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PLANE MODELS FOR RIEMANN SURFACES

ADMITTING CERTAIN HALF-CANONICAL

LINEAR SERIES. II

BY

ROBERT D. M. ACCOLA

Abstract. For r > 2, closed Riemann surfaces of genus 3r + 2 admitting two

simple half-canonical linear series g$r+,, h$r+ ¡ are characterized by the existence of

certain plane models of degree 2r + 3 where the linear series are apparent. The

plane curves have r — 2 3-fold singularities, one (2r — l)-fold singularity Q, and

two other double points (typically tacnodes) whose tangents pass through Q. The

lines through Q cut out a g\ which is unique. The case where the g\ is the set of

orbits of a noncyclic group of automorphisms of order four is characterized by the

existence of 3r + 3 pairs of half-canonical linear series of dimension r — \, where

the sum of the two linear series in any pair is linearly equivalent to g^r+x + A&.+ 1-

1. Introduction. By Torelli's theorem the conformai type of a closed Riemann

surface is determined by the symplectic equivalence class of its period matrices.

Consequently, special properties that a Riemann surface might possess should be

reflected in its period matrix. An attractive approach to this problem is to examine

the properties of the theta function especially when evaluated at points of finite

order on the Jacobian since quite often these properties are independent of the

particular period matrix at hand. Thus Riemann characterized hyperelliptic Rie-

mann surfaces of genus three by the theta function vanishing to order two at one

half-period [13], and Weber analogously characterized hyperelliptic Riemann

surfaces of genus four [15]. Martens completed the program of characterizing

hyperelliptic Riemann surfaces in terms of vanishing properties of theta functions

at half-periods [12]. It seems clear that further hyperelliptic automorphism groups

can be characterized by the vanishing of certain homogeneous polynomial expres-

sions in theta-nulls, although the author does not know if this program has been

carried out.

An extension of this work was begun by Farkas when he discovered extraor-

dinary vanishing properties at half-periods for the theta functions for Riemann

surfaces admitting fixed-point-free automorphisms of order two [10]. Following this

work of Martens and Farkas the present author was able to characterize Riemann

surfaces admitting other automorphisms of period two (involutions) in terms of

vanishing properties of the theta function [4].

In another direction, it has long been known that a Riemann surface of genus six
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whose theta function vanishes at a single half-period to order three admits a plane

model as a nonsingular quintic. In Part I of this paper the author extended this

type of result to Riemann surfaces of genus 3r where the theta function vanishes to

order r + 1 at one half-period [6]. The present work is an extension of this latter

kind of result.

Kraus seems to be the first author to investigate plane curves where the

corresponding theta function vanishes at half-periods [11]. Here he used Riemann's

solution to the Jacobi inversion problem which asserts, among many other things, a

one-to-one correspondence between the vanishing of the theta function at half-peri-

ods to order r + 1 and the existence of complete half-canonical linear series of

dimensions r, g/_,'s. Kraus constructed plane curves with fairly obvious half-

canonical linear series. The present author continued this work (no intermediate

work is known) and constructed plane curves of genus 3r, 3r + 2, and 3r + 3

admitting respectively one, two and four simple half-canonical linear series of

dimension r. (In the last case the sum of the four linear series is bicanonical [2].)

These two kinds of investigations concerning theta functions, characterizing

automorphism groups and certain plane models, are not unrelated. For if a

Riemann surface has genus less than 3r and the theta-function vanishes at a

half-period to order r + 1 then this implies the existence of an involution. Simi-

larly, surfaces of genus less than 3r + 2 or 3r + 3 admitting respectively two or

four half-canonical series of dimension r also admit involutions [4].

To the author's surprise and pleasure the indicated vanishing properties for the

theta function for Riemann surfaces of genus precisely 3r, 3r + 2, and 3r + 3

usually characterize the existence of the plane models discussed in [2]. This allows

one to compute the dimension in Teichmüller space of surfaces admitting such

vanishing properties since by classical methods it is easy to compute the dimen-

sions of these families of plane curves.

Basic to these investigations is the classical work of Castelnuovo on the inequal-

ity that bears his name [7], [8]. In almost all these cases the simple half-canonical

gp_, determines a curve in Pr that lies on a rational normal scroll whose rulings cut

out a gl on the curve. Thus we almost always have a unique g\ which imposes two

linear conditions on g/)r_,. From this the existence of the various plane models

follows easily.

As a bonus it turns out that one can often characterize the case when this g\ is

itself the orbit space of a noncyclic group of automorphisms of order four. This

characterization is again in terms of the vanishing properties of the theta function

at half-periods. So the investigation ends where it began with characterizing certain

automorphism groups in terms of vanishing properties of the theta function.

In Part I of this paper we considered Riemann surfaces of genus 3r admitting a

simple half-canonical linear series of dimension r. In Part II we now consider

Riemann surfaces of genus 3r + 2 admitting two simple half-canonical linear series

of dimension r. In Part III we hope to consider the case of genus 3r + 3 where the

Riemann surface admits four simple half-canonical linear series of dimension r

whose sum is bicanonical.
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In §2 of this paper we will summarize the necessary preliminary material. In §3

we will consider the general case r > 4, and we leave the cases r = 1,2, and 3 to §4

where more special techniques appear to be necessary. In §5 we consider when the

g\ is the set of orbits for a noncyclic group of automorphisms of order four.

Finally, we have included an appendix which completes the discussion of automor-

phisms in Part I.

All results will be stated in terms of half-canonical linear series. We will omit the

translation via Riemann's vanishing theorem to statements about the vanishing of

the theta function of half-periods. An example of this type of translation will be

found in [3].

2. Notation, definitions, and preliminary results. Let Wp be a closed Riemann

surface of genus/;. A divisor D = n,z, + n2z2 + ■ • • +nszs is a zero chain on Wp

where the n¡ are integers and the z, are points on W;. A divisor will be called

integral (D > 0) if each n¡ > 0. If / is a meromorphic function on Wp then its

divisor, (/), can be written: (/) = Z), - D2; where 7), is the divisor of zeros of/

and D2 is the divisor of poles. We say two divisors 7), and D2 (not necessarily

integral) are (linearly) equivalent if there is a (meromorphic) function / so that

(/) = Dx - D2. If D is a divisor we say that a function / is a multiple of D if

(/) + D > 0. The set of multiples of D is a finite dimensional vector space. A

linear series of degree n and dimension r, written grn, is a set of integral divisors

{(f) + D} where D is an integral divisor of degree n and/ ranges over an r + 1

dimensional subspace of the multiples of D. Such a linear series will be called

complete if the multiples of D have dimension r + 1. In such a case we write

|D| = grn; that is, grn = [D' > 0: D' = D}. For example, the canonical seriesg^~_\

is equal to | A"| where K is the set of zeros of an abelian differential of the first kind.

The Riemann-Roch theorem asserts that for a complete grn, r = n — p + i where

i is the index of specialty2 of any divisor in g^. An integral divisor will be called

special if it is part of an integral canonical divisor. If grn + g„, is the canonical series

then the Brill-Noether form of the Riemann-Roch theorem asserts that n — 2r = n'

— 2r'. Clifford's theorem asserts that in this case n — 2r is nonnegative and is zero

if and only if n = 0, n = 2p — 2, or Wp is hyperelliptic.

For two integral divisors Dx and D2, (Dx, D2) will denote their greatest common

divisor. We will say that Dx and D2 are disjoint if (£),, D2) = 0.

In this paper we will use the following terms. A pair will be an integral divisor of

degree two and a triple will be an integral divisor of degree three. The points of a

pair or triple need not be distinct. Finally, we will often write "£> = g"' for

"|D | = g"' where there is no danger of confusion.

Linear series may be complete or incomplete, with or without fixed points, and

simple or composite. If g„r is a linear series on Wp then grn — x will denote the linear

2The index of specialty of a divisor D is the dimension of the space of holomorphic differentials

whose divisors contain D.
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series of degree n — 1 of divisors of g„r passing through x not counting x. If x is not

a fixed point of g'n then grn — x = grnZ\.

A linear series g„r (r > 2) is simple if, for a general choice of x on W^,, g„r — x has

the same fixed points as g'n. In this situation for r > 3 and a general choice of x,

gL — x is also simple. If g„r is simple and without fixed points then Wp can be

realized as a curve C„ in 7>r, and the hyperplane sections of the curve cut out the

grn. By a k-point of grn we mean an integral divisor of degree k, xx + • ■ • +xA, so

that whenever a divisor of grn contains one of the x's, it contains all k of them, but

not necessarily any further point of Wp. On the corresponding projective curve C„

this corresponds to a singularity of multiplicity k, which we will also call a k-point

ofCn.

A linear series grn is composite if, for every choice of x on Wp, grn — x has more

fixed points than gl. In this case Wp is a r-sheeted covering of a surface Wq, and a

divisor of nonfixed points of g„r is a union of fibers of the map <b: Wp —* Wq. In

such a case Wq admits a g[n_f)/l which lifts via <i> to grn_s, the nonfixed points of grn.

If x is not a fixed point of grn then g„r - x has í — 1 additional fixed points, the

other points in the fiber of <b containing x. If grn is complete on Wp, so is g[n_f)it on

Wq.

If g„r is a linear series an integral divisor E = xx + • • • + xm is said to impose /

(linear) conditions on grn if there are t points of E, say xx + • • • + x, (not

necessarily distinct) so that gi — (x, + • • • + x,) has dimension r — .1 and has

x,+ , + • • • +xm among its fixed points. It follows that if the first / x's are distinct

points of Wp then for each k from 1 to t there is a divisor of grn containing all the x„

/ = 1,2,.. ..$t, except xk.

If gTn is a linear series and gsm is another we say that gsm imposes / (linear)

conditions on g'n if one (and therefore every) divisor in g5m imposes t conditions on

gl. If grn is complete this means that there is a complete grnZ'm so that grn = g¿ +

g¡,Z'm. In particular, if a g^ imposes one condition on grn then grn is composite and

S- — rsL + Dn-rm where Dn_rm is the divisor of fixed points of gr„.

We will use the following corollary of the Riemann-Roch theorem. A gn' (n < p)

without fixed points imposes n — 1 conditions on the canonical series and so

imposes at most n — 1 conditions on any special linear series. A simple special gsm

without fixed points imposes at most m — s conditions on any other special linear

series whose dimension is at least m — s.

If Wp admits a simple g2 without fixed points then Wp admits a plane model of

degree n, Cn. If d is the number of double points suitably counted then

/»-(«- l)(#i - 2)/2 - d. (2.1)

To compute the dimension 7? of all plane curves of degree n with s fixed ordinary

singularities of multiplicities ku k» . . . , k, we use the formula

s

R = n(n + 3)/2 -  2   *,(*, + 0/2 + e (2.2)
A:=l

where e > 0. If we allow the singularities to vary in T^2 then the variety of such

curves has dimension at least 7? + 2s. If one wishes to consider the Riemann



PLANE MODELS FOR RIEMANN SURFACES 247

surfaces corresponding to such a family then in computing the dimension of such

Riemann surfaces in Teichmüller space one must subtract, at least, eight for the

plane collineations.

For plane curves we shall have occasion to consider standard quadratic transfor-

mations with three fundamental points. If these points are (1,0, 0), (0, 1, 0) and

(0, 0, 1) then x, -» XjXk, [i,j, k] = {1, 2, 3} gives the transformation [14, p. 74].

If W admits a simple g2 then formula (2.1) assures us that

p < (n - \)(n - 2)/2.

The following inequality, due to Castelnuovo, generalizes this result.

2.1. Theorem ([7], [8], [9]). Let Wp admit a simple grn, r > 3. Then

p < (« - r+ e)(n - 1 - e)/2(r - 1) (2.3)

where 0 < e < r — 1 and n — r + e = 0 (mod r — I). If we have equality in formula

(2.3), n > 2r, and r ^ 5, then Cn, the corresponding curve in Pr, lies on a rational

normal scroll whose rulings cut out a gj„ on Wp which imposes two conditions on gnr.

The case of most interest in this paper is when Wp admits a simple gjr_x and

p = 3r. In that case 2g3r_x is canonical, we have equality in formula (2.3), and W3r

admits a g\ which imposes two conditions on g3r_, [6, Lemma 3.1].

As a consequence of the methods used by Castelnuovo the following results can

be derived [5, Lemma 4.2]. They give lower bounds on the dimensions of the sums

of certain linear series.

2.2. Lemma. Suppose p =£ 0.

(i) Suppose gl and g¿ are different simple linear series without fixed points,

n>r + s,andr> s. Then grn + gsm = g^+e where e > 0.

(ii) Suppose grn is simple. Then grn + tgxm = g^Z+e where e > 0.

(iii) Suppose for g\ and gj, the two coverings of P ' determined by these linear series

do not admit a common factoring. Suppose n > t + 1. Then sgx + tgxm = g^+s,„s+c

where e > 0.

On Wp a linear series gp_x is said to be half-canonical if the sum of any two

divisors in gp_, is canonical; that is, 2gp_, = g2p}2. The following results are basic

for half-canonical linear series.

2.3. Lemma [6, Lemma 2.4]. A gxm without fixed points imposes at most [m/2]

conditions on a half-canonical gp_x (m < 2r + 1).

2.4. Theorem [6, Theorem 2.5]. Let Wp admit a simple gsm without fixed points and

a half-canonical gpr_x where m — s < 2r. Then gsm imposes at most [(m — s + l)/2]

conditions on gp_x. Also gp_x must be simple.

2.5. Corollary. A g\ imposes one condition on a half-canonical gp_x. A g\ imposes

at most two conditions on a half-canonical gp_x.

Definition. A Riemann surface admitting a g\ without fixed points will be

called trigonal.
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Before continuing with results on half-canonical linear series we must briefly

discuss automorphisms. By A(Wp) we shall mean the finite group of automor-

phisms (conformai self-maps) of Wp (p > 2). We shall be particularly interested in

automorphisms of order two (involutions). A Riemann surface Wp will be called

^-hyperelliptic if Wp admits an involution T and the genus of W /CT/ is at most q.

Thus P1, tori, and hyperelliptic Riemann surfaces are O-hyperelliptic. 1-hyperel-

liptic surfaces which are not O-hyperelliptic are called elliptic-hyperelliptic. We

have the following useful result concerning involutions and half-canonical linear

series.

2.6. Lemma [6, Lemma 2.6]. Suppose Wp is q-hyperelliptic and admits a simple

half-canonical grx. Then r < q.

We will also be interested in noncyclic groups of order four. If Wp admits such a

group and Tx, T2, and T3 are the involutions in the group G, let/j, be the genus of

W /(Tt/ for / = 1, 2, and 3, and let/j0 be the genus of Wp/G. Thenp + 2p0 — px

+ p2 + p3 [1]. Such a group G on Wp will be denoted by the symbol (p; px, p2, p3;

Po)-
By using Lemma 2.6 we can obtain the following [6, Lemma 2.7].

2.7. Lemma. Let Wp admit a simple half-canonical gp_x.3 Suppose Wp admits a g*m

and a g\ without fixed points so that g\ imposes at most two conditions on gL_. Suppose

finally that s < r and m — 4s < 0. Then g^ is simple.

We will include a proof of the following lemma even though it is almost identical

to that of the preceding lemma.

2.8. Lemma. Suppose Wp admits a simple half-canonical gp_, and a gj without fixed

points. Suppose gj imposes at most two conditions on another complete linear series g„

where m — 2s < 2r, s > 2. Suppose finally that gsm is composite. Then g^ = sgl +

Dm_4s where Dm_4s is the divisor of fixed points of gsm.

Proof. Since gsm is composite there is a /-sheeted covering <b: Wp^*Wq and a

complete g^m_f)/l on Wq which lifts to the nonfixed points of gsm. Since g\ imposes

at most two conditions on g^ we see that on Wq there is a g\j, which lifts to g\ and

so / = 2 or 4. If t = 4 then Wq is P ' and g} imposes one condition on g(m-f)/4. The

result follows by lifting to Wp. If t = 2 and g(im_y)/2 is special then g2 imposes one

condition on g(îm_^)/2 and tne result follows. If g[m-f)/2 is nonspecial then q =

(m — f)/2 — s and q > r by Lemma 2.6. This leads to the contradiction m — 2s >

2r.    Q.E.D.

The last lemma will be used constantly in the sequel.

2.9. Lemma. Suppose Wp admits a g\ without fixed points so that 2g\ = g2 is

complete. Suppose h° is complete and 2h\\ = 2g\. Then h® = P + Q where P and Q

are disjoint pairs satisfying 2P = 2Q =g¿.

-

3In [6, Lemma 2.7] the assumption that/; = 3r is unnecessary.
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Proof. 2h° contains points in at most only two divisors of g4 and consequently,

the same is true of h°. But h° must contain points in at least two distinct divisors of

g\. Consequently, h4 must contain points in precisely two distinct divisors of g4.

The result now follows (or [6, Lemma 2.8]).    Q.E.D.

3. The cases r > 4. We now suppose that W3r+2 admits two half-canonical

g3rr+,'s. We will prove the existence of certain plane models for r > 4 in this

section, but some of the preliminary lemmas will be valid for smaller r. We first

show that the g3r+i's must be simple.

3.1. Lemma. Suppose r > 2 and W3r+2 admits a composite half-canonical g3r+1.

Then either g3r+x is unique or W3r+2 admits at least 16 half-canonicalg3r+x's. Thus if

W3r+2 admits 2, 3, ... , 14, or 15 half-canonical g3r+xs they must all be simple.

Proof. Since g3r+x is composite there is a i-sheeted covering <i>: Wp^> Wq and a

complete simple g[3r+x_p)/t on Wq which lifts to the nonfixed points of g^+i- (/is

the number of fixed points of g^r+l.) If t > 4, since (3r + 1 - f)/t > r we have

1 — / > r, a contradiction. If t = 3 then 1 - / > 0; consequently, / = 1, W

admits a gl, and q = 0. Wp admits a g3' and g3r+x = rg\ + x where x is the fixed

point. By Corollary 2.5 all half-canonical linear series are now composite. If h3r+,

is a second half-canonical linear series then h3r+, = rg\ + y. Since 2gjr+, =

2^3r+1 it follows that 2x = 2y, a contradiction. Consequently, if / = 3 then the

half-canonical g3r+, is unique.

Now suppose í = 2. If g(3r+, _^ ,2 is special then by Clifford's theorem we arrive

at the contradiction (3r + 1 — f)/2 > 2r. Consequently g(3,.+ i-/)/2 is not special

and is complete, so that q = (r + 1 — /)/2 by the Riemann-Roch theorem. Thus

Wp is <7-hyperelliptic where p = 3r + 2 and q = (r + 1 - f)/2. By the results of [4,

p. 51] this implies that Wp has vanishing properties for the theta function like a

hyperelliptic Riemann surface of genus p — 2q = 2r + 1 + / Moreover Wp admits

22? sets of such vanishing properties, one for each half-period in the Jacobian of

Wq. Thus if r is odd and/ = 0 then Wp admits 2r+l (= 22q) half-canonical g3rr+,'s.

In general it can be shown that Wp admits 2r~S+l(4r+2f+A) half-canonical g3r+i's.

Since / > 1 when r is even, the smallest value of this expression is 16 (r = 3,

/=0).4   Q.E.D.

3.2. Lemma. Suppose r > 2 and W3r+2 admits two simple half-canonical linear

series g3r+x and h3r+x. Then neither has a fixed point.

Proof. If g3r+x = g3r_, + x + y where x and y are fixed points then g3r_x is

composite by Castelnuovo's inequality, Theorem 2.1.

If &3/-+1 = Sir + x tnen by Lemma 2.2(i) we see that g3r + h3r+x = g^+J where

e > 0. By the Riemann-Roch theorem it follows that this latter series is special and

so there is a point y so that g3r + h3r+x + y = K, a canonical divisor. Since h3r+l is

half-canonical it follows that h3r+x = g3r + y. Thus K = 2(g3r + x) = 2(g3, + y),

or 2x = 2y. This contradiction completes the proof.    Q.E.D.

4In fact, if / > 2 then Wp admits half-canonical g/í/'s.
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3.3. Lemma. If r > 3 and W3r+2 admits two simple half-canonical linear series of

dimension r then W3r+2 admits a g\ without fixed points.

Proof. By the methods of [4, pp. 67, 68, 74] there is a smooth, two-sheeted cover

of W3r+2 of genus 6r + 3 and g3r+x and h3r+x lift to this cover to become

equivalent. On W6r+3 they determine a half-canonical glrr+\- By me discussion

following Theorem 2.1, W6r+3 admits ag4 and consequently W3r+X does also. That

it is without fixed points follows from Corollary 2.5.    Q.E.D.

Until further notice we will assume that W3r+2 admits two simple half-canonical

linear series g3r+, and h3r+x and also a g\ without fixed points. Since g\ imposes

two conditions on g3r+, and h3r+, we have

g3r+l=Sl   +  83r~-3      ™d      K+1  **4 +  K~-3 (3-0

where these equations define g3r~23 and h3~}3.

3.4. Lemma. If r > 6 then g3r~}3 and h3~}3 are both simple.

Proof. We use Lemma 2.7 of §2. Since g\ imposes at most two conditions on

g3r123 and 3r — 3 < 4(r - 2) we see that g3r~L23 is simple.    Q.E.D.

— ? — y
3.5. Lemma. If r = 4 or 5 then either g3rJ3 or h3r_3 is simple.

Proof. If r = 5 then g3r"L23 = g\2. By Lemma 2.8 we see that if g\2 is composite it

must be 3g4. Since h\2 =£ 3g\ in this case we see that h\2 must be simple.

If r = 4 and both are composite we see by Lemma 2.8 that g2 = 2g4 + x and

h\ = 2g] + y. Since 2g2 = 2/i2 we arrive at the contradiction 2x = 2y.    Q.E.D.

3.6. Lemma. If r > 4 and g3r~33 is simple, then g3r~]}3 is without fixed points.

Proof. If g37_23 = g37_24 + x then g3'r+, =g4 + g37_23 -1- x = g3;+e + x by

Lemma 2.2(h). We see that e = 0 and that g3r+, has a fixed point. This contradicts

Lemma 3.2.   Q.E.D.

Definition. For a plane curve a (2, 4)-singularity or simply a (2, 4)-point will be

a double point with a unique tangent line which has four intersections with the

curve at the double point. This tangent will be called the (2, 4)-tangent.

Examples of (2, 4)-points are tacnodes and ramphoid cusps. [14, p. 56]. A

(2, 4)-point contributes at least two to the double points of the plane curve suitably

counted.

For a simple g„r a (2, 4)-point is a 2-point P which imposes one condition on gl

and 27* imposes two conditions on g„r.

3.7. Theorem. Suppose r > 4 and W3r+2 admits precisely two half-canonical linear

series g3r+, and h3r+x. Then W3r+2 admits as a plane model a curve C2r+3 with r — 2

3-points, one (2r - \)-point, and two (2, 4)-points with both (2, 4)-tangents passing

through the (2r — \)-point.

Proof. We know that both half-canonical series are simple and we can assume

by Lemmas 3.4, 3.5, and 3.6 that g3r~L23 is simple and without fixed points. By

Theorem 2.4, g3r~L23 imposes at most r conditions on h3r+x. Thus there is a complete
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h°4 so that h^r+x =g3r~}3 + h%. Since h¡r+x =hr3;}3 + g4 we have K = 2hr3r+x =

h3~}3 + g\ + g3r~23 + h°. Since we have half-canonical series we see that

*3rr+,=*4° + g37_23=*37_23 + g4,

grr+ i ,m ft» +  K-_23 m grr_23 + g. (3 2)

It follows that 2h° = 2g\. Since/» > 14 Theorem 2.1 assures us that any g\ must be

composite, and this is impossible. Consequently 2g4 = g2 is complete. By Lemma

2.9 there are two pairs P and Q so that h4 = P + Q and 27* = 2Q =g\ where

(P, Q) = o.
Now choose on W r — 2 points x,, . . . , xr_2 generically so that they lie on

different divisors, x, + T¡, of g4 and so that these divisors are disjoint from P and

Q. Now

S}M-1   -(*t+**-    + Xr-l)  =  glr + 3  =  g\  +   D2r-\

since g4 still imposes two conditions on the simple g2r+3. g2r+3 corresponds to a

plane curve C2r+3. Each triple T¡ corresponds to a 3-point of C2r+3 and D2r_x

corresponds to a (2r — l)-point.

We now show that P and Q determine (2, 4)-points on C2r+3.

glr+3 = gi.+ i -(*!+-.-■  +^-2)

= Ä4° + Ä37_23 - (X, +   •   •  •   +Xr_2)

= 7>+ ß + 7i2r_,=27'+7)2r_,        (27>=g])

where 7s2/._, is some divisor on Wp of degree 2r — 1. By the choice of the x's we

can assume that (7s2r_,, 7") = 0 so that the last two divisors in the above formulas

are not the same. Thus the pair P lies on two distinct divisors of g\r+3 and so is a

double point. That it is a (2, 4)-point follows from the form of the last divisor

above and we see that the (2, 4)-tangent cuts out 27* + D2r_x.

For the double points of C2r+3 (suitably counted) the 7^'s contribute at least

3(r — 2), D2r_x contributes at least (2r — 1)(2/- — 2)/2, and P and Q contribute at

least 4. By formula (2.1) we have

p = 3r + 2 < (2r + 2)(2r + \)/2 - 3(r - 2)

- (2r - l)(2r - 2)/2 - 4. (3.3)

But the right-hand side of this last formula is 3r + 2 so that each of the r + 1

singularities contributes the minimum possible to the double points of C2r+3

suitably counted.    Q.E.D.

If r = 4 or 5, A37-23 can be composite. This will occur when the T's and P and Q

are collinear in T"2.

3.8. Corollary. If r > 4, W3r+2 can admit at most two simple half-canonical

g;r+^-

Proof. Suppose k3r+x is a third simple half-canonical series. As above, there is a

complete A:4 so that k3r+, = g3rr"l23 + k°, 2k° = 2g\ and k4 = R + S where R and

5 are pairs. Since k4 =£ h° the proof of Theorem 3.7 shows that C2r+3 admits a third

(2, 4)-point which will add another two to the double points suitably counted. Since
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we already have equality in formula (3.3) this is impossible. Thus the existence of

k3r+, is impossible.    Q.E.D.

By the same argument we have the following corollary.

3.9. Corollary. Let R be a pair so that R imposes one condition on g3r+l. Then

R = P or R = Q.

Proof. 7? would add at least one to the double points of C2r+3 suitably counted.

This is one too many unless R = P or Q.    Q.E.D.

If all the singularities are in general position in P2 we can perform quadratic

transformations to obtain the models of [2, p. 18]. First perform a standard

quadratic transformation with fundamental points P, Q and one of the 3-points.

This gives a curve C4r_, with r — 3 3-points and six further singularities at the

pairs of opposite vertices of a complete quadrilateral of multiplicities 2, 2, 2r —

2, 2r — 2, 2r — 1, 2r — 1. Now perform a quadratic transformation with the two

singularities of multiplicities 2r — 1 and one 3-point as fundamental points. One

obtains a C4r_3 with singularities of order 2, 2, 2r — 3, 2r — 3, 2r — 2, 2r — 2, and

r — 4 3-points. One proceeds with r — 4 similar quadratic transformations to

obtain C2r+5 with precisely six singularities of multiplicities 2, 2, r + 1, r + 1, r +

2, and r + 2 and no 3-points. Singularities of the same multiplicity occur at

opposite vertices of a complete quadrilateral.

To obtain the models of [2, p. 21] for V = 1 we now perform a quadratic

transformation on C2r+5 with fundamental points at singularities of multiplicities

r + 2, r + 2, and r + 1. We obtain a curve Cr+5 with an (r + l)-point 7? and two

(2, 4)-points with the (2, 4) tangents passing through 7?. For r even we could obtain

the same model by the formula

S3r+,-(('--2)/2)g4 = g2+5.

These latter plane models allow us to compute the dimension in Teichmüller

space of the family of Riemann surfaces of genus 3r + 2 admitting two simple

half-canonical g3r+,'s, since the models are almost unique. The dimension is 5r + 5

which is equal to (r + 5)(r + 8)/2 - (r + l)(r + 2)/2 - 6 - 6 - 2. We subtract 6

for each (2, 4)-point (which is a tacnode in general) since the direction of the

tangent is prescribed. We also subtract two for the two dimensional family of

collineations of 7*2 which leave the three singularities fixed.

4. The cases r = 3,2, and 1. We now consider the cases not covered in §3.

r = 3. Wxx admits two half-canonical linear series g]0 and h\0 which are simple

and without fixed points (Lemmas 3.1, 3.2), and Wxx also admits a unique g\

without fixed points (Lemma 3.3). Consequently we can write

g\o =g\ + gl       h\0 =g¡ + hl

4.1. Lemma. If gl has a fixed point it must have two fixed points.

Proof. If g¿ = g¡ + x then gf0 =g\ + g\ + x =gl+e + x by Lemma 2.2(iii).

Consequently e = 0 and gx0 has a fixed point. This is a contradiction.    Q.E.D.

We distinguish three cases:
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(i) gl and hl are both without fixed points,

(ii) gl is without fixed points, hi = g\ + R where R is a pair,

(iii) gl = g4 + P (gio = 2g] + P), K = gl4+ Q (h3x0 = 2g4 + Q)

where P and Q are pairs so that 27> =2Q =g\ and (7>, g) = 0.

4.2. Lemma. There is a divisor h% = P + g where 2P = 2Q = gl Also

«io = gl + «6 = h°4 + hl       A?o =g¡ + hl = h°4 + gl (4.1)

Proof. Case (iii). Define P and g by the equations used in describing case (iii).

Then

h°4 + hi = P + g + g + g4 = P + g4 + gj = g3X0

and similarly for /tj0.

Cases (i) a«âf (ii). Since g¿ is without fixed points define h4 by /¡J = h3X0 — g¿.

Then

K = 2h>xo^h4>+gl + g4 + hl

Since we are dealing with half-canonical divisors formula (4.1) follows. Since

*4° = 2g42h4 = 2g4 the proof is completed by Lemma 2.9.    Q.E.D.

Now in all cases g3X0 s 2P + g¿ = 2Q + g¡ = P + Q + hl so that g\0- Q =

Q + gl = P + hl = Äf0 — P =gg where 5 = 1 or 2. In cases (i) and (ii) it is easy

to see that s = 2, but it is not so obvious in case (iii), so we proceed as follows.

Consider g3x0 + Q = 2Q + g¡ = g\ + g¡ = g{2. Now g3x0 + Q = 2P + g| = h3X0

+ P and (P, Q) = 0, so we see that g'x2 is without fixed points. Also g'X2 + g| = K

and so t - s + 2. But if s = 1 then t = 3 and g'x2 has fixed points; consequently

s = 2. (s = 3 is impossible.) Moreover, since g\ + g2 = g42 we see that g\ imposes

at most two conditions on g2. By Lemma 2.8 it follows that g2 is simple since

gl * 2g¿.
The plane curve Cg corresponding to g2 has a 4-point D4 since g\ imposes two

conditions on g\. Consequently, we have

g2 = Q + gl = P + hi = D4 + gl

In case (i) the divisors P, Q, and D4 are pairwise disjoint. In case (ii) D4 = R + Q

and in case (iii) D4 = P + Q. In any case P and Q contribute at least two and D4

contributes at least six to the double points suitably counted. Since ten is the

maximum for the double points suitably counted, we see that P, Q, and D4

contribute precisely the amounts indicated. Thus for C8 cases (i), (ii), and (iii)

correspond to none, one, or both of P and Q being in the first neighborhood of D4.

In all cases the (2, 4)-tangents at P and Q pass through D4.

4.3. Theorem. Let Wxx admit two simple half-canonical linear series. Then Wxx

admits a plane model C8 with a 4-point and two (2, 4)-points with the (2, 4)-tangents

passing through the 4-point. One or both of the (2, 4)-points may be in the first

neighborhood of the 4-point.

Again by a careful examination of the proof we see that Corollary 3.8 follows for

r = 3.
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4.4. Corollary. Wxx cannot admit three simple half-canonical g30's.

r = 2. Suppose W% admits two simple half-canonical linear series g2 and h2. We

know that neither has a fixed point but an added argument is needed to show the

existence of a g4.

4.5. Lemma. W% admits a g\.

Proof. Ws admits a gl or a g4. If Ws admits a g, then by Lemma 2.3 we have

g2 =g\ + P and A2 = g\ + g where (P, Q) = 0. Then 2P =2Q and this gives a

gl
4.6. Lemma. g4 is unique and 2g\ = g2 is complete.

Proof. First we show that W% does not admit a g\. If it does then K — g\ = g2.

If g2 is simple then by Theorem 2.4 g2 = g2 + x and h2 = hi + y and 2x = 2y, a

contradiction. If g2 is composite then W1 is trigonal or 1-hyperelliptic, both

possibilities being contradictions.

If Wp admits a g4 and an h\ then g] + h\ = gg, a contradiction. Moreover

2g] = gl+t and e must be 0.    Q.E.D.

Now let g2 =g¡ + g3° and h2 = g¿ + h°3. Then g2 + h°3 = g3° + g] + h°3 = g3° +

h2 = gf0 where s > 3 since í = 2 is clearly impossible. Thus gsx0 is special and there

is a divisor /¡° so that

^^g^ + ^ + ^ + z»,0.

It follows that g2 = h3 + h4 and h2 = g3 + h4 and so h4 has dimension zero.

Moreover 2h°4 = 2g\. By Lemma 2.9 h% = P + g, 27^ = 2g =g\, and (7», g) =

0. Thus

gi =g\ + g3° = 2P + g3° = 2g + g3° = P + Q + h°3,

P and g are (2, 4)-points for g2 and g3 is a 3-point. Since/) = 8 < 6 • 5/2 — 3 — 2

— 2 = 8 this accounts for all the singularities of g2. It is possible for (7*, g^ or

(g, gj3) to be nonzero but not both since (7\ g) = 0. In this latter case one of the

(2, 4)-points is in the first neighborhood of g3 on C7, the plane curve corresponding

to gl

4.7. Theorem. Suppose W% admits two simple half-canonical linear series. Then Wg

admits a plane model, C7, with a 3-point and two (2, 4)-points whose tangents pass

through the 3-point. One but not both of the (2, 4)-points may be in the first

neighborhood of the 3-point.

Again we have the corollary:

4.8. Corollary. Wg cannot admit three simple half-canonical g2,s.

r = 1. This case is covered in [3, p. 15]. However, there is an oversight in that

discussion which should be mentioned. It is quite possible for the four double-

points on the curve of degree seven to coalesce by pairs into two (2, 4)-points and

so the four lines in Figure 1 degenerate into three lines, one line being counted

twice.
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5. Automorphisms. In this section we will disucss some possible automorphism

groups of W3r+2s admitting two simple half-canonicalg^+i's, r > 2.

Since gl is unique any automorphism must permute the divisors in g4. If A is the

subgroup of A(W3r+2) which leaves each divisor in g4 fixed then N is normal and

A(W3r+2)/N is isomorphic to a finite group of P1. The order of N is one, two, or

four. Another normal subgroup is that one which leaves each half-canonical g3r+,

fixed. This subgroup will have index one or two since any automorphism permutes

the two g3r+ ,'s.

We shall devote the remainder of this section to considering the case where g\ is

the set of orbits of a noncyclic group of order four. As in §4 of Part I, it turns out

that such a four-group of automorphisms can be characterized by certain vanishing

properties of the theta function: that is, by the existence of certain half-canonical

!&+»*•
To see this suppose that W3r+2 admits a noncyclic group of automorphisms of

order four, G, whose orbits are g4. Then each branched orbit is of the form 27?

where 7? is a pair of two distinct points. By the Riemann-Hurwitz formula there are

3r + 5 such pairs of which two are the (2, 4)-points P and g. Thus there are 3r + 3

other pairs Rx, R2, . . ., 7?3r+3. By formula (3.2) and the fact that h4 = P+Q and

2P =2Q=gl we see that g3;+, - P =h;r+x - g =g37_', and gr3r+x - Q =

h3r+x — P = h3~_\. Now g3r"_\ + R¡ is half-canonical and complete as is h3~_\ +

7?,. Let

,g37+1 = g7-', + *,   and   ^V, = *£?, + *,-
-r

Then there are 3r + 3 pairs {¡g3r+x, ¡h3r+\}-

We will now show that the existence of 3r + 3 such pairs of half-canonical

i>3r+Vs "will insure that every branched divisor in g] is of the form 27? where 7? is a

pair with two distinct points, at least for r > 10. The following lemma is the key.

5.1. Lemma. Suppose W3r+2 admits two half-canonical g^+^s, r > 10. If W3r+2

admits a half-canonical g¡r~+\ then g37+1, =g3r+x - P + R (or g3r+x - g + 7?)

where 27? = g4.

Proof. We prove the lemma by assuming g^'i has precisely t fixed points,

/ = 0, 1,2,..., and showing that / must equal 2. This involves several cases.

Case (0). Assume that g37-'i has no fixed points. By Lemma 2.7, g3~+\ is simple

and g37+'i = gl + g37-33 where again by Lemma 2.7, g3r~Z33 is simple. g37-33 is without

fixed points and by Theorem 2.4 imposes at most r conditions on g3r+,, so we have

g3;+, = g37-33+g4° (5.1)

where 2G4° = 2g4\ G4° = /?, + 7?2, 27?, = 2R2=gx4, and (7?„ R¿ = 0. Now 7?, +

7?2 imposes three conditions on g3r+, by formula (5.1) so one of the pairs, say 7?,,

imposes two conditions on g3r+x. But 27?, =g4' which also imposes two conditions

on g3r+x. Since g3r+x — 7?, = g3733 + ^2 we see that 7?, must be a fixed divisor of

gir-3' a contradiction.

Case (1). Assume that g37'i admits precisely one fixed point. g3r~+x = g3r-' + x-

Also g3r~+\ — g3r~-4 + gl + x anc* g7 ' and g37-34 are simple by Lemma 2.7. Again
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*£•+! = 83r~-\ + G¡ where 2G5° = 2g4 + 2x = gf0, í > 2.

If s > 3 then gxo is simple and p < 16, a contradiction. Consequently G5° = G4

+ x, 2G4° = 2g4, G4° = 7?, + 7?2, 27?, = 27?2 = g4 and (7?„ RJ = 0. Thus

gr3r+X=g3r~-*+  *1  +  R2 + x-

If either 7?, or 7?2 imposes two conditions on g3r+x we can argue as in case (0) to

obtain a further fixed point of g3r~J4 which is a contradiction. Consequently 7?, and

7?2 must each impose one condition on g3r+x. By Corollary 3.9 this implies that

7?, = P and 7?2 = g (or vice versa). Consequently g3r+x =g7-34 + P + Q + x-

But exactly the same argument can be applied to h3r+x and we arrive at the

contradiction g3r+x = h3r+l.

Case (3). Assume that g37+'i admits precisely three fixed points. g3r"+x = g^7-i +

Tx and g^"!^ imposes at most r conditions on g3r+1. Thus g3r+1 = g^r~-2 + T2. It

follows that 27', =2T2=gs6 where s «■ 1. Consequently gl = gl + 2x. Conse-

quently T2 = 7? + x where 27? =g4 and 7? imposes one condition on g3r+x. This

implies that 7? = P or g and therefore that g3r+x has a fixed point x, a contradic-

tion.

Case (4). Assume that g37+'i has precisely 4 fixed points, g37+\ = g^-3 + G4.

g37_3 imposes at most r — 1 conditions on g3,+ , so that g3r+, = g3r"L'3 + gl

contradicting the fact that gl imposes two conditions on g3r+x.

Case (5). Suppose g7+'i has 5 + k fixed points, k > 0. Then g3rVi = g^l»-* +

F where the degree of F is 5 + k. By Castelnuovo's inequality g3r~_l4_k is composite

which contradicts Lemma 3.4.

Case (2). g37+', must admit precisely two fixed points. If g3~+x = g3r"l', + 7? then

g37_', imposes at most r conditions on g3r+x, so g3r+, = g3r"l'i + R where 27? =

27?' = gl and 7?' imposes one condition on g3r+1. By Corollary 3.9 it follows that

7?' = P or g. If g3r+, =g37_\ + P and h3r+x = h3~^x + P then h3~_lx + 7? is a

second half-canonical series of dimension r — 1.    Q.E.D.

We are now ready to complete the proof of the following theorem.

5.2. Theorem. Suppose W3r+2 (r > 10) admits two simple half-canonical linear

series g3r+x and h3r+x. Then gl is the set of orbits of a noncyclic group of automor-

phisms of order four if and only if there are 3r + 3 pairs of half-canonical linear series

UaT+V Mr+\) ™ that gr3r+x + hr3r+x =,g37+'i + Mr'+ifor all i.

Proof. Assuming the existence of the 3r + 3 pairs of half-canonical linear series

we infer the existence of 3r + 3 pairs 7?, so that 27?, = g4. Consequently we have

3r + 5 pairs, P, g, 7?„ 7?2, . . . , 7?3r+3 whose doubles are in g4. Each pair con-

tributes at least two to the ramification of the four-sheeted covering of 7^ ' given by

g4. But the total ramification of this cover is 6r + 10. Consequently each of the

3r + 5 pairs must contribute precisely two to the ramification of this cover. This

means that each pair must be two distinct points.    Q.E.D.

Suppose W3r+2 admits such a four group G. Let G,, G2, and G3 be the three

subgroups of order two. By Lemma 2.6 the genus of W3r+2/ G, must be r or more.

Since the sum of these three genera must be 3r + 2, we see that G is either a
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(3r + 2; r + 2, r, r; 0) or a (3r + 2; r + 1, r + 1, r; 0). We shall presently give

examples of the latter type.

But first let us heuristically count the dimension of the space of such W3r+2's.

Since W3r+2s with two simple half-canonical linear series of dimension r have

dimension 5r + 5, and the g4 has two pairs P and g so that 27* = 2 g =g4, it

appears that the existence of the 3r + 3 additional pairs 7?, imposes 3r + 3

additional conditions. We would guess that W3r+2's with such a four group of

automorphisms would have dimension 5r + 5 — (3r + 3) = 2r + 2. In any event

our examples will depend on 2r + 2 parameters.

(Before proceeding to the examples the reader may wish to consult the Appendix

where the analogous case of a W3r admitting a simple g3f_, is considered. Here the

four group is a (3r; r, r, r; 0). The construction of this latter example is easier than

that of the (3r + 2; r + 1, r + 1, r; 0).)

Now assume that r is odd. Let Px(x) and P2(x) be polynomials of degree r + 1

with 2r + 2 distinct roots so that the Riemann surface Wr of \/PxP2 has genus r.

Let w = \/Px/P2 . If 77 is the hyperelliptic involution of Wr then 77*w = -w. w

has order r + 1 and is regular over oo. Now fix a complex number A and let

u = (A — w)/(A + w). Choose A so that u has no multiple zeros and poles, u is a

function of degree r + 1 and H*u = \/u. If £>, - D2 is the divisor of u then

777), = D2. If <¡>: Wr^> P1 is the two-sheeted cover of Wr over P ', then it is easy to

see that <¡>(DX) (= <t>(D2)) is the set of zeros of T^x) - A2P2(x). Now let dx and d2

be two different complex numbers which are not roots of Px, P2, or Px — A2P2. Let

v = (x — dx)u/(x — d2), a function of order r + 3 on Wr. Let W3r+2 be the

two-sheeted cover of Wr where Vt> is singled valued. The covering W3r+2 —» Wr is

branched above the zeros and poles of w and also above d>~'(i/,) and <b~l(d2). Thus

the total ramification of this cover is 2r + 6. On W3r+2 let P be the two points

above <¡>~\dx), let g be the pair above <f>~'(i/2), let D'x be the points above 7), and

let 7>2 be the points above D2. The divisor of Vü is P + D[ - (Q + D2). On Wr

the function u, = (x — d2)2v/(x — dx)2 also has a square root on W3r+2 and (Vü, )

is (g + D{) -(P+ 7>0- Let gr\3 = \P + D[\ - |g + D& and h}+3 = |g + D[\

= \P + D2\.
Now 27J = 2g = gl where g4 is the set of orbits for G, a noncyclic group of

order four on W3r+2. Consequently, 2gr'+3 = 2hx+3. Also by Lemma 2.2(iii) we

have

((r- l)/2)g4 + gr1+3=g37+E,

where g3/+e, is simple and so e = 0 by Castelnuovo's inequality. Consequently gr'+3

is  complete.  Similarly  ((r - l)/2)g] + hxr+3 = h3r+x.   It  follows   that  2g3r+x =

It remains to show that 2g3r+, = (r — l)g4 + P + D'x + Q + D2 is canonical.

On Wr let B be the 2r + 2 branch points of <i>: Wr^>Pl. Then B = (r + l)gj. If £'

is the lift of B to W3r+2 then

7?' = (r + l)g¿. (5.2)
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But on W3r+2 the branched locus is 2g4 + K where K is the canonical divisor on

W3r+2. That is

K = B' + P + D[ + Q + D'2 - 2g4.

This together with formula (5.2) completes the demonstration.

We now state without proof the following.

5.3.  Corollary.  If W3r+2 admits  two simple half-canonical linear series  of

dimension r and a four group G of automorphisms whose orbits are a gl then

(i) r is odd,

(ii) G is a (3r + 2; r + 1, r + 1, r; 0), and

(iii) G arises exactly as in the above example.

The above examples depend on 2r + 2 parameters as follows: 2r — 1 for Wr;

one for A in the definition of u, and two for dx and d2. The function field on W3r+2

is (P3 = Px - A2P2)  C(x, Vp\T2 , V^C* - dx)(x - d2)P3 ).

6. Appendix, an example with reference to Part I. For r odd, we shall construct a

2/--dimensional family of W3/s admitting a (3r; r, r, r; 0) and a g}+, without fixed

points. By the formula g3/._, = grx+x + ((r — l)/2)g{ ([6], or Lemma 2.2(iii)) this

will insure that W3r admits a g3r_, which is simple and necessarily half-canonical.

We start with two polynomials Px(x) and 7>2(x) each of degree r + 1 and all of

whose 2r + 2 zeros are distinct. Thus the Riemann surface of \/PxP2 is a

hyperelliptic surface Wr of genus r. On this surface consider the function

w = VPx/ P2 . If 7/ is the hyperelliptic involution of Wr then 77* w = -w. Also w is

of order r + 1 and is regular over oo. Now fix a complex number A so that the

function u = (A - w)/(A + w), again a function of degree r + 1, has no multiple

zeros or poles. Notice that 77*« = \/u, so that if the divisor of u is 7), — D2 then

777), = D2. If <¡>: Wr^> Px is the two-sheeted cover of Wr over Px then it is easy to

see that <K7>,) (= <f>(T>2)) is the set of zeros of 7*, — A2P2 (which we will call P3).

Now consider the two-sheeted cover of Wr with branch points over Dx + D2 where

the function Vm is single valued. The ramification of this cover is 2r + 2 so this

cover, W3r, has genus 3r. Dx and D2 lift to divisors D'x and D2 and 73,' — D2 is the

divisor of V« . Consequently, \D'X\ = gx+x, and W3r is the desired Riemann surface.

It depends on 2r parameters, 2r - 1 for the choice of Wr and one for the choice of

A in the definition of u.

Since the main purpose of these examples is to show the characterization of

Theorem 4.3, Part I, is not a vacuous statement, we will conclude with some

corollaries without further proofs.

6.1. Corollary. If W3r admits a simple g3r_x and a (3r; r, r, r; 0) then:

(i) r is odd, and

(ii) the group arises exactly as in the previous examples.

The function field for W3r is C(x, x/p^ , \/p¡P¡ )■
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