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ROBINSON'S CONSISTENCY THEOREM IN

SOFT MODEL THEORY

BY

DANIELE MUNDICI

Abstract. In a soft model-theoretical context, we investigate the properties of

logics satisfying the Robinson consistency theorem; the latter is for many purposes

the same as the Craig interpolation theorem together with compactness. Applica-

tions are given to H. Friedman's third and fourth problem.

Introduction. No extension of first order logic is known which is axiomatizable

and/or countably compact, and has some kind of interpolation or definability

property such as the Robinson consistency theorem or the Craig interpolation

theorem. For the case L > L(QX) (where Qx is the quantifier "there exist uncounta-

bly many"), by a result in [Hu] we have, on one hand, failure of Craig interpolation

in AL((?i) and, on the other hand, in [Mul] it is proved that no countably compact

(resp., no axiomatizable) extension of L{Q{) will satisfy the Robinson consistency

theorem. Both these results seem to support the feeling expressed in [Br] about the

nonexistence of countably compact extensions of L(QX) satisfying the interpolation

property. In the general case when L ^ L(Q\), less is known.

The Robinson consistency theorem is a very important soft model-theoretical

notion; in a somewhat weaker form it was investigated by Makowsky and Shelah

in [MS]; in the present form it is studied in [Mul]-[Mu5] and in [MSI]; in [Mu3],

[Mu4] and, independently, in [MSI] such identities are proved as

Robinson Consistency = Compactness + Craig Interpolation,

and

Compactness = JEP

(i.e. the Joint Embedding Property of L-elementary embeddings).

In this paper we give an exposition of the methods and results about the

Robinson consistency theorem in abstract (soft) model theory. We assume familiar-

ity with [Fe2], [Fl], [Ba], [MSS] and with [MS, §6].

In Theorem 3.1 we prove that if in L the Robinson consistency theorem holds,

then either L is countably compact, or the theories of L can characterize up to

isomorphism all the structures whose cardinality is less than <ow. Notice that no

special set-theoretical assumption is involved in the proof of this theorem.

Corollary 3.3, improving [MS, 6.11], states that if 2" < 2"" for some n e u, then the
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Robinson consistency theorem implies countable compactness and the Craig inter-

polation theorem is any countably generated logic. Notice that this result was

obtained by Makowsky and Shelah via an additional "Feferman Vaught" assump-

tion.

In §4 we take up extensions of L(QX) in the light of [Mul]; then Theorem 3.1

immediately yields that if L > L(QX) satisfies the Robinson consistency theorem,

then L can characterize all structures up to cardinal ua (by means of their complete

theories in L), and L is a very large logic which is neither axiomatizable nor

countably compact. Under (something weaker than) CH we also prove in

Corollaries 4.2 and 4.3 that any such L necessarily has uncountably many quanti-

fiers and that the real numbers can be characterized by a theory in L.

In §5 (under -i0* or -iL*1) we prove that if Sicl(t) is a set for t a set, then L

satisfies the Robinson consistency theorem iff L is compact and satisfies the Craig

interpolation theorem. In [Mu3] this was proved under -i0*. The proof is almost

the same if one uses -iL*4, see [Mu4], or even if one assumes that V« regular > w,

for any uniform ultrafilter D on k, Va > w, D is À-descendingly incomplete. From

the main theorem in [MSI], the same identity can be established by assuming that

there is no measurable cardinal > u>, and that L has an "occurrence number".

In §6 we prove some results about H. Friedman's third and fourth problem in

[Fr]; namely, in Theorem 6.1, under -i0* or -i LM, we show that no logic L between

Lxa and Lxx satisfies the Craig interpolation (or the Robinson consistency)

theorem, unless =¿ = = . In Theorems 6.2 and 6.3 we prove two results whose

effect is practically that any logic L satisfying the Robinson consistency theorem

together with some kind of Löwenheim requirement will automatically have =l

equal to = on the class of countable structures of finite type.

In conclusion, we do agree with the observation by Makowsky and Shelah in

[MS], that with more effort more theorems about (the interpolation and definabil-

ity properties in) abstract model theory should be provable.

Still, we wonder why theorems in soft model theory may be so hard.

0. Preliminaries. Ordinals and, in particular, cardinals, are denoted by small

Greek letters; the first infinite cardinals are written us = w0, <o,, . . ., ww, .... We

shall be working throughout with logics L as defined in [Fl] and/or in [Fe2].

Unexplained notation is standard; for t a (similarity) type, Str(r) is the class of all

structures of type t, StcL(r) is the class of all sentences in logic L of type t

(following [Fel] and [Fe2]); notice that what we call a type is called a language by

many authors. For T Ç Sicl(t) a theory in L of type t, mod¿ T is the class of

models of T; for 21 G Str(r), thL 21 is the complete theory of 21 in L of type t.

Following [MSS], we let 72t = (93|93 sb 21}; given 21, 93 G Str(r) and logic L,

2Í =l 33 means that thL 2Í = thL 93. Notice that t may be infinite, and StcL(T) may

be a proper class.

0.1 Definition. Given logic L and structure 21 G Str(r) we say that in L, 2Í is

characterizable by its theory in type r iff mod£ th£ 21 = /2Í; that is to say that any

model 93 of the complete theory of 21 in type t is isomorphic to 2Í; when there is no

ambiguity we drop mention of L. For X an ordinal, the characterizability of X (or,
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equivalently, of (X, < » by its theory in type {<}, with < a binary relation

symbol, means of course that modL thL<Â, < > = I(X, < > = I(X, e|x>. An im-

portant feature of logics L is their closure under relativization of formulas to

formulas; for the case L = L^J^Q')^,, [MSS, p. 159] note that relativization is

built in the formation rules for formulas. We shall have to relativize a sentence \¡/ to

formula <p(x, v,, . . . ,yr) with y,, . . . ,yr acting as parameters; we shall then write

jj{x\<p(.xji.yr)}

Notice that [MS] write instead ^x'y<.»>.

If 2t G Str(r) and A ' is contained in the universe A of 21 and is nonvoid on each

sort of t, then 2t|^' denotes the substructure of 21 generated by A'.

0.2 Definition. Logic L has the Robinson property (or, equivalently, in L the

Robinson consistency theorem holds) iff for any theories T, 7\ and T2 and types t, t,

and t2 with t = t, n t2, if 7", and T2 are consistent extensions of T respectively in

type t, and t2, and T is complete in r, then 71, u T2 is consistent in t, u t2.

For the definition of other interpolation and definability properties, see [MSS]

and [MS].

We recall that logic L is (<o, co)-compact (or, equivalently, countably compact) iff

each inconsistent countable theory in L has some inconsistent finite subtheory.

1. From ordinals to arbitrary structures.

1.1 Proposition. Let logic L have the Robinson property; assume that L is not

(<o, u)-compact; then <w, < > is characterizable in L by its theory T0 = thL<w, < )

in type {E} with E a binary relation symbol.

Proof. Since L is not countably compact then for some type t' D { E} and some

(countable) consistent theory T' of type t' we have

V2Í G Str(r'), 21' 1= V implies 2Í' \ {E} s <w, <>

(see [MS, 1.3] who refer to [Ba] and [Fl], or see the proof of Theorem 2.1 in this

paper). Assume now that T0 has some model 93 ?* <<o, < > (absurdum hypothesis).

Structure 93 is still a discrete linear ordering with an initial element, and has some

expansion 93' = <93, P,f,b} (P unary relation,/ unary function, b a constant, all

symbols not already in t') satisfying the sentence i^ (of Laa) which says that

"E is a discrete linear ordering with an initial element and /maps

the set P of predecessors of b one-one onto P u {&}".

Now 7"0 u {>/'} is a consistent extension of T0 and T0 u {</'} U T' is inconsistent,

by the above properties of theory 7". This contradicts the assumed Robinson

property of L.   Q.E.D.

1.2 Theorem. Let L have the Robinson property and n G <o; assume that each

ordinal X < (0„ is characterizable in L by its theory 7\ of type {E}, with E a binary

relation symbol. Then for any single-sorted structure 21 such that |2t| < wn, we have

that modL thL2I = 721.
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Remark. The single-sortedness assumption is only for simplicity. For the proof

we prepare

1.3 Lemma. Under the hypotheses of Theorem 1.2, we have that for any cardinal

K < co„, K is characterizable in L by its theory T* in the pure identity language (viz.,

in the single-sorted type having no symbols; notice that equality is available in any

case).

Proof. Assume (absurdum hypothesis) that some model M of TK with \M\ = ft

is such that ¡i ¥= k; then we proceed by cases.

Case one. fi > k. Add ¡i many new constants a0, a,, . . . , and extend T" to

theory T' obtained by adding axioms aa =£ aß (whenever a ¥= ß). Let TK denote

th¿<K, < > of type {E}, where <k, < ) is the least ordinal of cardinality k. By our

hypothesis about TK, T' u TK is inconsistent, which contradicts the assumed

Robinson property.

Case two. p < k. Expand n toa well order < ft, < ) and let 7M be its theory in

type {E}. By assumption, all the models of 7M are isomorphic, hence, in particular,

their cardinality is /x. Let T'K be the theory in type {E'} of the least ordinal <k, < >

of cardinality k, with E' a new binary relation symbol. By assumption, all the

models of T'K have cardinality k, therefore 7" u jT U T'K is inconsistent, which

contradicts the assumed Robinson property of L.

1.4 Lemma. Under the hypotheses of Theorem 1.2, if |2l| < un and 21 = {A, < ,

. . . ) G Str(r) h a single-sorted expansion of a well-ordered structure (A, < ) —

(X, < > with X < w„, then mod¿ th¿ 21 = 721.

Proof. Let 93 =¿ 21; then, by the reduct property of logic L we have that

Í8 \ {<} =l ^i I {<}■ By definition of 21 and by the assumed characterizability

of X, we thus have that 93t{<}s2if{<}=£<X, <>. Therefore, by the

isomorphism property of logic L, we can safely assume that 93 f1 { < } = 21 f { < }

Now if 93 ̂  2Í (absurdum hypothesis) there is some symbol S G t (to fix ideas,

let S be a unary relation symbol) and there is some ordinal ¡i <X such that

21 N S\ n] but 931= -i S\ ¡i]       (or vice versa).

(In the general case, for S having many places, one shall work with a finite

sequence of ordinals smaller than X.) Let 7" be thL<21, /x> in type t u {m'}- Let T"

be thL<93, ft> in type r U {m"} (with m! and m" new constant symbols). Let 7^

(resp. 7^) characterize <\, < > (resp. < ¡l, < » in type { < } (here, and only here,

we are using symbol < instead of E to gain intuition). Let 7^ (resp. 7"') say that

the order type of the set of predecessors of m' (resp. of m") is /i. 7^ is obtained by

relativizing each sentence of 7^ to {x\x < m'}, i.e. to formula x < m'; similarly, T¡¡

is the relativization of 7^ to formula x < m". Notice that

7' D 7; u Tx    and    7" D 7; u Tx.

We now claim that 7' u 7" is inconsistent; as a matter of fact, if 9? t= 7' u 7"
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then

9Ï f 7; u 7; u Tx u {Sin' A -1 Sm"}.

On the other hand, the assumed properties of 7', T", Tx ensure that 9Î f m! = w",

thus 9Î 1= w' = m" A Sm' A -1 Sm" which is impossible.

The lemma is now proved by noting that the inconsistency of 7" U 7" con-

tradicts the assumed Robinson property.

1.5 Proof of Theorem 1.2. Let 93 =¿ 21 be single-sorted structures of type t0; let

|2I| = X < «„. By characterizability of |2t| (Lemma 1.3) and by reduct we have

|93| = A. Expand 91 to 91' = <2t, £> in type t, and 93 to 93' = <93, F} (E ¥= F new

binary relation symbols) in type t2, in such a way that

(A, E) a (B, F>-« <X, <> < <<o„, <>.

Both thL 21' and thL 93' are consistent extensions of th¿ 21, resp., in type t( and t2

with T, n t2 = t0. Hence, by the Robinson property there exists 2ft G Str(r, u t^

such that

2Í' =L 2ft [ t,    and   93' =L 3ft \ t2.

By Lemma 1.4 noting that 2t' is an expansion of a well-ordered structure of order

type < ío„ we have 21' as 2ft Ï t,. Similarly, we have that 93' » 2ft \ t2. By reduct

21 » 2ft [ t0 a 93.   Q.E.D.

1.6 Corollary. // logic L has the Robinson property, n G to, and each ordinal

X < un is characterizable by its theory in {E} (£ a binary relation symbol), then each

ordinal [i < un+l is characterizable by its theory in {E}.

Proof. Immediate from Theorem 1.2.

2. Jumping to»„ + l.

2.1 Theorem. Assume that logic L has the Robinson property and is not countably

compact. Let n G u and assume that each ordinal X < <on+1 can be characterized by

its theory Tx in type {E} (E a binary relation symbol). Then wn + 1 itself can be

characterized by its theory in type {E}.

Proof. By [MS, 6.6(iii)], the fact that L is not (co, w)-compact implies that L is

not con+1-relatively compact, i.e. there are theories

2 = {<pja < w„ + 1}

and T such that 2 u T is inconsistent, but for any subset 20 Q 2 with |20| < wn+1,

20 u r is consistent. Let t be the type of 2 u T. For any ordinal ß < con+1 define

2/3 = {<Pala < ß) an(i let 3Í/9 De a model of 2^ u I\ It is no loss of generality to

assume that the universes of the 21^ are pairwise disjoint and that t has only

relation symbols. Now expand t to t' by adding a new sort a and new symbols/, E,

F, aK (for all ordinals k < w„ + 1) where E and F are binary relations (to be

interpreted) over the new sort, the aKys are constants over a, and / is a unary

function taking elements of the old sorts of t into elements of a. Define 2ft G

Str(T') as follows (here, for simplicity, symbols are identified with their interpreta-

tion):



236 DANIELE MUNDICI

w Í {£> a«}««^, = <«»+„ < . k>k<u„+1;

range of/ = w„+1;

domain of/ = (union of the universes of the %ß)ß<w    ;

/~'(k) = universe of 21,,        (« < wn+1);

(2ft [ t)|/_1(k) = 2Ik        (k < w„ + 1), i.e. the substructure of 2ft [ r

generated by the inverse image/_1(ic) is just 2iK;

FXfi holds in 2ft iff X, ji < un+, and 21x f «p^.

Roughly, 2ft is a disjoint union of the 21^ together with a "satisfaction" predicate F

relating 21^ to the sentences of 2. Structure 2ft satisfies theory 7 of type t' given by

the following sentences (here we use the small Greek letters f, tj, 6, for variables on

the new sort a).

(Axl)K<x<u   . E is a linear ordering of the elements of the new sort a and EaKax.

(Ax2)K<(_ . The order type of the set of predecessors of aK is <k, < > (one has

just to relativize to {x\ExaK} theory TK which is assumed by hypothesis, to

characterize <k, < >).

(Ax3)iEsorts of T. Vf 3xs f(xs) = f (i.e. whenever f is of sort a its inverse image

under/ is nonnull on each sort of type t).

(Ax4)/3<w . Vtj (Fi)aß -» <r^Jc|-/w"7')) (i.e. in the Tith universe <pß is satisfied if

Ftjí^).

(Ax5). Vf Vtj /fiyf -* Ffrj (so that, by (Ax4) theory 2f is satisfied in the fth

universe).

(Ax6)rer. Vf yÍ*W»>-í) (so that r is satisfied in the fth universe).

Claim 1. V9? f 7 there is no m G N (N the universe of 9Î) such that 9? 1= EaK[m]

for all k < w„+1. As a matter of fact, assume such 9Î and m exist (absurdum

hypothesis). Let 9?' = <9Î, w>; then in 9Î' the following hold:

/~'(m) ^= 0 on each sort of r       (by (Ax3)),

r holds when relativized to/- '(m)        (by (Ax6)),

(7>naK)K<Un+|    by (Ax5) and assumption about m,

W^""'W    by(Ax4),

i.e. 2 holds when relativized to/_1(w). Therefore in f~\m) theory 2 u T holds, a

contradiction.

Claim 2. V9? f 7, 9? f {7Í} = <<o„+„ < >. As a matter of fact, since |9? f {F}\ >

wn+i by (Axl), it suffices to show that 9Î is well ordered and each m G N has at

most un many predecessors. Assume 9? f 7 and 9Î is not well ordered (absurdum

hypothesis). Then Tí is a linear ordering having some infinitely descending chain

c0 > c, > • • • , but c0 cannot bound the aK by Claim 1, so by letting ax (for some

A < w„+i) be greater than c0 we have that the set of predecessors of ax is not well

ordered, thus contradicting (Ax2), in view of the characterizability of (X, < > by
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Similarly, if 9? has some element m G N with fi many predecessors, ju a cardinal

> w„, then by Claim 1 there exists X < w„ + 1 such that ax is greater than m; hence

ax cannot satisfy (Ax2), a contradiction. This proves Claim 2.

Claim 3. (End of the proof of Theorem 2.1.) Let 70 = thL<con+1, < > in type

{E} (£ a binary relation symbol). Then

v»i=r»»«<«t+1, <>.

As a matter of fact, assume 9? t= 70 with 9? 9* <wn + 1, < > (absurdum hypothesis).

Then

(i) either 9Î is not well ordered,

(ii) or some mGJV has more than un predecessors,

(iii) or, finally, |9?| < M|1+1.

(i) If 9Î is not well ordered then there is some infinitely descending chain

c0 > c, > • • • , so there is an expansion 9Î' = (31, cr}r£a satisfying theory 7"

defined by 7' = 70 u [Ecr+lcr\(r G u)}. On the other hand, by Claim 2, the

7i-reduct of any model of 7 is well ordered, so that 7' u T u 70 is inconsistent;

but this contradicts the assumed Robinson property of L (notice that T0 is

complete in {E} = type(7') n type(r)).

(ii) If m G N has more than un many predecessors, say {cK}K<a , consider the

expansion 31' = (31, m, cK>K<^+i and let 7" be the complete theory of 9Î' in type

t" = {E, m, cm}K< . By arguing as in (i) above we see that 7" u 7 u 70 is

inconsistent; but this contradicts the assumed Robinson property.

(iii) Assume finally |9?| = com < w„ + 1. Expand 9Î to 31' = <9Î, £'> (£" a new

binary relation symbol) by stipulating that 31' [ {E'} as <wm, < >. Since by as-

sumption <wm, < > can be characterized by its complete theory T in type {£"},

we have that all the models of theory T0 u 7^ have cardinality equal to u>m. Hence

70 u 7* U Ta is inconsistent, again contradicting the assumed Robinson property.

This proves Theorem 2.1.    Q.E.D.

3. Categoricity and compactness.

3.1 Theorem. Let logic L have the Robinson property. Assume that L is not

(w, u))-compact. Then for any single-sorted structure 21 with |2I| < wu we have

modL thL 21 = 721.

Proof. Let |2t| = «„; the proof is by induction on n.

The case n = 0. By Proposition 1.1 <w, < > is characterizable by its complete

theory; then by Theorem 1.2 each single-sorted countable structure is characteriz-

able by its theory.

The case n + 1. By the induction hypothesis Theorem 3.1 holds for n, i.e. each

single-sorted structure of cardinality < w„ is characterizable. In particular, each

ordinal X < un+l is characterizable. By Theorem 2.1 un + l itself is characterizable,

hence each ordinal fi < w„ + 1 is characterizable. Then, again by Theorem 1.2, each

single-sorted structure 21 with |2t| < w„+1 is characterizable.    Q.E.D.

3.2 Remarks, (i) The single-sortedness hypothesis is just for simplicity.

(ii) Theorem 3.1 roughly states that any logic having the Robinson property is
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either countably compact or has a very strong expressive power (in fact the

strongest possible up to cardinal wu).

(iii) A number of consequences can be drawn from Theorem 3.1 by either

limiting the size of L or by making purely set-theoretical assumptions.

The following corollary links the Robinson consistency with the Craig interpola-

tion theorem; it improves [MS, 6.11] where the same result is obtained with the

help  of  an  additional   "Feferman-Vaught"  hypothesis.   For  the  definition  of

3.3 Corollary. Assume that 2" < 2"" for some n G w. Let L = L(M(Q')ÍElu have

the Robinson property; then in L the Craig interpolation theorem holds and L is

(w, (S)-compact.

Proof. We first claim that L is (w, w)-compact. If not, then Vn G « and Vj Ç <o„

the complete theory of <w„, < , s} in type {E, S) (E binary, S unary relation

symbols) can characterize <w„, < , s} up to isomorphism, by Theorem 3.1. Thus

number of theories of L of type {E, S }

> number of isomorphism classes 7<w„, < , s} for s Ç u„, i.e. 2"".

Now notice that in any countably generated logic, such as L, the number of

theories of finite type cannot exceed 2". Thus 2" > 2"" Vn G <o contradicting our

set-theoretical assumption.

Therefore L is (co, w)-compact; but the Robinson property and countable com-

pactness for a countably generated logic are well known to imply the Craig

interpolation theorem (see [MS, 2.1]).    Q.E.D.

4. The case L > L(QX). Let L(QX) be the logic with quantifier "there exist

uncountably many".

4.1 Theorem. If L > L(QX) satisfies the Robinson consistency theorem, then

(i) L is not axiomatizable, nor countably compact,

(ii) V2Í with 21 single-sorted and |2I| < wu, we have

modL thL 21 = 72Í,

(iii) if E is a binary relation symbol and S is unary, then

2\stcL{E,s}\ > y**   for any n e w.

Proof, (i) has been proved in [Mul]. (ii) follows immediately from (i) in the light

of Theorem 3.1. (iii) Since L is not countably compact by (i), then we can argue as

in the proof of Corollary 3.3 to conclude that

number of theories of L of type { E, S } = 2|StCi<*-s Jl > 2"-    for all n G w.

4.2 Corollary. Assume that 2U < 2U" for some n G w; then no countably gener-

ated (i.e. having countably many quantifiers) extension L of L(QX) satisfies the

Robinson consistency theorem.

Proof. Assume that L is a counterexample; then by Theorem 4.1(iii) we have

that 2" > 2"- Vn G w, since |StcL{7i, S}\ = w in any countably generated logic L.
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This contradicts our set-theoretical assumption.

Something weaker than CH also yields

4.3 Corollary. Assume that a>„ = 2" for some n G w; then if L > L(QX) satisfies

the Robinson consistency theorem, the system of real numbers is characterizable by its

complete theory in L.

Proof. Then there are «„-many reals; now apply Theorem 4.1(h).

5. An identity. Let -i L* abbreviate the following set-theoretical statement:

"there is no inner model with a measurable cardinal > <o".

Recall that compactness means (k, w)-compactness for all k > o¡.

5.1 Theorem (Assuming -iO*, or even -iL*1). In logic L, let Sicl(t) be a set

whenever t is a set; then L satisfies the Robinson consistency theorem iff L is compact

and satisfies the Craig interpolation theorem.

Proof. In [Mu3] the theorem is proved under -iO*; but Claim 2 thereof (which is

the only point where -i 0s is used) is actually a consequence of [MS, 6.6(iv)] only.

The latter, in turn, only depends on [MS, 6.4(h)] and on the fact that for any

infinite regular cardinal k, for any uniform ultrafilter D on k, D is X-descendingly

incomplete for all infinite X. Now this final statement is well known to be weaker

than -, L"; see [MS, 6.5(iii)] or [DJK].

5.2 Remark. For logics L in which StcL(r) is a set if so is t, -i Lm also yields that

"compactness = JEP", the latter being the Joint Embedding Property for L-ele-

mentary embeddings. Use the argument found in [Mu4] where one also can find a

complete proof of Theorem 5.1. The same identities have been independently

proved in [MSI] by assuming that there is no measurable cardinal > w and that L

has an "occurrence number".

6. H. Friedman's problems. H. Friedman's third problem in [Fr] of finding logics

strictly between L^ and Lxx¡ satisfying the Craig interpolation theorem is still

unsolved; but (a refinement of) the lemmas in §§1 and 2 of this paper (see [Mu5])

yield the following.

6.1 Theorem (Assuming -iO* or -iL*1). No logic L between Lxu and Lxa0

satisfies the Craig interpolation theorem, nor the Robinson consistency theorem, unless

Proof. In [Mu5, Theorems 5.5 and 5.7] the theorem is proved under assumption

-iO8; but -iO* is only needed for the proof of Theorem 5.4 therein. The latter

theorem, however, still holds under assumption -iL*\ by the observation made in

the proof of Theorem 5.1.

Also H. Friedman's fourth problem, asking for proper extensions of first order

logic which satisfy compactness and interpolation, is still unsolved. Notice that one

might equivalently ask for extensions satisfying compactness and the Robinson

consistency theorem, or even, in the light of Theorem 5.1 (under some suitable

hypotheses), ask for extensions satisfying the Robinson consistency theorem alone.
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6.2 Theorem. Let L be a countably-generated logic satisfying the Robinson

consistency theorem. Assume that every consistent theory T with |7| < to has a model

of cardinality < w. Then L — Laù!.

Proof. L must be countably compact, for otherwise, by Theorem 3.1,

th¿<w,, < ) would be a consistent countable theory of type {<} having no

countable model, thus contradicting our (Löwenheim) assumption. Besides count-

able compactness, L also has its Löwenheim number (for sentences) equal to w.

Now apply the Lindstrom theorem (see [Li] or [Fl]).    Q.E.D.

To prove Theorem 6.3 we need to relativize the Robinson property to a class of

structures. More precisely, let X be a class of structures; then, following [Mu2], we

say that logic L satisfies the Robinson consistency theorem on X iff

V2ft G X n Str(r'), VSR G X n Str(r"), if t = t' n t" and 2ft \ r =L 31 \ t,

then 321 G X n Str(r' u t") with 21 \ r' =L 2ft and 21 \ r" =L 31.

This definition is a natural generalization of Definition 0.2; when X is the class of

all structures then clearly L satisfies the Robinson consistency theorem on X iff L

satisfies the Robinson consistency theorem in the sense of Definition 0.2. Let K be

the class of all countable structures of finite type, and Y be the class of all

structures; we can prove the following result.

6.3 Theorem (-,0* or -iL*1). Let L = 7uu(ß'),e/ (with ¡ a set) satisfy the

Robinson consistency theorem on Y as well as on K. Then 21 =¿ 93 iff 21 = 93, for any

two countable structures 21 and 93.

Proof. By the main theorem in [Mu2], =¿ on K is either equal to = or to = .

By Theorem 5.1, L is compact; thus it suffices to prove our theorem only for 21 and

93 having finite type, since each sentence of L will only depend on a finite number

of symbols. Assume =l = = (absurdum hypothesis). Let T be any first order

theory which is consistent and complete in the finite type t, having one sort s, and

which is w,-categorical but not to-categorical; then 7 has exactly to many noniso-

morphic countable models (Baldwin and Lachlan, [BL]), 9?0, 9Ï,, . . . , 3ln, . . . ,

(n G w). On the other hand, Vn G w, thL 3l„ is to-categorical by the absurdum

hypothesis, and has models of arbitrarily large cardinality, by compactness. Let C„

be the class of cardinals k such that thL 31 „ has a model of cardinality k; then

CnC\ Cm = {u} by the Morley theorem applied to 7. Let p: t -> tp be a name-

changer with t n tp = {s}; p naturally transforms 3l0 into 9îg G Str(rp); then,

thL 9îg u thL 9?, has only countable models, as C0 is disjoint from C,\{to}, which

contradicts the fact that L is compact.    Q.E.D.
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