary fractional integral of

order a where 0 < A < \/P, A = (a,, . . . , a„), 2 a, = a, then fa G L(R, Q; *)

where

I. 1/R = \/P - A

II. 1/R = 1/R - a/n, if R = (r, . . . , r), P = (p, . . . ,p).

5.4. Appendex. For the proof of Theorem 5.1 we use the ideas given in Hunt [11].

The key to the multivariate version is the use of rearrangeable simple functions to

establish the lemma below. The lemma itself is a generalization of the first part of

Hunt's proof. Once proof of the lemma is accomplished, the remainder of the proof

proceeds as in [11] with only some minor modifications.

Lemma 5.5. Suppose that f(x), x = (xx, x2), is a rearrangeable simple function; then

f can be written in the form

f(x) = e'^^(G0(x)y-"(Gx(X))9,

where   G,, / = 0, 1,   is   a   nonnegative   simple  function   such   that   \\G*\\*q <

c(\\ft\\PQr/q\j = o, i.

Proof.  Setting our notation:  P = (p^pj,  P' = (p'^p'J,  Q = (qx, qj,  Q' =

(<7Í> q'2\ Pj = (Py,Pv), Pj = (p\pP'2j), Qj = (?u> 9yX Qj = (<7iy> l'i^ j - 0, 1. Let
0 < r < {R}, where R is one of the indices given above. Let t = (/,, ij) and put

4>v(tù = í,/*xf/*~*/w,

Py = ft*{tr/<hj,        F2J = \\ft*(-, t2)\\*;;qi,

where * = q2/q2J - qx/qXj; i = 0, 1;/ = 0, 1.
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Let ft, = (FXJ)(F2J)(<j>XJ(tx))(^2J(t2)); j = 0, 1. We have ft*(t) = (h0(t))l-\hx(t))e.

A direct computation and (4.2) implies

\\h\\P¡Qj < C(\\ft\\*PQ)^q\       j = 0,1.

If Sk(t) = [/£ /" /cr(r,, r2) ¿A, iA2]'A, then by the device of interchanging orders

of integration it is not difficult to show that/*(r) < Sft*(t). By Holder's inequality

ft(t) < (Sho(t))l~0(Shx(t))e. After use of Minkowski's integral unequality to set up

the integrals in proper order the Hardy inequalities [11] imply ||S«y||*,ß. < C||A7||*,a

< C(\\ft\\PQ)q2/q2J, j = 0, 1, where C may be different in each inequality. The

symbol C will be used generically to represent constants which depend only on the

indices.

The functions G}, 7 = 0, 1, are obtained by choosing values smaller than S'A.,

/ = 0, 1. This is accomplished as follows. By Theorem 2.6

N,M

ft{t) =    2     Kn, m)xB.(n,m)(t),
n,m = 1

where B*(n, m) = [a(n — 1), an) X [ß(m — 1), ßm). For a given t,ft(t) = k(n, m)

uniquely    for    some    n,    m.    Since    Shj(t)    is    continuous,    k(n, m)  <

(Sh0(an, ßm))y-\Shx(an, ßm))0. Define

G0(X) = 2 Sh0(an, ßm)xB(n,m)(x),

^ ,  s      ^       (X(n, m))i/9 .  ,

(Sh0(n, m)f

This implies / = (G0)l~~e(Gx)e. Note that each term in Gx is majorized by

Shx(an, ßm). Put Gx(x) = 2 SA,(an, ßm)xBi„tm)(x); dien Gx(x) < Gx(x) and Gf(t)

< G*(t). By construction, the functions G0(A') and G,(x) are rearrangeable simple

functions and as written are in rearranged form. Term by term the underlying sets,

associated coefficients and how they are ordered matches up with that for the

function f(x). This implies

Go(') = 2 Sh0(an, ßm)xB.(n,m)(t)

and similarly for Gf(t). Moreover, by continuity of the defining integrals we have

G*(t) < SA0(0 and Gf(t) < Shx(t). This proves the lemma.

Proof of Theorem 5.1. We prove the case n = m = 2. Let Gj,j = 0, 1, be as in

Lemma 5.5. Put

F(x,Z) = e'a^»[G0(x)]1-z[G1(x)]z,

Z complex, 0 < R(Z) < 1, x «■ (xx, x2). This expression compares to that given in

Hunt [11, p. 267]. By working primarily with averaging operators of the type/, the

reader should have little difficulty in making use of the subsequent steps given

there in order to obtain the result \\(Tf)*\\*P.Q, < CC^'cf \\ft\\*PQ; where/is any

rearrangeable simple function. We omit the details.

For any function / G L(P; Q; *), find a sequence of rearrangeable simple

functions fk converging to / in metric (see §2.2) and do the following. Let AN c T
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be of the form AN = AXN X A2N, where \AiN\ < oo, / = 1, 2, and ANîT. The result

above implies that T maps rearrangeable simple functions in L(P, Q; *) into

measurable functions in L(P', Q'; *, AN), which is a complete space. If necessary

by passing to a subsequence we obtain ||/*||*>e —> ||/*||*e and \Tfk\ -> \Tf\ point-

wise a.e..y in AN. By Fatou's lemma.

\\(Tf)r\\W < liminf||(r/,)**||*,e,.

This implies \\(Tf)*\\*P,Q, < CC^9Cf \\ft\\*PQ. After letting AN\T the proof is com-

plete for the case n = m = 2.

In the steps above it was not explicitly shown that convergence in metric gives

the existence of a subsequence which converges pointwise almost everywhere. It

follows from (4.4) that the function space in question is contained in Lr(An),

r < P'. This implies almost everywhere pointwise convergence of a subsequence.

For the case of dimension n > 2, m > 1, the proof is obtained by extending the

definitions for the simple functions along with Theorem 2.6 and adapting the proof

above to the «-dimensional context, n > 2. The process, though tedious, is

straightforward. The details are left to the discretion of the reader.
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