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FINE CONVERGENCE AND ADMISSIBLE CONVERGENCE

FOR SYMMETRIC SPACES OF RANK ONE

BY
1 2

ADAM KORANYI   AND J. C. TAYLOR

Abstract. The connections between fine convergence in the sense of potential

theory and admissible convergence to the boundary for quotients of eigenfunctions

of the Laplace-Beltrami operator are investigated. This leads to a version of the

local Fatou theorem on symmetric spaces of rank one which is considerably

stronger than previously known results.

The appendix establishes the relationship between harmonic measures on the

intersection of the Martin boundaries of a domain and a subdomain.

Introduction. The extensions of the classical theorem of Fatou on the unit disc to

noncompact symmetric spaces have by now produced a considerable literature (cf.

[17] for a recent survey).

Earlier extensions of the Fatou theorem were developed for the classical

harmonic functions on a Euclidean half-space. In this context stronger results have

been obtained than in the symmetric space case. The best one of these is the local

version of Fatou's theorem, due to Calderón [3] and improved upon by Carleson

[4]. Let E be a subset of {xn = 0} c R" whose complement has measure zero and

for each x G E let C(x) be a cone with vertex at x lying in {xn > 0). If u is a

harmonic function on W = U {C(x)\x G E) with a one-sided bound on each

cone C(x) then u has a nontangential limit a.e. on the hyperplane {xn = 0}.

Brelot and Doob [2] improved this result further by proving it for quotients u/h

with u harmonic on W, A positive harmonic on {xn > 0} and u/h with a one-sided

bound on each C(x). Their proof used the theory of fine convergence at the Martin

boundary and they established the equivalence modulo null sets of nontangential

convergence and fine convergence for quotients u/h of harmonic functions.

In the present paper the methods of [2] are used on a symmetric space of rank

one to prove for such a space the analogue of the local Fatou theorem for quotients

u/h, where u and A are solutions of At? = cv, c > -\p\2 (see below for the

definition of p). In [19] this result is proved for A = 1, u bounded and c = 0 and in

[21], for globally defined u, the same result is obtained for a particular A (the

spherical function).
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Since the theory of fine convergence can be discussed in terms of the associated

diffusion (see Doob [8] and Föllmer [11]) it would of course be possible to obtain

these results with probabilistic arguments. It is to be noted that for the unit ball in

C" and c = 0 Debiard [7] showed for a globally defined harmonic function u that

fine convergence implies admissible convergence.

In this article no use is made of the associated diffusion. For a detailed and more

elementary treatment of these questions in the case of the unit ball in C and c = 0

see [25].

Let/(j) and g(s) be two functions defined for 5 near s0. The notations f(s) — g(s)

and f(s) « g(s) indicate respectively that f(s)/g(s) has a nonzero limit as s -* s0

and that there is a constant C with 1/C < f(s)/g(s) < C for s close enough to s0.

An arbitrary constant will be denoted by C or c and may change its value from

one use to another.

Finally, the complement of a set E will be denoted by Ec.

0. Preliminaries. Fine limits and symmetric spaces.

Io. For the reader's convenience a brief introduction to potential theory and fine

limits is given below. Let X be a connected, metrizable C °°-manifold of dimension

d and let % denote the sheaf of C2-functions u with Lu = 0 where, in local

coordinates, L is a second order elliptic operator with (say) smooth coefficients.

Then % satisfies the axioms of Brelot [14]. A C2-function u such that Lu = 0 will

be said to be harmonic.

Assume that a Green function G exists, i.e., G: X X X-*[0, +oo] is lower

semicontinuous, continuous off the diagonal and such that LGy = 0 on A'xf.y}

(where Gy(x) = G(x,y)), Gy(x) ~ ||x - y\\2~d if d > 2 and ~ - log\\x - y\\ if

d = 2 and majorizes no positive harmonic functions other than 0.

Fix a point a G X and set K(x, y) =1 U x = y = a and = G(x,y)/G(a,y)

otherwise. The Martin compactification X of X is the compactification to which all

the functions y ~* K(x, y) extend continuously in such a way that their extensions

separate the points of A = X\X (cf. [24]). For A S A set K(x, b) = lim,,^ K(x, y).

Then x ~* K(x, b) = Kb(x) is harmonic, the set A, = {b G à\Kb is minimal) is a

Borel set (even a Gs) and each positive harmonic function u can be written

uniquely as u(x) = fK(x, b)fi(db) with ft carried by A, (the representing measure).

Note that a positive harmonic function A is said to be minimal if 0 < k < A and k

harmonic implies k = Xh, X G [0, 1].

If O c X is open and relatively compact then to each/ G C(dO) corresponds a

harmonic function Hf on O (solution of the Dirichlet problem). The functional

/~* Hf(x) is equal to // d\i° for a unique so-called harmonic measure [i°, x G O.

The nonnegative lower semicontinuous functions u with u(x) > fu d\L°, VO open

relatively compact and Vx G O are said to be superharmonic (unless u = -f-oo).

For any set E c X and u superharmonic the réduite of u on E is defined to be

REu = inf{u|u > u on E, v superharmonic}. Its lower-semicontinuous regulariza-

tion, denoted by REu, is superharmonic.

A set E is said to be (minimally) thin at b G A, if REKb # Kb. This is the case if

and only if REKb is a superharmonic function that majorizes no positive harmonic
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function other than zero [12]. Consequently, if Ex and E2 are thin at b it follows

from the obvious inequality RE uEKb < RE Kb + RE Kb that Ex u E2 is also thin

at b. Hence, 9(b) = {E\EC is thin at b) is a filter.

Definition 0.1. 9(b) is said to be the fine filter at b. A function f converges finely

at b or has afine limit at b if it converges along 9(b).

It is known that for any neighborhood U of b in X the set (U n X)c is thin at b

(due to Martin [20] in the classical case; his argument applies whenever there is a

Green function). Hence, 9(b) contains the filter of relative neighbourhoods of b in

X.

Let u, A be two positive harmonic functions on X. The following result is known

as the Fatou-Na'im-Doob limit theorem ([9], [12], [22]).

Theorem 0.2. Let p. and v be the representing measures for u and A respectively.

Then u/h converges finely to dp/ dv at v-almost every minimal point.

2°. From now on X will denote a symmetric space of noncompact type of rank

one. Let G denote its connected isometry group and denote by K the isotropy

group of a fixed point o G X. The Cartan and Iwasawa decompositions of the Lie

algebra g of G will be denoted by f + \> and ï + a + n. Let 2p denote the sum of

the positive roots with multiplicities counted i.e. if a is the simple positive root,

2p = (p + 2q)a where/) (resp. q) is the dimension of the eigenspace corresponding

to a (resp. 2a). Choose H G a such that a(H) = 1. Then 2p(H) = p + 2q.

Let A denote the Laplace-Beltrami operator on X associated with the G-invariant

Riemannian metric on X. Denote by c any number > — |p|2, where |p| is the length

of p as an element of the dual of a when a is equipped with the inner product

coming from the identification of £ with the tangent space at o (the metric on X is

normalized so that \\H\\ = 1). In other words, |p| = p/2 + q.

For the remainder of this article a function u will be said to be harmonic if

Au = cu. The choice of the lower bound for c ensures that there exists a positive

harmonic function on X and that a Green function exists [15].

Since X is of rank one, the Martin boundary can be identified with the

Furstenberg boundary G/MAN s= K/M where the Lie algebra m of M is the

centralizer of a in g and the Poisson kernel K(x, k) = exp(-l)(p + X)H(g~1k)

where À = (y|p|2 + c )a, x = g ■ o and H(g~lk) is the logarithm of the ^-compo-

nent of g~lk in its Iwasawa decomposition G = KAN.

Let B(x; r) denote the closed geodesic ball about x of radius r.

Definition 0.3. For r > 0, the set A(k; r) = {k exp tH ■ x\t > 0, x G B(o; r)}

will be called an admissible region at k of width r. If in addition t > T, for some T,

the region will be said to be truncated and will be denoted by A T(k; r). A function/

is said to converge admissibly at k to I if for each width r > 0 and e > 0 there exists

T = T(e; r) such that \f(x) - i\ < e for x G A T(k; r).

Remark. As pointed out in [17], A(k; r) is the set of points whose distance from

the geodesic line t ~» k exp tH ■ ois at most r.

Returning to the Iwasawa decomposition, let ñ denote the image of n under the

Cartan involution. If N and A denote the analytic subgroups of G corresponding to
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ñ and û then NA is a group (since A normalizes N) and every element x G X has a

unique expression as x = ña ■ o = ñ exp tH ■ o with ñ G N, a G A and t GR.

The lemma of Bruhat and Harish-Chandra [26, Theorem 1.2.3.1] implies that the

action of the nilpotent group N on G/MAN m K/M is such that the orbit of some

point b is an open dense set which can be identified with N since ñ ~» ñ • b is

injective [17, Lemma 2.3]. Let e denote MAN and identify N with N ■ e.

Choose some Haar measure dñ on TV and a smooth homogeneous gauge, i.e., a

C°°-function | | : 7V\ {e} ~>R+ such that \ñexp,H-°\ = e~'\ñ\ and \ñ~l\ = |«|,

where h~" = aha~ '. Let k > 1 be such that \ññ'\ < k(\ñ\ + \ñ'\) (cf. [19]). For r > 0

and ñ G N set

rr(A; r) = {«(exp tH)«' ■ o\ \W\ < r, t > T)

= {««'(exp tH) ■ o\ \h~'\ < re~', t > T}.

Lemma 0.4. (See [17].) Let r, T > 0. Then there exist r', T' such that A T'(ñ; r') c

TT(ñ; r) and r", T" such that TT"(ñ; r") c A T(ñ; r).

As a resuit, admissible convergence can also be defined and discussed in terms of

the regions TT(ñ; r).

1. Potential theory for Am = cu. It follows from [13, pp. 381-382] that the area

A(t) of the geodesic sphere of radius / and centre o is CsiidW sinh?(2r). Conse-

quently by [13, p. 445], the radial form of the equation Am = cu is given by

Lw = cw, where

Lw = w"(t) + a(t)w'(t)    with a(t) = (log A(t)}' = (p + q)coth t + q tanh /

and u(x) = w(t) if / is the geodesic distance of x from o.

The coefficient a(t) converges to p + 2q at + oo and so the substitution j = e ~ ',

w(t) = <p(s) gives Lw(t) = M<p(s) = s2<p"(s) + s(l - a(t))(p'(s) - cy(s) with 1 -

a(t) = b(s) analytic for \s\ < 1 and A(0) = I - (p + 2q). The indicial equation for

M<p = 0 is r(r - 1) + r(l - (p + 2q)) - c = r2 - r(p + 2q) - c = 0 and the

classical method of Frobenius (cf. [5]) shows that there is a fundamental set

{w,, w2) of solutions to Lw — cw = 0 on (0, +00) with the following properties:

(1) if c> ~ \p\2 = -(p/2 + q)2 and rx = |p| - Vlp|2 + c , r2 = |p| + y^TT
are the roots of the indicial equation then w¡(t) ~ e~r>' and w¡(t) — rte v at + 00

(i = 1, 2); and

(2) if c = -|p|2 then wx(t) ~ ie_|p|', w'x(t) ~ (- |p|)/e~|p|' and w2(t) ~ e~M', w'2(t)

~(-|p|)e-|p|'at +00.

According to Karpelevic [15], Am — cm = 0 has a nontrivial positive solution if

and only if c > — |p|2. By averaging over K it is clear that Am — cm = 0 has

therefore a positive spherical solution <f> for c > — |p|2. Furthermore, $ is well

known to be unique (up to a scalar) [13].

If |p|2 is written as p2 and —c = X2 + p2<p2 then X is purely imaginary and

can be assumed to be in /R+. It is clear that up to constants, w2(t) and </> are the

functions $A and <bx respectively of [10].

Proposition 1.1. If $ = axwx + a2w2 then ax ¥= 0. Hence, <J>(/) — w,(r).
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Proof. The first statement is due to Harish-Chandra. A simple proof of this fact

may be found in [10]. More precisely, Lemma 8 of [10] shows that c~(X) ¥= 0 for

X G /R+ and so as <¡>x(t) = c + (a)4\(/) + c~(X)<e_x(t) the asymptotic behaviour of

<f>A(0 is that of wx(t), i.e., a, ^ 0.

Proposition 1.2. // Am = cu admits a positive solution then the equation has a

Green function. Furthermore, if G is a Green function with pole at o then

G(0~exp(-0{|p|+Vk>|2 + c } =exp(-,y).

Proof. Assume u is radial and define v by u = v<¡>. Then (by "reduction of

order") Lu = cu if and only if v" + [(2<¡>')/<t> + a]v' = 0. The general form of v is

v(t) = v(\) + Av0(t) = v(l) + Af'x exp(-B(s)) ds, where B(s) =

f\[((2<¡>'(x))/<j>(x)) + a(x)] dx. The fact that c¡> ~ wx and so is not a multiple of w2

implies (by explicit computation) that exp( — B(s)) is dominated at + oo by an

integrable function (in fact by a multiple of 1/i2).

Consequently, if A = -1 the constant v(\) can be chosen so that lim,_> + 00 v(t)

= 0.   Since   lim/_>0+ vQ(t) = -oo   (again,   explicit   computation   shows   it   to   be

-f("-2) where n is the real dimension of X if « > 3) it follows that the resulting

function G = v<j> is a Green function with pole at o.

Let G = cxwx + c2w2. Then v = G/<¡> = G/[axwx + a2w2] converges to zero as

/ —» oo if and only if c, = 0.

Remark. In [15] Karpelevic showed the existence of the Green function for

c > \p\2 by using the associated heat equation and an exhaustion of X by regular

relatively compact domains. This result and the asymptotic behaviour of <¡> show

immediately that G(t) ~ exp(— r2t).

Proposition 1.3 (Harnack's inequality). Let 0 < rx < r2. Then there is a

constant C = C(rx, r2) such that if u is a positive harmonic function (i.e., Am = cm)

on the geodesic ball B(x; r2) about x of radius r2 then

(\/C)u(y)<u(x)<Cu(y) (*)

for ally G B(x; rx).

The constant C may be taken arbitrarily close to 1 providing rx is small enough.

Proof. Since the operator A — ci is G-invariant this result is a special case of

Serrin's Harnack inequality [23] as long as c > 0.

Assume c < 0 and let <j> be a positive spherical solution of Am — cu = 0. If

t = t(x) is the geodesic distance of x from 0 then by abuse of notation <¡>(x) = (/>(/).

Set m = t><f>. Then Am — cu = 0 if and only if Mv = 0 where Mv = Av +

2(log <l>)'Xv and X = grad / (the intrinsic gradient of i).

Consider positive solutions v on B(o; r2) = B of Mv = 0. Serrin's Harnack

inequality [23] applies to give a constant C such that (\/C)v(y) < v(o) < Cv(y)

for all j> G B(o; rx).

Now let Au = cu, u > 0 on B(x; r2) and let g • o = x. Set w(y) = u(g ■ y) for

y G B.   Then   (AM)(g • y) - cu(g ■ y) = (Aw)(y) - cw(y).   Define   v(y) =

w(y)/(t>(y)- Then since v satisfies a Harnack inequality on B it follows that w

satisfies a Harnack inequality on B. In other words, u satisfies (*) on B(x; r2).
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Consider a system of coordinates at o. The Schauder estimates (cf. [6]) and (*)

show that for the positive harmonic functions u with u(o) = 1 the euclidean

gradient Vm (relative to these coordinates) is uniformly bounded on a neighbour-

hood of o. Hence, the functions u axe equicontinuous at o. Since A — ci is

G-invariant the same result holds at any point x. This proves the last assertion.

Remark. This result partially extends Lemma (2.1) in [211

2. Fine convergence implies admissible convergence. The arguments used in [2] to

prove that fine convergence implies nontangential convergence on a half-space can

be applied to rank one symmetric spaces because of the following key result.

Proposition 2.1. Let B = B(x; r') and let t = d(o, x). Then RB\(o) ~ e~r* as

t —> +00.

If in addition x G A(b; r) then there exists a constant c > O such that RBKb(o) >

c for t large enough.

Proof. Let g G G be such that g ■ x = o. Set x = g • o. Then, RBl(o) = RgBl(5c)

= G(F)/G(r) = G(x)/G(r)~ e'".

If x G A(b; r) then x = k exp sH ■ x' for some x' G B(o; r). Also, if y =

k exp s H ■ o then \s — t\ < r as *-<■ d(o,y). Hence, RBl(o) « e~ri*. Furthermore, it

is well known (cf. [15] or [26]) that Kb(y) = er*. Since B c B(y; r + r'), it follows

that Kb m Kb(y) = er* on B. The result follows as RBKb(o) > CRBl(o) if Kb > C

oxiB.

Remark. The essential point here is that Kb(x)G(x) « 1 on any fixed A(A; r).

This can be easily verified given Harnack's inequality and the asymptotic be-

haviour of G along the geodesic t ~» k exp tH ■ o.

Theorem 2.2. Let u, A be two positive harmonic functions on X (i.e., solutions of

Av = cv, c > — |p|2). Assume u/h converges finely to I at b G K/M. Then u/h

converges admissibly to I at b.

Proof (cf. proof of Théorème 3 in [2]). It will be enough to show that if r > 0

and if (xa) c A (b; r) converges to b and is such that u(xn)/h(xn) —» /, then /, = /,

i.e., / is the only admissible cluster value.

Assume for some r > 0 that there exists (xn) G A(b; r) converging to b with

u(xn)/h(xn)^lx.

Let e > 0. By Proposition 1.3 there exists r' > 0 such that |m(jc)/A(jc) — /,| < e

for all x G B(xn; r') = Bn providing « > N. Let E = U n>N Bn. It will suffice to

show that E is not thin at b since then E n F =£ 0 for all F G 9(b) and so /, = /.

To prove this first note that limm_>00 RE Kb = A is nonnegative and harmonic on

X, where Em = Un>m Bn. Also, RE Kb(o) > RB Kb(o). Hence, by Proposition 2.1

there exists a constant c > 0 with A(0) > c. Since A is a harmonic minorant of REKb

and hence of REKb it follows that E is not thin at b.

Remarks. (1) In [2] Brelot and Doob proved a stronger result: semifine conver-

gence of u/h implies nontangential convergence. The semifine filter S (A) at A is

{E\EC is semithin at b) where E is semithin at A if lim^^^ XREnN G = 0,

Nx = (Kb>XG). Note that S (A) D 9(b).
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This result extends to the present situation. One has only to prove that E in the

preceding proof is not semithin: taking \, = G(xn)~2 the remark following

Proposition 2.1 implies that E n ÄfV D Bn for large «; the first assertion of

Proposition 2.1 implies c' < \,RB G(o) < \REriN  G(o).

(2) In the case of the upper half-space nontangential convergence and semifine

convergence are equivalent for quotients u/h of positive harmonic functions. In

[25] the corresponding result is proved for the unit ball in C. It is also possible to

prove the following result by adapting the arguments of Brelot and Doob from [2].

Theorem 2.3. Let u, A be positive harmonic functions on X (with c > — |p|2). Then

u/h converges admissibly at b G K/M if and only if u/h has a semifine limit at b.

The key lemma in the proof states that E is semithin at A if

lim^ Kb(x)G(x)lE(x) = 0.

Since it is always true that S (A) D 9(b) Theorem 2.3 implies Theorem 2.2.

(3) It will be shown in §4 that, except for a set of dñ measure zero, if a function/

has an admissible limit at « G N then/has a fine limit at n.

(4) In the proof of Theorem 2.2 it is not essential that u and A be defined on all

of X. It is sufficient to assume they are defined on A(b; rx) and that for any e > 0

there exists A = A(e) G 9(b) with \u(x)/h(x) - l\ < t for x G A n A(b; rx).

Let 0 < r < rx and assume (xn) c A (A; r) converges to A and that u(xn)/h(xn) —»

/,. The argument used to prove Theorem 2.2 shows that /, = /, i.e., u/h converges

through every proper admissible subregion A(b; r), 0 < r < rx.

3. The local Fatou theorem. This result is concerned with the admissible conver-

gence of a harmonic function u defined on an open set U which is a union of

admissible regions corresponding to a subset of N = N ■ e an open dense subset of

K/M. Here it will be convenient to use the regions TT(H; r) as the admissible

regions.

Following Brelot and Doob [2] one first proves the basic lemma.

Lemma 3.1 (cf. Calderón [3]). Let E g N be bounded. Assume that to each

« G E there is associated a truncated region TT(ñ; r) (where r and T may vary with

ñ) and let U = (J ñeE TT(ñ; r).

Let e > 0. Then, for any given r0 > 0, there exists a compact set D and T0 such

that:

(l)Ui£Cr>-;r0)c U;and

(2) the outer measure (relative to dñ) of E/D is < e.

Proof. A countability argument shows that it suffices to consider the case where

r and T axe constant.

Sublemma 3.2. Let kn -» k and z G A T(k; r) = {k exp tH ■ x\d(o, x) < r). Then

there exists a subsequence kn/ and l0 = l0(z; r) such that z G A T(k„t; r), I > l0.

Given the sublemma it follows from Lemma 0.4 that there exists a constant

c > 1 such that rr(«0; r/c) c U if «0 is in the closure of EQ = {«|rr(«; r) c U).

Let F = É0.
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The Calderón argument used in Lemma 5 of [16] applied to the regions

TT(ñ; r/c), « G F, shows that at each point «, of density of F (relative to the

translated gauge balls) there exists T0 = T0(r0, «",) such that TT°(ñx; r0) c V =

U„eF TT(ñ; r/c) c U.

The proof is easily completed by a countability argument since a differentiation

theorem holds on N for dñ [17, Corollary 1, p. 394] with the translated gauge balls

as a differentiation basis.

Proof of the sublemma. By compactness there is a subsequence (A;n) of (kn)

such that kn —> k' and k' = k. Now z = k! exp tH • x with d(o, x) < r. Consider

exp(— tH)k~lk' exp tH ■ x = g¡ ■ x = y. Since kn —> k', g,^>e and so there exists

l0 = l0(z, r) with d(g, ■ x, x) < r - d(o, x) for / > l0. Therefore, d(o,y) < r and

kn¡ exp tH ■ y = z if / > l0.

Corollary 3.3. For each r > 0, « G E implies that there exists T = T(ñ, r) with

TT(ñ, r) c U except on a set of dñ-measure zero.

Theorem 3.4. Let E G N and assume that for each ñ G E a truncated region

TT(ñ; r) is given. Let U be the union of these regions. Then, Uc is thin at ñ G E,

except for a set of dñ-measure zero.

Proof. In view of Lemma 3.1 it suffices to assume E is compact and that the

parameters r and T are constant, say r = r0 and T = T0.

Let m be the Poisson integral of lE. By Theorem 0.2, dñ-a.e., u converges finely to

\E. Hence, for 0 < ß < 1, {m < ß] is thin dñ-a.e. on E. The value of ß will be

chosen below.

Since the complement of a neighbourhood If of « is always thin at ñ it suffices

to show that u(xx) > ß and x G W = {«' exp tH ■ o\t > T0) implies xx G U. Let

xx = ñx exp txH ■ o. Assume xx £ U. Then ñ, • b(r0e~h) n E = 0, where b(r) is

the gauge ball of radius r and centre e in N = N■ e. Let Bx = b(r0e~'') and

B = b(r0). Then, if F = Ec, 1 - u(xx) = f K(x, Í¿)\¿k) dk > / K(x, k)\ñi.Bx(k) dk

> c > 0 as on p. 167 of [19]. Consequently, if ß > 1 — c it follows that xx G U.

Theorem 3.5 (cf. Carleson [4] and Brelot-Doob [2, Théorème 10]). Let

E G N and assume that for each ñ G E a region TT(ñ; r) is given. Let h be a positive

harmonic function on X and let u be a harmonic function on U = U ÄG£- rr(«; r).

On each TT(ñ; r) assume that u/h is either bounded above or below.

Then there is a set Fx of dñ-measure zero and a set F2 of ph-measure zero (where ph

represents A) ímcA that, for all ñ G E\(FX U F2), u/h has an admissible limit at «.

Proof. By a standard device (cf. [2]) it is enough to prove the result for u > 0

and U connected. Let F'x be the subset of E at which Uc is not thin, i.e.,

F{ = {A G E\ U is not in 9(b)}.

It follows from the relationship between the Martin boundaries of U and of X

(see Theorem A.6 in the Appendix) that u/h has a fine limit at ju^-almost every

point of the closure of E at which Uc is thin. Let F2 be the intersection of this

exceptional set with E. Then u/h has a fine limit at every point of E\(F'X u F^. If

Fx is the union of F{ and the union of the exceptional sets of Corollary 3.3 for an
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increasing sequence rn —> + oo it follows from the remark (4) following Theorem

2.2 that u/h has an admissible limit at each point of E\(FX u F^.

4. Admissible convergence implies fine convergence a.e. What follows is a minor

adaptation of the proof of Théorème 9 from [2] to the context of a symmetric space

X.

Let /: X —> R and let E c N be a bounded set of points « at which f(x) has a

limit as x —> «, x G A T(ñ; r) for r fixed. Let <p(ñ) denote this limit and define

V(T,f)(ñ) = sup{|/(x) - f(y)\ \x,y G AT(ñ; r)}. It follows from Sublemma 3.2

that V(T,f) is lower semicontinuous and hence lim^^, V(T,f) is Borel. This limit

is zero on a bounded Borel set F d E.

By Egorov's theorem there is a compact subset D0 of F such that (i) V( T, f) —> 0

uniformly on D0 and (ii) the dñ measure of F\DQ is < e.

Let S > 0. Choose T= T(S) such that V(T,f)<8 on D0. Let i/(5) =

Uñe/) nE A T(ñ; r). This is an open set and by Lemma 0.4 and Theorem 3.4 is in

9(h~) for ¿«-almost all « G D0 n E.

Lemma 0.4 and the fact that V( T, f) -» 0 uniformly on D0 implies that <p is

continuous on D0 n E. Let y G A T(ñ; r) and ñ, ñ0 G D0 n E. Then \f(y) — <p(«0)|

< \f(y) — <p(«)| + \<p(n~) — <p(«0)| < S + \q>(h~) — <p(«0)| < 25 if « is close enough

to«0.

In other words there is a neighbourhood W of «0 such that U(S) n W c {y G

X\ \f(y) - <p(«o)| < 25)- If ^(0) G ^("o) for a11 s then/converges finely at «0 to

<p(«0). As this hypothesis holds for ¿/«-almost all points of D0 n E it follows that

dñ-a.e. on F the function / has a fine limit at « equal to <p(ñ). This completes the

proof of the following result.

Theorem 4.1. Let f: X -» R and let E(r) G N be the set of points « at which f(x)

has a limit <p(«) as x —> «, x G A T(ñ; r) for some fixed r > 0. 77je« E(r) is a Borel

set and, at dñ-almost every point ñ of E(r), f converges finely to <p(h~).

In particular, if E c N is the set of points « at which f has an admissible limit <p(ri)

then it is Borel and at dñ-almost every point of E the function f converges finely to

m(A).

Appendix. The relation between the Martin boundaries of X and of a connected

open subset W.

1. In the third paragraph of the proof of Théorème 10 in [2] Brelot and Doob

state (for the half-space) the result to be presented below as Proposition A.5. While

for the purposes of this article A' is a symmetric space and the potential theory is

associated with Lu = Au — cu, the arguments below apply in a larger context

(namely, an axiomatic potential theory in the sense of Brelot for which the

so-called axiom D is satisfied [14]). It is also quite likely that Proposition A.5 holds

in the context of probabilistic potential theory.

The result in question is the following: let A > 0 be harmonic on X and let

A' = A|,,,; on the "intersection" of the Martin boundaries of X and W the measures

representing A and A' respectively are mutually absolutely continuous. In particular,

if A = 1, the harmonic measures associated with the two Martin compactifications
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are mutually absolutely continuous on the common boundary. In [2] this result is

attributed to Nairn [27, Lemme 6, p. 247]. However, Nairn's result is not the same.

2. To begin with, the following result of Brelot shows that a subset of the Martin

boundary of X can be identified with a subset of the Martin boundary of W.

Theorem A.l (Brelot, Théorème 12, p. 220 [22]). Let AX(X, W) = {A G

Ax(x)\Wc is thin at A}. Then for each b G AX(X, W) the function Kb - Rw,Kb = kb

is a minimal harmonic function on W. Further, the map Kb ~* kb is infective.

Proof. The argument given in [22] applies without change. For the reader's

convenience it is outlined below.

Let h = Kb and assume 0 < k < A — R^A on W. Then there is a superharmonic

function wonJi such that (i) w(x) = k(x) + RWch(x) for x G W and (ii) except

for a polar subset of dW, w(x) = h(x) for x G Wc. Clearly, w < h.

Let p + I = w be the Riesz decomposition of w with / harmonic. Then / = cA,

0 < c < 1. Because the exceptional set in (ii) is polar R^w = R^cA. Hence,

Pw'P = (' — c)RWch.

Since p < A the potential p = Gp is locally bounded. Consequently, p does not

charge any polar set. From this it follows that Rw<p = p (by using the fact that

polar and copolar sets are the same).

Hence,p = (1 - c)RWch. On Wit follows that k = w — RWch = p + ch — RWch

= c(A - R^cA).

The injectivity of the map Kb ~» kb follows from the uniqueness of the Riesz

decomposition: A, = Kb and kb = kb implies A, + Rw<h2 = A2 + RWMX on X

(except for a polar set, and hence everywhere); R^A, is a potential and so A, = A2.

3. Define B: AX(X, W) -> AX(W) by setting B(b) = A if A corresponds to Kb -

RWcKb = kb. The kernel K(x, b) may be assumed to be normalized at a point

a G W. Using the same point for the corresponding kernel A; on W it follows that

k(x, b)[l - R^K^a)] = K(x, b) - Rw<Kb(x) = kb(x).

The next step is to show that AX(X, W) and B(AX(X, W)) are both Borel subsets

of AX(X) (resp. AX(W)). To this end set A,(^, W; ri) = {A G A^A^, W)\\ -

RwcKb(a) > 1/«}. It clearly suffices to show that, for each « > 1, A^A", W; ri) and

B(AX(X, W; ri)) are Borel subsets of AX(X) (resp. AX(W)).

Proposition A.2. For each « > 1, AX(X, W; ri) is a Borel subset of AX(X) and B

restricted to this subset is a continuous injection.

Proof. Fatou's lemma implies that A ~» 1 — RWcKb(a) is upper semicontinuous.

Hence, A,(A, W; ri) is a closed subset of A,(A").

Assume (bm) c A,(A, W; ri) converges to A G A^A", W; ri). Let km(x) = Km(x)

— RWcKm(x), where Km(x) = K(x, bm). Since 1 > km(a) > 1/n, a subsequence k^

converges to a harmonic function / on W. Further, K(x, bm) -» K(x, A) and so by

Fatou's lemma, Rw<Kb < limm RWcKm.

Consequently, I < kb = Kb — RwJCb. Hence, / = ckb with c = 1(a). Hence,

V/km(a)]km = kbm^kb.

Corollary A.3. For each n, B(AX(X, W; ri)) is a Borel subset of AX(W).



FINE CONVERGENCE AND ADMISSIBLE CONVERGENCE 179

Proof. The Martin boundary A(A") of A" is a complete separable metric space

(i.e. a Polish space in the terminology of [1]). By Théorème 3 on p. 134 of [1],

A,(A, W; ri) is a Lusin subspace of A(A). The corollary to Lemma 7 on p. 135 of

[1] implies the desired result.

Remark. In case AX(X) is compact this result is obvious since A,(A, W; ri) is

compact for each «. This is the case for symmetric spaces of rank one.

Corollary A.4. B: A,(A, W)-^> AX(W) is a Borel injection (and even a Borel

isomorphism with the image).

4. Let A > 0 be harmonic on X and have representing measure p on A,(A). Let v

be the representing measure on AX(W) for A' = A|^.

Proposition A.5. Let Y g A,(A, W) be Borel and let B(T) = A. 77ie«

V(A)=({\-Rw<Kb(a)}p(db). (*)

Hence, v(A) = 0 <=> p(T) = 0.

Proof. Let hx(x) = /a,(a-,»o K(x, b)p(db). Then A = A, + A2, where RWch2 = h2.

Further,

*,(*) = f {K(x, b) - Rw<Kb(x)} p(db) + f Rw¡Kb(x)p(db)
Jd,(X,W) Jà,(X,tV)

= k(x) + p(x),

wherep(x) is a potential on X (as each RWcKb is a potential).

Let «(A) - /r{l - R^cK^a)} p db, if B(T) = A. Then k\w - /*< , b)u(db).
Since v > u>, to establish (*) it suffices to show that the representing measure on

AX(W) for any positive harmonic function u < (p + /i2)|j^ has no mass in

R(A,(A, W)) as this will imply that the measure v — w does not charge

R(A,(A, W)).

Let u(x) = / k(x, b)-q(db) < p(x) + h2(x) for all x G W, where r/ is a positive

measure on R(A,(A, W)). Then there is a unique measure X on A,(A\ W) related to

ri by the formula (*). This measure X is such that

j{K(x, b) - RWcKb(x)}X(db) = u(x)    for all x G W.

Hence, w(x) = JK(x, b)X(db) < px(x) + p(x) + h2(x), wherepx = Rw<w, for all

x G W. Consequently, w < />, + p + /i2 on J since the possible exceptional set is

polar. Since px + p is a potential, w < A2. Now the representing measure for A2

does not charge A,(A, W) and so consequently X = 0. Hence, tj = 0.

5. Theorem A.6. Let A > 0 be harmonic on X and u > 0 harmonic on W. Then

u/h has a fine limit at b G AX(X, W) if and only if u/h has a fine limit on W at

A = B(b) G B(AX(X, W)). Further, if E is the exceptional subset of AX(W) where

u/h has no fine limit on W, then ph(B~l(E)) = 0 (where p,, is the representing

measure for A).

Proof. The second statement follows immediately from Proposition A.5.
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For all A G A,(A-, W), W G 9(b). Hence it suffices to show that A c If is in the

fine filter on W at A if and only if A = Ax n W, with /l, G ^(A): in other words,

E c W is thin at A (on If) if and only if E = Ex n W where ¿s, is thin at A.

This follows from the next lemma with u = Kb.

Lemma A.7 (cf. Lemme 5, p. 223 [22]). Let u > 0 be superharmonic on X and let

A gW. Then, on W, (Rw)A(u - Rwm) = R(AuXv^u - Rwm, where (RW)A is the

operator that performs "balayage onto A" in the subspace W.

Proof. Let v be superharmonic on A with v > u on A u Wc. Then RWcV >

Rwm and so v — Rwm > 0 and is > u — Rxvm on A. Hence, on W,

(Rw)A(u - Rw,u) < RAuXVm - Rwm.

Conversely, if u — Rwm > w and w > u — Rwm on A (where w is super-

harmonic on W) there is a superharmonic function v on A whose restriction to W

is w + RfyM (cf. proof of Theorem A.l) and which agrees with u on the set B of

regular points of Wc. Hence, v > u on A u B.

Therefore, (Rw)A(u — Rwm) + Rwm > RAuBu on W. Consequently, on W,

(R^)A(u — Rwm) -t- RWM > RAuBu. The result follows since RAuBu = RAuIVm.
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