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HOLOMORPHIC ACTIONS OF Sp(n, R)

WITH NONCOMPACT ISOTROPY GROUPS1

BY

HUGO ROSSI

Abstract. U(p, q) is a subgroup of Sp(n, R), for p + q = n. Bq =

Sp(n, r)/ U(p, q) is realized as an open subset of the manifold of Lagrangian

subspaces of C" x C. It is shown that Bq carries a (/>ç)-pseudoconvex exhaustion

function. Bpq = Sp(n, r)/ U(p) x U(q) carries two distinct holomorphic structures

making the projection to Bq, B0 holomorphic respectively. The geometry of the

correspondence between Bq and B0 via Bpq is investigated.

Introduction. Throughout this article p, q, n are nonnegative integers such that

p + q = n. Let S„ represent the space of symmetric n X n matrices Z with complex

entries. Let Z = X + i Y be the decomposition of Z into real and imaginary parts.

As is well known, there is a meromorphic action of Sp(/j, R) on Sn given by

Z -» (AZ + B)(CZ + D)~l where G = {Ac BD) G Sp(n, R) (see, for example, [13]).

If Snq = (Z = I + iT 6 Sa; Tis nonsingular and has/; positive and q negative

eigenvalues}, then this action, where well defined, leaves the domains S in-

variant. This action is well defined throughout Sn0 and Snn, but may have poles on

the other domains. However, each Sn   does correspond to a homogeneous space

Bq= Sn,q = Sp(n,R)/U(p,q),

since U(p, q) is the isotropy of a suitable point in Sn . In this article we shall study

some of the geometry of these spaces Bq. These domains have occurred implicitly

in (at least) two other recent articles.2 In [15], Tolimieri shows that U B parame-

trizes the set of complex polarizations of the Heisenberg algebra. In [10],

Matsushima considers complex tori polarized by hermitian line bundles with

nonsingular, but not necessarily positive, definite curvature. Again U Bq parame-

trizes the set of all such polarized complex tori.

In §1 we realize UBq as an open dense subset of the set £ of subspaces of C2"

which are Lagrangian for a fixed nondegenerate skew form /. These are the

Sp(n, /?)-orbits under the standard action of G(2n, Ç) on Gr(2/i, «, C). In §2 we

realize the Bq as orbits of Sp(«, R) on the dual of its Lie algebra. The structure

inherited from £ provides these orbits with a polarization and associated hermitian
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line bundle (a quantization). The representation associated to this orbit by the

Blattner-Kostant-Sternberg theory [9], [14] should be expected to lie in higher order

cohomology. We have been unable to successfully pursue this line of reasoning

(which was the main motivation of this article). In §3 we show that this complex

polarization is unique to conjugation.

In §4 we show that Bq has a (p^)-pseudoconvex exhaustion function. This

pseudoconvexity is explained by the presence of compact subvarieties of dimension

pq. Since U(n) n U(p, q) = U(p) X U(q), we can study the maps:

Sp(n,R)/U(p) X U(q)
, i

Bq B0

The homogeneous space Sp(n, R)/U(p) X U{q) has two distinct (q=£0,n)

Sp(«, Ä)-invariant complex structures Epq, Ep0 making trq, it0 holomorphic respec-

tively.3 By means of this correspondence B0 parametrizes a family of compact

subvarieties of Bq of dimension pq which is a real form for the Kodaira space [8] of

deformations of ^¿"Vo) (= U{n)/U{p) X U{q) = G(n,p)) in Bq. Finally, in §5

we relate our work with the work of Tolimieri [15] on polarized complex tori and

via that with the work of Matsushima [10].

I wish to acknowledge that, in the process of doing this work I greatly benefited

from many useful conversations with Chris Byrnes, Henryk Hecht, Jim Morrow,

Domingo Toledo, Rich Tolimieri and Michèle Vergne.

1. Hermitian forms on a complex vector space. For the purposes of this section, a

hermitian vector space shall consist in a complex vector space V together with a

nondegenerate hermitian form H:

(i) H is real bilinear;

(ii) H is complex linear in the first factor;
/•••\   in \        "777-\(m) H(u, v) =H(v,u);

(iv) H(u, v) = 0 for all t> S V implies u = 0.

We shall study such spaces from the point of view of the underlying real vector

space VR. The structure of complex vector space is given by the endomorphism

ß E GL( VR) representing multiplication by /. The only condition ß must satisfy to

determine a complex structure is

ß2=-I. (1.1)

The hermitian form H is a real bilinear complex-valued form. Let

H = S + iK (1.2)

be its decomposition into real and imaginary parts.

The following result is standard and a proof can be found in [11].

3Again, the referee has pointed out a reference for a more direct proof of Theorem 3.1: J. A. Wolf,

The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59-148.
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1.3. Theorem. Let ß define a complex structure on the real vector space VR, and let

H = S + iK be a nondegenerate hermitian form on (VR, ß). Then

(a) S is symmetric and S( ßv, ßw) = S(v, w),

(b) K is skew-symmetric and K{ ßv, ßw) = K(v, w),

(c) both S, K are nondegenerate, and

S(v, w) = K(ßv, w),        K(v, w) = -S(ßv, w). (1.4)

Finally, either S or K satisfying (a), (b) respectively, determines the hermitian form H

via equations (1.4) and (1.2).

Given the hermitian form H, we shall call S its Riemannian part and K its Kahler

part.
T   .Let

■U i)
where I„ is the n X n identity matrix. Thinking of R2n as the space of n X 1

vectors, J defines a skew form on R2n by («, w) —» Wo.

1.6. Definition. We shall let B denote the collection of structures of hermitian

vector space on R 2n whose Kahler form is J. Then B is given by complex structures

ß which leave J invariant:

B = { ß G GL(2«, R); ß2 = -/, 'ßJß = J). (1.7)

The corresponding hermitian form is given by the matrix

Hß = Jß + U. (1.8)

There is another way to look at complex structures ß on a real vector space V

which we shall have to exploit. Extend ß complex linearly to the complexification

Ve. Since ß2 + I = 0, Ve splits into the direct sum of two eigenspaces V±i(ß) of

eigenvalue ± i respectively. Since ß is real, V_,(/?) = V^ß). Conversely, given any

direct sum decomposition Ve = W © W, the linear transformation ß defined by

B\W = + /', B\ W = -i defines a real transformation ß on V such that ß2 = -/,

i.e., a complex structure. Finally, we observe that the map V ̂ > W defined by

v—> v — ißv defines a complex linear isomorphism of (R2n, ß) with W. The

following result is easily calculated.

1.9. Proposition. Let ß G B. Under the identification of(R2n,ß) with Vt(ß), Hß

is given by

Hß(v, w) = (i/2)'wJv.

For ß G B, Hß is a nondegenerate hermitian form so (as a hermitian symmetric

matrix) hasp positive eigenvalues and q negative eigenvalues, with/? + q = n. Let

Bq = { ß G B; Hß has q negative eigenvalues}. (LIO)

Let

0      /.'• n
0     -I,)'

PI

k-    n     _F   •       '."I.,        n    ■ ('•'»-k  °
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Then J2 = -/, so defines a complex structure on R2n. Up to complex isomorphism,

there is only one «-dimensional complex vector space, so there must be a complex

linear transformation from (R2n, J) to (R2n, Jq); i.e., a Dq G GL(2«, R) such that

DqJ = JqD . This is given by the matrix

D,=
Ip

since

•Dq = Dq = Dq~
VÄ = J-

We also have

■tf = "A V " JJr 'JJJa = J,

(1.12)

(1.13)

(1.14)

so all the ±J are in B. In fact, it is easily verified that/ , 'J   G B

The symplectic group is the subgroup of GL(2n, R) leaving the skew-form J

invariant:

Sní«. fiUífE GIi2n. fiA 'eje = J\.

)2

(1.15)Sp(/i, R) = {g G GL(2«, Ä), 'g/g = y }.

Thus B = { ß G Sp(«, Ä); ß2 = -/}.

It is easily checked that B is invariant under the adjoint action of Sp(n, R): for

ß G B, and g G Sp(n, /?), g~lßg G 5 also. We have the following theorem, proved

by Tolimieri in [15]; we give a simpler proof.

1.16. Theorem, (a) B = Sp(«, R) n §£("> Ä) = {ß e SP("> Ä); ^ » symmet-

ric).

(b) 77ie orô/'to o/ 5 ««¿/e/- //ie adjoint action of Sp(«, Ä) are precisely the Bq.

Proof, (a) %p(n, R), the Lie algebra of Sp(«, R), is determined by the condition

äp(n, R) = {A- G flI(2/j, Ä), 'A7 + JA- = 0},

where gl(2«, R) is the space of 2« X 2« matrices, the Lie algebra of GL(2«, R).

Let ß G fi. Then ß~} = -ß and '£/ = Jß'1 = -Jß so "ßJ + Jß = 0 and ß G

sp(«, fi). Clearly also/ß is symmetric: '(Jß) ='ß'J = -'/£/ = Jß.

The argument reverses: if ß G Sp(«, fi) with Jß symmetric, then ß G 3p(n, R).

Finally, we suppose that X G Sp(n, R) n êt>(«, Ä)- Then '-^ + /A" = 0, 'AV =

/A ~', so JX _1 + /A" = 0. Multiply on the left by AV, obtaining -/ - A"2 = 0, or

X G B.

(b) We now consider the Sp(«, R) action on B. Let us represent that action by

g- ß = g~lßg. Notice that

J(gß)=Jg-1ßg='gJßg,

so Hgß = 'gHßg, and then the induced action on the hermitian form is the natural

action. Since the signature is preserved under the natural action, the Sp(n, R)

orbits of B are contained in the Bq.
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Let ß G Bq. The form Jß + U is a ß-hermitian form and has signature (p, q).

Now, up to complex isomorphism, there is only one such form. Thus, there is a

complex isomorphism D of (R2n, ß) with (R2n,'Jq) which carries Hß to Htj .

Explicitly,

ßD = D'Jq,        'D(Jß + U)D = J'Jq + U.

The imaginary part of the second equation tells us that D G Sp(«, R), and the first

equation tells us D ■ ß ='Jq- Thus Bq is precisely the Sp(«, fi)-orbit of 'Jq.

Finally, we can easily compute the isotropy group of 'Jq.

1.17. Theorem. 77ie isotropy of'Jq under the Sp(«, R)-action is U(p, q). Thus, as

homogeneous spaces,

Bq = Sp(n,R)/U(p,q)        (p + q = n). (1.18)

Proof. First of all we explicitly realize U(p, q) as a subgroup of Sp(«, R) as

follows. R2n admits (up to isomorphism) only one nondegenerate skew form. Thus

we could have defined Sp(«, R) as well by

Sp«(«, «)={«e GL(2«, R); 'gJqg = Jq), (1.19)

since Jq also defines a nondegenerate skew form on R2n. In fact, Spq(n, R) is

conjugate to Sp(«, R) via the matrix Dq:

Sp"(n, R) = {DqgDq; g G Sp(n, R)}.

Now (Ä2", J) is a complex vector space, and Hq = JqJ + Uq is a hermitian form

on (R2n, J) with p positive and q negative eigenvalues. By definition U(p, q) is the

group of complex-linear transformations of (fi2", 7) leaving Hq invariant:

U(p, q) = { g G GL(2«, R),gJ = Jg, lgJqg = Jq),

so U(p, q) is a subgroup of Sp?(«, R). Finally we verify that conjugation by Dq

carries U(p, q) onto the isotropy group of 'Jq = -Jq. The isotropy of 'Jq is

K(p, q) = { ß G GL(2n, R); ßjq = Jqß, 'ßJß = j).

Let ß G K(p, q) and take a = DqßDq. Then

oJ = DqßDqJ = DqßJqDq = DqJqßDq = JDqßDq = Ja.

•aJqa = D'qßDqJDqßDq = £>,'ß/ßZ>4 = ß/Z), = Jq.

Thus a G t/(/>, q). The argument is reversible for a G í/(/?, <7), DqaDq G #(/>, 9).

We shall see in the next section that the homogeneous spaces Bq have an

(essentially) unique Sp(«, R )-invariant structure as a complex manifold. Here we

shall construct that structure geometrically, exhibiting the Bq as a kind of flag

domain, generalizing the Siegel upper half plane.

1.20. Theorem. B is an open dense subset of an algebraic variety £. Sp(«, R ) acts

on B by holomorphic transformations.

Proof. Let G(2n, n) be the Grassmannian of «-dimensional subspaces of C2".

The correspondence ß -» Vt(ß) defines a one-one map (in fact a diffeomorphism)



212 HUGO ROSSI

of B into G(2n, n). If g G Sp(«, R), and ß' = g • ß, we must also have V¡( ß') = g •

F](ß) (as is easy to compute), where this last action is defined as the natural action

of GL(2«, C) on G(2n, n) restricted to Sp(«, R). Thus Sp(«, R) acts by holomor-

phic transformations on G(2n, n) so as to preserve the image of B.

We now calculate the image of B. As we have seen, V G G(2n, n) defines a

complex structure on R2" if and only if V n V = 0; in this case the complex

structure is given by ß | R 2n where ß | V = + /', ß | V = -i. The condition that ß G fi

is just the condition that V is isotropic for the complex skew form / on C2": for ß a

complex structure on R 2", we have

J(v - ißv, w - ißw) = J(v, w) - J(ßv, ßw) - i[J(v, ßw) + J(ßv, w)].

Thus J is the Kahler form of a hermitian form on (R2n, ß) if and only if

J\Vi(ß) = 0, i.e., Vt(ß) is /-isotropic. Thus, if we call £ the set of Lagrangian

subspaces of G(2n, n) (maximally isotropic for /), we have fi = { F G £ ; V f\ V

= {0}} so B is given by an open condition on a closed subvariety, £, of G(2n, n).

Let us calculate the Sp(n, R )-action in a local coordinatization of G(2n, n).

Choose Vy and V2 as two complementary subspaces of C2" of dimension n.

Relative to the splitting C2" = K, © V2, write v G C2" as a row vector, and

g G GL(2«, C) as a 2 X 2 matrix:

(v\\ (A     B\

Now, for T G L(V2, K,), the graph of t is in G(2n, n), and the correspondence

r —> graph of t provides a local chart (for a Zariski open subset) of G(2n, n).

Suppose K,(ß) is in this coordinate neighborhood.

W)=   {(™)^e   V2}-

For g G Sp(«, R), V¡(g ■ ß) = g • V¡{ ß), so

V¡(g- ß) is also in this coordinate neighborhood if and only if there is a t' G

L( K2, K,) with

In particular, we must have Ct + D invertible, and the coordinate t' of V¡(g ■ ß) is

given by

t' = (/1t + fi)(CT+ Z))_1. (1.21)

That is, the action of Sp(«, fi) is the usual fractional linear action in any

coordinate chart.

Remark. Of course (1.21) is valid throughout the given coordinatization of

G(2n, n) and for all g G GL(2«, R). The question remains: what t G L(V2, Kt)

correspond to £? There is an easy answer if K, and V2 are themselves Lagrangian.

In this case we can find bases E\, EJ2 of V,,j = 1, 2, so that
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0      if/-/,

/(fi/, e{) = s; •   1      if / = \,j = 2,
-1     if/= 2,7=1.

Relative to these bases, t G L(F2, K,) is given an n X n matrix. As in [6, p. 118],

we compute that t corresponds to a Lagrangian subspace if and only if it is

symmetric. (By the way, this also verifies that £ is defined by algebraic equations.)

Finally, we make explicit the relationship of B with the usual Siegel upper half

plane. Our choice of / introduces a direct sum decomposition of R2" into isotropic

subspaces

so that the Vj- are Lagrangian in C2", and the standard basis gives the bases of the

above remark.

1.22. Definition, ß is regular if there is a t G LV2, Vxc such that

Vi(ß) = {w + tw;w G V2C).

Sq = {ß G Bq, ß is regular}.

As already observed, it follows from [6] that t corresponds to a complex

structure ß with a Lagrangian Vj(ß) if and only if t is symmetric. Furthermore, the

Sp(«, R )-action is given by fractional linear transformations in the t coordinate. In

the following we give a direct proof.

1.23. Theorem. Let

ß=    i     *    <=*.

(a) If ß G B  is regular, then r is symmetric and Im t has signature (p, q).

(b) ß is regular if and only if (D + il) is invertibie. In this case t = B(D + il)~l.

(c) If B is invertible, ß is regular. In particular, if ß G fi0 or Bn, then ß is regular.

(d) If t = t, + it2 is a symmetric n X n matrix with nondegenerate imaginary

part, then t comes from aß G B. ß is given by

2       ~  T1T2
ß -1 , , • (1-24)

Proof, (a) Let v = v0 — ißv0, w = w0 — ißw0, v0, w0 G R2". As already ob-

served (Proposition 1.9)

(i) Wo = 0,

(ii) 'wJv = -2iHß(v0, w0).

For ß regular, we calculate (i), (ii) directly using r. Let v, w G V2.

0 = ('w't, 'w)( °7     J)( ™) = (V'r, V)( _vtv) = V'tü - Wo,

for all t>, w. Thus V — t = 0.

('w't, m?)( _°7     ¿)( « ) ='vv('r- - r)v = -2/'iv(Im t)o.
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Thus, for v = v0 - ißv0, w = w0 — ißw0, v0, w0 G R2",

'w(lm t)v = Hß(v0, w0),

so Im t has the same signature as Hß.

(b) Let X = O G V2C. Then X - ißX G V^ß), and

*-**-«)-<í 5X5)—<tf»*w->       «f»
Thus, ß is regular if and only if there is a t such that

{((j?fio.)!'«f}.-i(7)i-ff)-
i.e., if and only if /) + i7 is invertible, in which case t = B(D + //)"'.

(c) Note that, for v, w G K2, S^u, tv) = -'wBv. Thus, fi is symmetric, so that if

B is invertible, B2 is positive definite. Suppose then that B ~ ' exists; we will show

that D + il is invertible as well. Suppose that (D + il)v = 0 for some v G V2C.

Then by (1.25)

\ 0 ) \(D + il)v

are both in V^ß), so 'YJX = 0. But 'YJX ='vB2v. Thus v = 0, so that D + il is

invertible and ß is regular. In particular, if Sß is definite, then B must also be

definite, i.e., invertible.

(d) Finally, suppose t = t, + ¡t2 is symmetric, and t2 is nondegenerate. We

solve t = B(D + il)'x for fi, D, obtaining D = -t2-1t„ fi = -t1t2~1t, — t2. Using

A = -D and CB + D2 = I (which follows from ß G Sp(«, R) n sp(/i, fi)), we

find ^, C: /I = t,t2"', C = -r2\ Thus (1.25) implies that ß has the form (1.24).

Now, one calculates directly that the matrix given by (1.24) is indeed in B.

2. Relations with the orbit theory. Since B = Sp(«, fi) n Sf(«, R), and êp(n, R)

= êp(n, fi)* in a natural way, we may identify each Bq with a coadjoint orbit. In

this section we shall show that the complex structure Bq inherits from G(2n, n) is a

polarization, and the determinant bundle Lq of the tautological bundle of G(2n, n)

restricted to Bq provides a quantization, i.e., it has an Sp(«, R)-invariant hermitian

metric whose curvature is the symplectic form of B as coadjoint orbit.

Let V = B X R2n. Sp(«, R) acts on V by the product action. We shall show by

direct calculation that V has the structure of a homogeneous holomorphic vector

bundle over B. Since V is a product space, its tangent bundle T(V) has the

canonical splitting T(V) = T(B) © R2n. Let Hl0(B) be the subbundle of T(B)C of

holomorphic tangent vectors (the + /' eigenspace of the complex structure inherited

from G(2n, n)). Then we take the (1, 0)-space on B to be

Hl-°(V\ß,v) = Hl-°(B)®Vi(ß).

Since T(V)C = HX\V)® HU0(V), this defines an almost complex structure

which is obviously Sp(«, fi)-invariant (g- Vt(ß) - V¡(g- ß)). This structure is

integrable.
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2.1. Proposition. V^> B has the structure of a homogeneous holomorphic vector

bundle over B. The restriction Vq= V\Bq can be described as

K9 = Sp(«,fi)xp(M)C,

where p(p, q): U(p, q) -» GL(«, Ç) is the standard representation

Proof. Let ß0 G B, and let U be a coordinate neighborhood of ß0 with complex

coordinates z„ . . . , zN (N = n(n + l)/2). Write fi2" = K, © F2 so that F,(ß0) is

complementary to K2C (as in the preceding section, this splitting provides a

coordinatization of a neighborhood U of V¡( ß0) by L( K2C, Vxc)). Let /„...,/„ be a

basis for V2', and define over £/:

|y( ß, o) = //o) - ilj( ßv),        1 < / <n. (2.2)

Then z,, . . . , z^, £,,..., 4, have differentials vanishing on //ai(F), so give a

coordinatization of V\U. By (2.2) the change of coordinates on the fiber is complex

linear, so this makes V a homogeneous holomorphic vector bundle over B.

As for the last statement, we have seen that U(p, q) is the isotropy of '/ . It is

easily verified that U(p, q) acts on the fiber over 'Jq via the standard representation

of U(p, q) on C".

2.3. Remark. Letting 'Y -» G(2n, n) be the "tautological bundle", it is clear that

V, as holomorphic Sp(«, R)-homogeneous vector bundle, is just Tlfi. We wanted

to exhibit the local coordinates explicitly.

Now, fix q and consider Vq —> Bq. The form Hß = Jß + U defines a nondegen-

erate hermitian form on the fibers of V which is Sp(«, R )-covariant. Then

Lq = AnVq —> Bq is a homogeneous hermitian line bundle over Bq with metric

(-l)qA"H. We show directly that this bundle gives the quantization and polariza-

tion associated to Bq as coadjoint orbit.

First, let us identify the complex structure on Bq in Lie algebra terms. What we

mean is this. The set of symmetric matrices

Sq = {A + iY, X, Y are real, Y has signature (p, q)}

is an open dense subset of Bq, and Sp(«, R ) acts on Sq by

(c d) ,

t   ->   (At + B)(Ct + D)~\

In this coordinatization U(p, q) is the isotropy group if ilpq. We can identify

TiIn(Bq) = sp(n, R/u(p, q)), (2.4)

and by the Sp(«, R )-homogeneity we can fully describe the complex structure by

identifying multiplication by /' in the realization (2.4).

2.5. Proposition. Multiplication by i on T¡¡ (B) is given, via the realization (2.4),

by ad / |2.

Proof. Let X = (Ac *) G ê!p(n, R), and consider the curve y(t) = exp tX ° (Hpq)-

We compute up to first order:
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y(t)=[(I + tA)(Hpq) + tB][tC(Upq) + I + tD]~l + o(t)

= [(/ + tA)(Hpq) + tB][l - tC(Upq) - tD] + o(t)

= ilpq + t(B + lpqCIpq + i(Alpq - IpqD)) + o(t).

Thus the differential of it: Sp(n, R) —> Bq at e is

d-rre(X) = (B + IpqCIpq) + i(Alpq - IpqD). (2.6)

Now we compute ad Jq:

IpqC + BIpq -AIpq + IpqD
r j     y-\  _ I      PI PI —Pi Pi

1  ''     J      \-V + ^      - (lpqD + CIpq) t

Putting this in (2.6) we readily compute

¿77e(ad JqX) = 2idiTe(x),

so multiplication by i is given by ad \Jq.

Now that we have this fact, we shall go through the Kostant machinery [9] to

verify our claims on Bq.

Since Sp(«, R) is simple its Lie algebra is naturally self-dual, the duality being

givenby<A-, y> = tr'Ay.

Now Bq is the orbit of 'Jq under the adjoint action of Sp(n, R) on §p(/i, R).

Moving to §p(«, R)* via the given duality, we identify Bq as the coadjoint orbit of

the functional/0: f0(X) = tr JqX. Let b+ be the union of the 0 and + i eigenspaces

of ad \jq. Then b+ defines the complex structure on Bq so must be a Lie algebra.

2.7. Proposition, b+ is a polarization at f0.

Proof. To show b+ is a polarization, we need only show that it is isotropic for

the symmetric form

Sl(X, Y)=f0([X, Y]) = tr/,[A, Y]. (2.8)

That amounts to showing

ß(ad \jq ■ X, Y) + ü(X, ad \jq • Y) = 0. (2.9)

But, by the Jacobi identity

[[!/,, A"], Y] +[A, [\jq, Y]] =[i/,, [A", Y]}. (2.10)

Since \jq is in the Lie algebra of the isotropy group at/0, Sl(\Jq, Z) = 0 for all Z,

so the right-hand side of (2.10) vanishes, verifying (2.9).

2.11. Remark. In the next, section we shall see that b + , fj+ are the only complex

polarizations at/0.

Now, according to the orbit theory, /0 is a character on its isotropy algebra

u(p, q), and if e2ir'^° defines a character on U(p, q), that character determines a

holomorphic hermitian line bundle on Bq with ñ as the curvature of the holomor-

phic connection. Indeed e2m^° must be a power of the determinant and since

/0(79) = tr/?'/9 = tr/=«
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and '/ = c\p((m/2)'Jq) is multiplication by i on V,j, that power is one. Thus, the

line bundle predicted by the orbit theory is just that introduced previously:

L -> B .

Finally, we compute explicitly the curvature Í2. To do this, as well as the

computations in the next section, we need the following explicit description of the

Lie algebra of Sp(«, R).

Throughout this discussion ;' will appear both as an index and as V^T . We are

certain there will be no confusion. EtJ is the matrix with a 1 in the (i,j)\h entry; all

other entries are 0. Note E¡jEk¡ = 8jkEa. u(n) = {A G gl(/i, Q; 'X + X = 0} has

the basis

//,«/£«,        U0 = E0-Eß,        V„ = i(E„ + Eß)       (i<j).

0,        / ¥=j or k,

[H¡} UA] - ■ VA,       i=j, [HpVjt]-
-Vjk,       i=k,

Hx, . . . , Hn span the Cartan subalgebra t. The root spaces determined by t are

spanned by the

z* = Uß - iVjk,       Zjk = UJk + iVjk       (j < k)

with the corresponding roots

\J* = ¡(H - hk)XJk = -i(hJ - hk) (2.12)

where h\ . . . , h" span t* and are dual to the basis //,, ...,//„ of t. We will need

[ Zy, Zkl] = 4/(//,. - Hj),       i = k,j = /, (2.13)

and otherwise is 0 or another root vector.

Now

§£(«, R) = {A" G gl(2/i, R); 'XJ + JX = 0}.

The given basis of u(n) appears in âp(/i, R) as

0,       i fkj or k,

-Vjk,       '"/'.

Ifc,       Í = *,

//-í°     M      u-íE^Ejl       °

[        0 * + fi,\

The rest of êp(n, R) is spanned by these subalgebras:

3Q, = {(J     _°a); A upper triangular},        3C, = {(J    J); 'A = *}.

Since 'èp(n, R) = êp(n, fi) we can replace the subalgebras OQ,, %x by the following

subspaces which makes computations easier:

*H(S -°> = 4   *H(°  »?.-*);
Note: [%¡, %[] c u(«), and is not an algebra. Either OC^, or Di^ together with the

{ Ug) span the same space. The rest of our basis of êp(n, R) consists of the vectors
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*-c :•)• *-(*:* *:n -«•Jy       -"-yi

Now

[//,^]=2S,//,,        [//,,//,] =-2ô,Ç,,

Thus the noncompact root vectors are the

W0 = G0-iH0,        Wy-Gy + iHy       (i<J)

with corresponding roots

lLiJ = i(h'+ hJ),       jliJ =-i(h'+ hJ). (2.14)

Finally,

[ W¥ Wu] = "4'(^ + «/)>       ' = kj = /, (2.15)

and otherwise is 0 or another root vector.

Since b+ is ad f-invariant, it is a sum of root spaces. Let us calculate which roots

vectors are in b +. We compute the 0, ±2/ eigenspaces of ad / .

Jq - 2 fit - 2 M,.
i<p        i>p

= 2 >(& - sik)zJk - 2 «(*« - 8*)z*
i<p i>p

0,       j <k < p orp <j < k,

. ,z,*>       j < p <k.

Thus the Zy/t are in b+ if/ < p < k, the corresponding Zy¿ are in rj + , and all other

compact root vectors are isotropic (in u(p, q)).

= 2 K "5*] - 2 [*s *fc]< < p < >p

í<j. »p
2iWjk,     j <k<P,

~2iwjk,    p <j < k,

0, j < p <k.

Thus the If^. are in b+ ifj < k < p, Wjk G b+ \î p <j < k; their conjugates are in

£) + , and all other noncompact roots are isotropic. Now/0 = -2(</, h' + 2,>/? «',

and the curvature form at/0 is given by/0([A, Y]) for X, Y G fj+ mod u(^, <?). We
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have provided previously a root vector basis for b+ mod u(p, q) such that

f0([X, Y]) = 0 unless X = Y; i.e., this basis diagonalizes the curvature form. We

compute the eigenvalues directly:

/0([z,,,Z,,]) = -8,-

fo([wjk,Wjk]) = %i

/o(|>,*. *k]) = 8i'

(j <P< k);

U < k < p);

(p <j < k).

(2.16)

In summary, we have

2.17. Theorem. 772e curvature form of the hermitian line bundle A"K—» Bq has pq

negative eigenvalues, and all the rest are positive. The negative eigenvalues occur only

in the compact directions.

3. Uniqueness of the complex structure. The object of this section is to show that

b + and t)+ are the only proper complex Lie subalgebras of êp(n, R)c containing

u(p, q). It follows that these are the unique polarizations at/0, and, in particular,

that the complex structure of Bq described in §1, and its conjugate, are the only

Sp(«, fi)-invariant complex structures on Sp(«, R)/ U(p, q).

3.1. Theorem. Let b be a complex Lie subalgebra of êp(n, C) which contains

u(p, q). There are only four possibilities: u(p, q)c, b +, rj + , §p(/i, C).

Proof. Since b contains the Cartan algebra t, b must be a sum of root spaces. Let

A be the set of roots corresponding to root vectors in fj, but not in u(p, q)c, and let

A+ be the corresponding set of roots for b +. We will show that if A n A+ is

nonempty, then A d A+. A similar argument will show that A n A+ ¥= 0 implies

A D A+, and that will conclude the proof.

We introduce the following notation:

A/ = {XJk;j<k<p},

Kc = lVk;j<P<k],

A; = {\*;p<j<k},

^ = {liJk;j<P<k),

Kq = {^Jk;p<j<k}.

Similarly we define A~, A~, etc., using the negative roots. Thus A+ = A^. u Aí, u

A^, and A* u A* U A¿ correspond to root vectors in u(p, q). Since b is a Lie

algebra, we have: if a G A and ß G A or corresponds to a root vector in u(p, a),

and a + ß is a root, then a + ß G A. We shall need the following root computa-

tions:

\u + X« = J

\,J + X" =

X",       j = r,

\\       i = s, (0
not a root otherwise,

Xsj,        i = r,

X",       j = s, (2)

not a root otherwise,
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\« + nrs =

\v + ¡i" =

XiJ + nrs =

f* >      J - r,

i".'r,      j = s,

not a root otherwise,

■js
My / = r,

i = 5,

not a root otherwise,

/ = s,

not a root otherwise,

fi'J + fi" is never a root (p+ is abelian)

HiJ + ¡lrs =

A",

A7>,

y - s,

j = r,

i = s,

(3)

(4)

(5)

(6)

(7)

' = r,

not a root otherwise.

(We use the convention that (2.12), (2.14) define X'J, fi° for all indices i,j. We also

note for further use that if the sum of two roots is a root, the corresponding root

vector is the bracket of the original root vectors.) We now return to the proof of

Theorem 3.1.

(i) Suppose X'-' G A for some i < p <j. Then

(a) \rJ = X" + Xo G A, r < p, Xrs = XrJ + Xjs G A, r < p < s. Thus A D A+.

(b) Let/ < k < p. Take s >p: ¡iJk = njs + X1" G A. Thus A d A+.

(c) Let/? <j < k. Take s < p: yJk = jisk + Xsj G A. Thus A D A+.

We conclude that if A contains any X'J, i < p <j, then A D A+.

(ii) Suppose n'k G A, /' < k < p. Let /' >/>, XiJ = ¿i'* + /x*y G A. Thus again

Ad A+.

(iii) Suppose fiJk G A, p <j < k. Let / < p. X'j = \i'k + fiJk G A, so once again

A d A + . The theorem is proved.

3.2. Remark. Part (i)(a) alone proves that U(n)/ U(p) X U(q) has precisely two

distinct invariant complex structures. In the same way, replacing X'-' by ju'-', we can

prove that U(p, q)/ U(p) X U(q) also has only two distinct invariant structures.

3.3. Remark. More generally, suppose that G0 is any subgroup of Sp(«, R)

containing the compact Cartan algebra. An invariant complex structure

Sp(n, R)/G0 is determined by a Lie subalgebra b of äp(n, Q such that b + ij =

3p(n, C), b n rj = g£. Since b d t, b is ad ¿-invariant, so must be a sum of root

spaces. Thus we conclude that Sp(«, R)/G0 has at most finitely many invariant

complex structures. In particular, for G0 = U(p) X U(q) we find eight possibilities:

Either b or i) corresponds to any of the following four rootsets:

A+ u A+ u A+ u A*.;        A+ u A"

Since the computation is not particularly enlightening, we suppress it.

UA^U A„9.
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4. Pseudoconvexity of Bq. We return now to the C-vector bundle V —» Bq whose

fibers Vß, ß G Bq are «-dimensional vector spaces endowed with a nondegenerate

hermitian form Hß = Jß + U. Let Vß = V'ß © V[¡ so that Hß\ K' » 0 and Hß\ V¡¡

<r 0. If we replace the complex structure on Vß by its conjugate, then the

corresponding V'ß ffi V'ß = Vß,, with ß' G fi0. This "correspondence" between

splittings of Vß and points in B0 was exploited by Matsushima in [10]; we shall

discuss the relationship of our work with that article in the next section. In this

section we shall explore the geometry of this correspondence, realizing it as a

generalization of the "Penrose correspondence" as described by Wells in [16].

Much of our techniques are motivated by, and depend upon the work of, Griffiths

and Schmid [5].

4.1. Theorem. Bq is a strongly pq-convex domain. In fact, there is a smooth

real-valued function <#> defined on £ such that -ln|<f>| is a pq-convex exhaustion

function for each Bq.

Proof. As we have seen in §2, mXß = (-\)q A"Hß is a metric on Lq = A"Vß —> Bq

with curvature /33(-ln m,) = ß as described in (2.16).

Now, fix a metric E on C2". Then every Vß, ß G £ inherits a positive-definite

metric and the bundle V —> Bq becomes a (nonhomogeneous) hermitian vector

bundle. Taking A", Lq —> Bq becomes a hermitian vector bundle in a new way, with

metric m2. As such Lq -> Bq is the restriction of AT—> (7(2«, «) to Bq, where T is

the tautological bundle. Since AT is negative over G(2«, n) (see, e.g. [5]) this

metric has negative definite curvature fi2 = z'99(-/««j2). The quotient <j> = m¡m2]

is thus a well-defined function on Bq and its Hessian %(<t>q) = /'99(-ln <j>q) = fl —

fi2 has at most pq nonpositive eigenvalues. We now show that -In </> is an

exhaustion function by computing it another way.

For ß G £, let 4>(ß) be the product of the eigenvalues of Hß relative to the fixed

metric E\Vß. Now, by Proposition 1.9 (any ß G £ is allowable, by continuity),

Hß(v, w) = (i/2)'wJv. Since Vß is Lagrangian, we have Hß(v, w) = 0 for all v G Vß

if and only if w G Vß. Thus Hß is singular if and only if Vß n Vß ¥= {0}, i.e.,

precisely when ß G fi. Thus £ - B = { ß; <f>( ß) = 0}, so for each q, -ln|<f>| is an

exhaustion function for Bq. Now, if we trivialize the bundle V (locally) on Bq, Hß

and E\Vß are represented by hermitian matrices and <t>(ß) is the product of the

eigenvalues of the transformation Hß defined by Hß(v, w) = E(HßV, w). That is, as

matrices, Hß = E~xHß and

|<K ß)\ =|det H°p\ = (-1)' det /ydet £)"' = mxm2x = $q(ß).

We shall see later (in Proposition 4.12) that -ln|</>| has a positive semidefinite

Hessian: the pq nonpositive eigenvalues are actually zero.

Examples. (1) « = 1. Let / = (°_t ¿) and let C2 be endowed with the Euclidean

metric ||o||2 = |u,|2 + |«2|2. All one-dimensional subspaces of C2 are /-isotropic, so

£ is all of P1. Fix v = (t>,, v2) ¥= (0, 0), and consider the hermitian form

H(v, w) =\i'wJv restricted to Co:
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H(Xv, Xv) = -|/XA(ü,Ü2 — v\v2) ~H    Im(cü2)-

so

¡m2-mw2+\°?ft>

<HC„) = 7
Imo,t;2 Imz

|ü,|   + lü-,1        1 +|z|

using the inhomogeneous coordinate z = vx/v2. Identifying Pl with the sphere in

R3, <j> is just the cosine of the polar angle.

(2) « = 2. For ease in computation we take / = (/ q')- Let e¡, 1 < / < 4 be the

standard basis for C4, and {e1} the dual basis. The two form (o,w)-»Wo

associated to / is

« = el Ae3 + e2 f\eA. (4.2)

This is the Kahler form associated to the hermitian form (v, w) -» i'wJv, given by

ß = /(<?' A ê3 - e3 A ë1 + e2 A ê4 - e4 A ë2). (4.3)

G(4, 2) is the subvariety of P(A2C) defined by v A v = 0 (t> G A2C*). In

coordinates

A2C*= _
{   2   •%}l 1< i </ < 4 J

(fy = e, A ^); the defining equation becomes

„12^34 _  vnv7A + VIAV23 = Q (4 4)

Now v G A2C* represents a Lagrangian 2-plane if and only if <w, t>> = 0, which in

coordinates is the linear space given by the equation

ü13 + v2* = 0. (4.5)

Thus

£ = {o G P(A2C4); (4.4) and (4.5) hold}

can be realized as a hypersurface in P4 with coordinates [x0, . . . , x4] via the

substitution

x0=vl3=-v24,        xx = o12,        x2 = u34,        x3 = o14,        x4 = u23.

Then

£ = {x G P4; x2 + xxx2 + x3x4 = 0}. (4.6)

Now, we compute the metric. For ß G £ with coordinates v G A2C*, the metric

induced by (4.3) on A2Vß (with coordinate o A o) is given by the linear form

ß A ß = e13 A ë13 + e24 A ë24 + en A ¿?34 + e34 A ë12 + e14 A ë23 + e23 A ¿?14.

In {t>}-coordinates the formula is

|o13|2 +|o24|2 + ü,2c34 + tJ'V4 + o14ô23 + tJ'V3,
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or in the coordinates of (4.6), 2(|x0|2 + Re(x,x2 + x3x4)). Thus, in these coordi-

nates

= |x0|2 + Re(x,x2 + x3x4)

2|jc,|2 v ' '

up to a constant.

Now, by Theorem 4.1, Bq is a /^-complete manifold in the terminology of

Andreotti-Grauert [1], and Andreotti-Norguet [2]. In general, in a (^-complete

manifold every compact analytic cycle has dimension at most Q. We now want to

describe the geometry of a family of compact linear subspaces of Bq of dimension

pq.

Let G(2n,n,p) be the manifold of pairs (V, W) of subspaces of C2" with

V D W, dim V = n, dim W = p. Let tt: G(2n, n,p) -» G(2«, «) be the projection

onto the first factor. For s = 0 or q, let

Eps = {{V, W) G G(2n, n,p); V G Bs, Hv\ W » 0}.

Eps is an open subset of w~1(fiJ), and thus is a complex manifold. We shall let

tt, = 7r| Eps. We restrict to s = 0 or q for only in those cases is Hv\ W definite, so

long as W is complementary to W.

4.8. Theorem, (i) Sp(«, R) acts on E   by holomorphic transformations.

(ii) Eps = Sp(«, R)/U(p) X U(q) as Sp(n, R)-spaces.

(iii) The complex structure on Eps is given by taking as holomorphic vectors the sum

of the root spaces corresponding to the roots

\s =¿:uA:u A+n_s) U Am        (s = 0 or q). (4.9)

Proof, (i) is obvious. We now show that Sp(«, R) acts transitively on Eps. Let

(V0, W0), (V, W) G Eps. Since Sp(«, Ä) acts transitively on Bq, we may assume

V = V0. Then W0, W are two subspaces of V on which Hv is positive definite. For

A a subspace of V, let X = {w G V; Hv(u, x) = 0 for all x G A). Then W\ W¿

are complementary to W, IV0 respectively, and since s = 0 or q, Hv is definite on

these spaces. A linear transformation taking orthonormal bases of WQ, W^ to W,

W1- respectively is unitary with respect to Hv, so in particular is in Sp(«, R). Thus

( V, W0), ( V, W) are in the same Sp(n, fi)-orbit.

Suppose g G Sp(«, R) fixes (V, W), where V corresponds to 'Jq, and W is the

span of the first p basis vectors. Then, necessarily, g G U(p, q). But g fixes both W

and W x, and is unitary on each of these spaces, so g G U(p) X U(q). Thus (ii) is

proved.

(iii) Let s = 0. Since tt0: Ep0 —> B0 is holomorphic, (4.9) is right as far as the

noncompact roots are concerned. For  V G B0, 170-1(F) is G(V,p), the set of

^-dimensional subspaces of V. For V0 corresponding to '/, G( V0, p) — U(n)/ U(p)

X U(q), and the holomorphic structure is given by the root spaces corresponding

to A^. Thus (4.9) is proved for í = 0.
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Now take s = q. Since irq: Epq -» Bq is holomorphic, Apq must contain A* u A^,

U A^. As before, since the fiber is holomorphically embedded, and is biholomor-

phic to {W c V; dim W = p, Hv\ W » 0} = U(p, q)/ U(p) X U(q) with holo-

morphic structure corresponding to A+, we have A^ D A^.. Theorem 4.8 is proved.

Because of (ii) we may think of Ep0 and Epq as the same Sp(«, R )-homogeneous

space with two different complex structures. Because of (4.9) these complex

structures coincide along with fibers of both mq and w0. Thus mq and tr0 are

holomorphic along the fibers of tt0 and -nq respectively.

This can be seen directly as follows. Let t: Ep0^> Epq be the Sp(«, fi)-covariant

correspondence given by the identifications (ii). t can be described this way: for

(V,W)<E Epo, t(V,W) = (W®Wjl,W). Now, the fiber of <rr0 through (V, W) is

G(V,p). The map W'-» W1- of G(V,/>)—» G(V, q) is antiholomorphic. The map

G(V, q) -» G(2«, q): X -» X is also antiholomorphic. Thus the correspondence t is

the sum of a holomorphic map and the composition of two antiholomorphic maps,

so is holomorphic.

We now have the following picture:

T

Epq -* Ep0

\irq lir0

Bq B0

The fibers of tr0 are biholomorphic to G(n, p) s {/(«)/ U(p) X U(q), and the fibers

of TTq are biholomorphic to the bounded symmetric domain U(p, q)/ U(p) X U(q).

t is not holomorphic, but is holomorphic on the fibers of it and tt0. For p G B0,

77?|tw0~'(/>) is proper and holomorphic (in fact, biholomorphic) and carries ttt0~1(p)

onto a linear subvariety of Bq of dimension pq. In this way B0 parametrizes a

collection of subvarieties of Bq which are positively embedded, as we shall now

show.

4.10. Proposition. The varieties trqrtTQl(p) for p G B0 have positive normal

bundle in B' .

Proof. Because of the homogeneity, we need only check this for one variety, the

most convenient being K = 7TqTTrQ '('/). The embedding of K in Bq is given by the

commutative diagram

U(n) -4 Sp(«, R)

i i (4.11)

K = U(n)/ U(p) X U(q)     -^     Sp(«, R)/ U(p, q) = Bq

(since Í7(«) n U(p, q) = U(p) X U(q)). At the point '/, G Bq corresponding to the

identity we have already computed at the end of §2, the holomorphic tangent space

b+ = U0© vp + vq where

U0 = span of [ZJk;j < p < k],

vp = span of { Wjk;j < k < p),       vq = span of { WJk;p <j < k).

Now all the vectors in Uq are in lt(«)c, so are tangent to K; in fact they span the
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holomorphic tangent space to K. Thus the normal bundle sequence of the embed-

ding (4.5) is given by the vector bundle sequence associated to

as U(p) X ¿/(^-modules. That is, the normal bundle to K is the bundle on

U(n)/U(p) X U(q) associated to the adjoint representation (in Sp(«, R)) of U(p)

X U(q) on vp © vq. We identify that representation by looking at it infinitesimally:

the adjoint action of U(p) © ll(^) or v © vq where

\X(p) = span of [HjJ < p; ZJk, ZJk,j <k < p),

U(q) = span of [HjJ >p; Zjk, Zjk,p <j < k).

Using the root conjugation of Theorem 3.1, we see that for r = p or q, VL(r) acts

trivially on vn_r so our representation is a direct sum pp © pq, where pr is the

adjoint action of U(r) on vr.

Now, by (2.14) each Wjk G v spans an eigenspace of pp\t with weight ¡iu =

/(«' + hj). The representation p(2) of U(p) on the space of Sp(2) of symmetric/? X p

matrices given by p(2)(g)(S) ='gSg has the differential dp(2)(X)(S) ='XS + SX,

and a direct computation shows that p(2) has the same decomposition by weights as

pp. Thus pp and p(2) are unitarily equivalent. We conclude that v is the bundle on

U(n)/ U(p) X U(q) = G(n, p) associated to the representation of U(p) on the

space S2(C) of homogeneous functions of degree 2. Thus v is S2(Tp*), where Tp is

the tautological bundle of/J-planes on G(n,p). Similarly vq is 52(7J), where T is

the tautological bundle of ^-planes on G(n, q) (= G(n,p)). Since Tf, T¡¡ are

positive, so is v © vq.

Now H°(K, vp) includes S2(C), the space of quadratic homogeneous polynomi-

als on C; since the representation of U(n) on H°(K, vp) is irreducible, these spaces

coincide. Thus dim H°(K, vp) =\n(n + 1) = dim H°(K, vq). Since higher

cohomology of these bundles vanishes (again by the Borel-Weil theorem), the

theorem of Kodaira [8] applies: H°(K, vp © vq) is the tangent space at K to the

manifold M of all deformations of the embedding K —> Bq. Note that M is of

dimension «(« + 1), which is exactly twice the dimension of B0, which parame-

trizes some deformations of Bq. In fact, it is easily checked that a direction

(Vp, Vq) G H°(K, vp © vq) corresponds to a tangent to B0 if and only if Vq = Vp;

then B0 is a totally real submanifold of M.

Finally, we compute that the exhaustion function of Theorem 4.1 is actually

semidefinite.

4.12. Proposition. On Bq, —ln|<^>| has a positive semidefinite Hessian with pq zero

eigenvalues, and all the rest positive.

Proof. Let C2" = V. © V, and choose the metric E of Theorem 4.1 so that the

standard basis of C2" is orthonormal. As in Proposition 4.10, let K be the

t/(«)-orbit of ß0='Jq\ also K = TrqTTrQ '('/). We shall compute the Hessian of

-lnfol at ß0.
Let Vt = Vx © V2, where V\ is the span of the first basis vectors and V2 is the
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span of the last q basis vectors. Then V.j = K, © V2, and in terms of the given

basis

Let g G U(n), ß = g'Jq. Then g takes Vj into a space ^' and the standard basis into

bases for the vector spaces VJ, VJ. Since g is unitary, these transformed bases

remain orthonormal for E, and by the prior description of the correspondence t we

have Hß also given by (4.13) in terms of the transformed basis. Then det Hß =

±1, so <t>(ß) — <f>(ß0) = 1- Since <f> is constant along K, its Hessian vanishes on its

tangent space U0 at ß0.

Now, in §2 we computed the curvature ß of w, at the tangent space to Bq at ß0.

We note that the basis of root vectors diagonalizes ß. The discussion of [5, §4]

applies to £ as a Kahler C-space, so that (4.4)^. [5, p. 269] holds for the curvature

ß2 of the bundle AT—> £. Here the ea are the same root vectors, u" then duals,

and 77 is the representation of Sp(«, C) defining AT. Since 77 is a character it

vanishes except on the Cartan algebra, so in (4.4)^., the coefficient of wa A w^

vanishes unless a = ß (see e.g. (4.24)^-). Then the root vectors diagonalize both ß

and ß2, so also diagonalize ß - ß2 which is the Hessian of -ln|<i>|. Thus v © vq and

U0 are both sums of eigenspaces of the Hessian of -ln|<>|, which is positive definite

on the first space, and identically zero on the second. Thus it is semidefinite.

5. Relations with complex tori. Fix a hermitian metric E on C. For ß G fi, let Hß

represent the hermitian form on C determined by ß: Hß = Jß + U on (R2n, ß).

We consider C as a hermitian manifold with hermitian metric

Hß = e-»^E(dz,dz).

We consider the square-integrable Dolbeault cohomology groups on C. Let ßr

be the collection of smooth global /--forms on C, and 9: ßr —>ßr+1 the Dolbeault

resolution. Let £r be the L2-closure of ßr and consider 9: £r —» £r+l as a densely

defined closed operator. Let Sßm. £r+1 —> £r be the adjoint of 3. Then the cohomol-

ogy group is defined by

Hrß = (ker 9: £' -» £r+1)/closure 9£r->).

Since any two metrics on C are comparable, Hrß is independent of the chosen

metric E. The following lemma is easy to prove as in Hörmander [7], since we are

on Euclidean space.
_

5.1. Lemma, (i) 9E'"1 is closed in £r.
(ii) Hrß ̂  {(p G £'; 9(p = 0, 8ß<p = 0}.

(i) implies (ii) as a standard Hubert space fact. Now, in Rossi-Vergne [12, §3], the

right-hand side of (ii) is explicitly identified.
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5.2. Theorem. Let ß G B . There is a complex analytic change of coordinates

z —» u so that

E = 2 du, ® du,,       Hß = 2 tf dui ® dü¡ - 2 ft2 ¿", ® ¿"í>

wíí/i n, > 0, 1 < /' < «.

(ii) For O,  =  ji,«,, ..'.,©,-  i^Mp, C+i  =  ÍV+l"p+l' • • • ' V"  = l^Un' WÉ AöOC

{<p; 9<p = 0, 8ß<p = 0} =    /(o)exp - I -    ¿    |o,|2W+. A • • • A¿«„;

f is holomorphic and

-||il2exp(-2jo,.|j¿F<«>   .i,2 _

( Mi• • • iO2

The coordinate change just described is any set of orthonormal coordinates

diagonalizing H relative to E. As ß varies in B we can (locally) make this

coordinate change vary holomorphically in ß. Thus

5.3. Theorem. %q = Uß<=B Hj¡ -* Bq can be made into a holomorphic fiber with

Hubert space fibers. Sp(«, R) acts on %q, but not unitarily.

Actually, for q = 0 or n, we may redefine the Hubert space structure by taking

E = Hß so that Sp(«, R) does act unitarily.

We now make use of our geometric picture

T

Epq     «■      Ep0

[trq |tt0

Bq B0

to better understand the bundle %q. Let p G Tr~l(ß), and let ß' = tt0t(p). We

consider Theorem 5.2 where E is taken as the metric Hß,. Then if p = ( V, W), we

have realized %% as the spaces of square-integrable functions holomorphic on W,

and conjugate holomorphic onW1-, i.e., precisely as 9C£.. We may state this as

5.4. Theorem, (i) We may change the norm on the fibers of tt*"0 so that Sp(«, R)

acts unitarily and holomorphically on this fiber bundle over E  .

(ii) t  induces a natural Sp(«, R)-covariant (nonholomorphic) isomorphism 4> :

TT*%«  S **<%?.

Proof. For/; = (V, W) G Epq, take the metric E to be Hno<p). Then in Theorem

5.2, the ju, = 1, 1 < z < « for w,, . . . , uq any orthonormal basis of W, uq+l, . . . ,un

any orthonormal basis of IVa-. <bq is just the identification expressed in Theorem

5.2.

In particular, restricting to the fibers of 77^, $9 is an isomorphism on those fibers

and  TT*(%q)  is  a  trivial  bundle.   For  ß G Bq,  let  M(ß) = 770tt7~'(/?)•  Then
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cK?\M(ß) —> M(ß) is a holomorphic Hubert space bundle on the complex mani-

fold M(ß) (biholomorphic to the hermitian symmetric space U(p, q)/ U(p) X

U(q)), and $q induces isomorphisms of %% with the fibers of 3(P|A/(ß) varying

smoothly along M(ß). This is, in the context of complex tori, exactly the situation

discovered by Matsushima in [10]. Now we briefly indicate the relation of our work

with that of Matsushima. Our exposition relies heavily on that of Tolimieri [15].

Let TV be the (2« + l)-dimensional Heisenberg group: topologically N = R2n X

R with the group law

(£ s)(V, t) = (£ + r,, s + t + | VI).

As Tolimieri has shown, B can be identified as the set of automorphisms ß of N,

leaving the center Z pointwise fixed, such that ß2 = -/. These he called CR-struc-

tureson N, which they are in the following sense. Let z = (z,,..., z„) be complex

coordinates on (R2n, ß). N acts as a group of holomorphic transformations on

C'xCas follows:

(z, w) (1? (z + I w + s + | Hß(z, 0 + Hp(Í, 0). (5.5)

N is diffeomorphic to the orbit

2^: {(z,w);\mw={Hß(z,z)}

which is a real hypersurface in C+1, and as such inherits an AMnvariant CR-struc-

ture. This CR-structure is determined by a Lie subalgebra bß of nc such that

Ö/3 n f)0 = {0}, and here bß is given by the -i eigenspace of the automorphism ß.

Now let N° be the Heisenberg group with compact center: N° = N/{(0, n); n

an integer}. Replacing N by N° and w by e2mw, we realize A70 as the hypersurface

2° = {(z, w); |w|2 = <?-"*<'•*>}. (5.6)

We shall consider (5.6) as the unit circle bundle of a hermitian line bundle

Lß -> C. We can describe this in terms of the orbit theory (cf. Tolimieri).

5.7. Theorem. Let 0, be the coadjoint orbit of (0, 1) G «*. Then for ß G B, hß

defines a complex polarization at (0, 1), realizing 0, as C. Lß —> C" is the line bundle

of Kostant providing the quantization. B parametrizes all complex polarizations at

(0, 1).

Now let A be the lattice of integral points in R2". We can identify A with a

closed subgroup A0 of N°: A0 = {(«, 0); « G A}. Then N°/A°-+R2n/A is a circle

bundle over a torus. Each ß G fi realizes N0 as a circle bundle in a complex line

bundle over C"; this structure is A°-invariant, so descends to A0/A0 -> fi2"/A. Let

Tß represent the complex torus (R2n/A, ß), and Lß —> Tß the hermitian line bundle

defined by descending (5.6) mod A0. Let 2^ represent the unit circle bundle in Lß.

We shall call the pair (Lß, Tß) a polarized complex torus (if ß G B0, this is precisely

a polarized abelian variety, and B0 parametrizes the space of polarized abelian

varieties).
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5.8. Theorem. Let ß G fi0. Let H2(2.ß) be the space of square-integrable CR-func-

tions on 2^, and H2(S.ß) the same on 2^. 77ie«

*(f)(z,w)=   2 f(T(nfi)(z,w)) (5.9)
neA°

defines a continuous map of H2(J2?ß) onto H2(2.ß). Any f G H2(Z.ß) has a Taylor

series expansion

A¿, w)- 2 /"^V",
where /(n) G H°ß (recall Theorem 5.2). The map (5.9) induces continuous surjective

maps

H°nß^H\Tß,Lß").

Finally, we state the result of Matsushima. For ß G Bq, we have Hr(Tß, Lßx) =

0, r =7¿= q and H°(Tß, Lßx) ¥= 0 (this is originally a theorem of Mumford).

Matsushima gives an analytic proof along the lines of [12] which takes place on the

torus Tß. For each p G iTqx(ß), there is an isomorphism <j>p: Hq(Tß, Lßx) with

jr7°(7^oT(/)), L~J(p)) varying smoothly with p. Thus, we associate to ß G Bq the

vector bundle

U      H\Tß„Lß-.x)^M(ß).
ß'eM(ß)

Combining our work with Matsushima's we may generalize Theorem 5.8 to all

Br

5.10. Theorem. Let ß G Bq. Let Hq(2,°ß) be the space of square-integrable CR-

cohomology in degree q on 2», and ß2(2«) the same on 2ß. Then

*(»).- 2 nw (5.11)
«EA»

defines a continuous map of H2(1.ß) onto H2(2ß). If we expand <p in a Taylor series

along the fiber coordinate this specializes to continuous surjections OC*^ —»

H"(Tß, Lß-).
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