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MONOTONE DECOMPOSITIONS OF 0n-CONTINUA
BY

E. E. GRACE AND ELDON J. VOUGHT

Abstract. We prove the following theorem for a compact, metric S„-continuum

(i.e., a compact, connected, metric space that is not separated into more than n

components by any subcontinuum). The continuum X admits a monotone, upper

semicontinuous decomposition ¿D such that the elements of <5 have void interiors

and the quotient space X/6!) is a finite graph, if and only if, for each nowhere

dense subcontinuum H of X, the continuum T(H) = {x\ if K is a subcontinuum of

X and x e K°, then K n H ¥= 0} is nowhere dense. The elements of the decom-

position are characterized in terms of the set function T. An example is given

showing that the condition that requires T(x) to have void interior for all x E X is

not strong enough to guarantee the decomposition.

For a fixed integer n, a ^„-continuum, i.e., a continuum X that has the property

that no subcontinuum separates X into more than n components, would seemingly

admit nondegenerate simplifying monotone upper semicontinuous decompositions.

However, in the absence of any other property this is not so, e.g., an indecomposa-

ble continuum. In a previous paper [5] the second author investigated this decom-

position problem for those continua not separated by any of their subcontinua

(0,-continua). For those continua, the property that characterized "nice" decom-

positions is that for any subcontinuum H of X with void interior, T(H) also has

void interior, where T is the aposyndetic set function (defined below) due to Jones

[2]. The precise result [5, Theorems 3 and 4, pp. 74 and 75] is the following

theorem.

Theorem (Vought). Let X be a compact, metric 9x-continuum. Then X admits a

monotone, upper semicontinuous decomposition ty such that the elements of ty have

void interiors, and the quotient space A'/6D is a simple closed curve, if and only if

[T(H)]° = 0 for every subcontinuum H with void interior. Furthermore tf) =

{T2(x)|x £\X).

The main purpose of this paper is to extend the theorem to 0,,-continua where the

quotient space now becomes a finite graph and the decomposition <î) = [T2"(x)\x

£\ X). The characterizing property, using the set function T, is closely related to

the property that X not contain any indecomposable subcontinua with nonvoid

Received by the editors January 14, 1980. Presented to the International Conference on Geometric

Topology, Warsaw, Poland, on August 29, 1978.

1980 Mathematics Subject Classification. Primary 54B15, 54F20, 54F65, 54G20; Secondary 54C60,
54E45.

Key words and phrases. 9„ -continuum, monotone upper semicontinuous decomposition, quotient space,

finite graph, aposyndetic set function T, compact metric continuum.

261

©1981 American Mathematical Society

0002-9 947/81/0000-0014/$0 3.SO



262 E. E. GRACE AND E. J. VOUGHT

interior. However, this latter property (which characterizes such decompositions in

irreducible continua) is not quite strong enough to ensure the existence of the

decomposition for ^„-continua in general [5, p. 71]. Some of the lemmas in this

paper are proved for ^-continua in general. A 9-continuum is a continuum X that

has the property that no subcontinuum separates X into more than a finite number

of components. It is an open question whether every 0-continuum is a 0n-con-

tinuum for some n. [See added in proof.]

Clearly a #„-continuum is a 9n+x-continuum for any n > 1. A simple closed curve

is an example of a 9X-continuum, as is an indecomposable continuum. Any

continuum irreducible about n points is a ^„-continuum and a 0-curve itself is a

#2-continuum. If A is a subset of the continuum X, then T(A) consists of A together

with all points x £\ X \ A such that there does not exist an open set U and a

continuum 77 such that x £\ U c H a X \ A. Also, T°(A) = A and T"(A) =

T(T"~X(A)) for any positive integer n. It is known that if ^4 is a connected set, then

T(A) is a continuum. The interior and closure of A are denoted by A° and A or

c\(A), respectively. The following result, due to R. W. FitzGerald [1, p. 169], is

crucial in the development of this paper.

Theorem (FitzGerald). If X is a compact, metric 9n-continuum and, for some

natural number k, Tk(x) = Tk+X(x) for all x £\ X, then X admits a decomposition

ty = {r*(x)|x El} such that ^ is the unique minimal decomposition with respect

to being monotone, upper semicontinuous and having a quotient space that is a finite

graph.

By the minimal decomposition is meant a decomposition of X that has the

aforementioned properties and refines (in the sense of set inclusion) every other

decomposition with these properties. There is nothing in FitzGerald's theorem to

prevent the decomposition ^ of X from being degenerate, e.g., if X is an

indecomposable continuum. The initial goal here is to characterize nondegenerate

monotone decompositions in which the elements have void interiors. This is done

in Theorem 1 using FitzGerald's result and Lemma 1. The principal goal, Theorem

2, is a sharpening of Theorem 1 giving the best possible information about the

decomposition elements.

Lemma I. If X is a 9-continuum, P the projection map of X onto a monotone, upper

semicontinuous decomposition of X the elements of which are nowhere dense, and

[p, q] is an arc in P(X) such that (p, q) = [p, q] \ {p, q} is open, then any subcon-

tinuum M of X such that P(M) D (p, q), contains P~x((p, q)) and hence

c\[P~x((p, <?))] is a continuum that is irreducible between the subcontinua P~x(p) and

P\q)ofX.

Proof. Suppose there is a subcontinuum M of A" such that P(M) D (p, q), but

M ~z> P~x((p, q)). Then U = Px((p, q)) \ M is a nonvoid, open subset of X and so

there is a sequence tx, t2, . . . of members of (p, q) that is increasing in the

separation order from/) to q such that P~x(t¡) <Z_ M, for i = 1,2,.... Furthermore,

the sequence can be chosen such that the collection {P_1((i(., /, + ,)) \ M\i is a
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natural number} is an infinite collection of nonvoid, disjoint open subsets of X. It

follows that the complement of the union of this collection is a subcontinuum of X

but this is impossible since A" is a 0-continuum. So M D P~x((p, <?)) and this then

implies that cl[P~x((p, q))] is irreducible from P~x(p) to P'x(q).

Theorem 1. Let X be a compact, metric 9n-continuum. Then X admits a monotone,

upper semicontinuous decomposition ty such that the elements of ty have void interior

and the quotient space X/6^ is a finite graph if and only if [T(H)]° = 0 for every

subcontinuum 77 with void interior. Furthermore <î> = { 7,"("+1)(x)|x £\ X).

Proof. Suppose X has the required decomposition and let 77 be a subcontinuum

of X such that 77° = 0. Since X/6!) is a finite graph, it follows from Lemma 1 that

there exists d £\ ty such that Had. Then T(H) c T(d). Due to the fact that

X/ty is a finite graph (hence locally connected) it must be that T(d) c d. Since

d° = 0 then T(H)° = 0.

Now assume that whenever 77 is a continuum with void interior, it follows that

T(H)° = 0. We will show that Tn(n+X)(x) = Tn(n+X)+X(x) for all x £\ X. Then

according to FitzGerald's theorem, {r"(n+1)(x)|x £\ X) will be the unique minimal

monotone, upper semicontinuous decomposition such that the quotient space is a

finite graph. Furthermore, by hypothesis,

[r(x)]° = 0,

[r2(x)]°=[r(7X*))]° = 0,...,

[T«n+X\x)]° =[T(T«n+X)-x(x))]° = 0

and so the elements r"("+1)(x) of the decomposition will have void interiors.

First let us show that X contains no indecomposable subcontinuum with non-

void interior. Suppose 77 is such a continuum. Let x £\ H° and denote the

components of X \ 77 by Qx, . . . , Qk. Since T(x)° = 0, let y G 77° \ T(x) and let

N be a subcontinuum of X such that yeAr°cArcAr\{x}. Because 77 is

indecomposable N ¡2 H and therefore A/ n U f_ x Q¡ <¥* 0. Without loss of gener-

ality suppose there is an integer j such that N n Q¡ ¥= 0, for I < i < j < k and

TV n Ô,- = 0 for j < i < k. For each i such that y < / < k, let C, be a composant

of 7/ such that C, n Q¡ ¥= 0. Take C,' to be a subcontinuum of C, such that

C! n W ¥= 0 and C,' n Q,=£0.H follows that

N' - n u Í U a) u ( U   c;

is a continuum, and X \ N' is a nonempty subset of H°. But X \ N' has at most n

components. If K denotes one of these components, then K = K° =£ 0. Since

Ar°cAr\Arc77°it follows that K is a subcontinuum of 77 that has a nonvoid

interior. But K c 77 \ {y) and this contradicts the indecomposability of 77.

Suppose Tn{n+ X)+X(x) \ Tn(n+X\x) * 0 for some x and let

y E rn(n+1)+l(x)\ r"<" + 1>(x).
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Let E0 = {y} and let Bx be a continuum such that

y S B° c Bx c X\ Tn(n + X)-X(x).

Denote the closure of the component of X \ Bx that contains 7v,(n+1)_1(x)

by F{. Let Ex be the closure of the component of X \ F[ that contains y. Assume

that the continuum Ek has been defined for some k < n(n + 1), so that Ek c

X \ T"(n+X)~k(x). There exists a continuum Bk + X such that Ek c Bk + X c Bk+X c

X \ Tn(n+X)~ik+X\x). Denote the closure of the component of X \ Bk+l that

contains Tn("+X)~(k+X)(x) by Fk + X. Let Ek + X be the closure of the component of

X \ Fk+X that contains Ek. By induction, continua Ex, . . ., En,n+X) have been

defined such that y E [Ex]° and, for 1 < / < n(n + 1), £,_, c [F,]° and E¡ n

r«(»+i)-«(x) = 0. For l <;<„(„ + i); let F, be the continuum cl(A- \ F,). For

2 < i < «(» + 1), let 77, = cl[A" \ (F,_, u F,)]. Also, let Hx = £, and 77„(n+1)+, =

Fn(n+Xy Note that each component of H¡ intersects both 7s,_, and F„ for / =

2, ...,«(« + 1).

If, for some y such that 1 < j < «(« + 1), all the components of 77, are irreduc-

ible between EJ_l and 7=}, then y £\ 7v,("+1)+1(x). To see this let C„ C2, . . . , Ch be

the components of Hj. Since C, contains no indecomposable subcontinuum with

nonvoid interior (relative to C¡), for 1 < / < A, there exists a decomposition

C, = 7Í,. u 7.,- such that K¡ n Ey_x^0, Kt n Fj = 0 and 7.,. n Fy ̂  0, L¡ n Ej_x
= 0. But Tnin+X)'j(x) c F/ and r"««+»-C/-»(x) c FJy so

r"("+1>-^-2>(x)cF;. u ( U l\.

It follows that

T«*+l>-v-3}(x) c /;. u Í U ¿,] u Í U k\ c t=;_,

if y ^ 1 and y £\ 7""("+1)+1(x) if j = 1. Consequently r"("+,)+1(x) c F, and be-

cause y £ F, it follows that y S F"(''+1)+I(x), a contradiction. Thus, for 1 < j <

«(« + 1), there must be some component of 77, that is not irreducible between Ej_x

and Fj.

Let k be the maximum number of components of any of 772, 773, . . . , 77n(n+1)

and let us show that a subcontinuum can be found that separates X into at least

n + 1 components. If k > n, let 77, be one of the sets that has k components. Then

let C be a proper subcontinuum of one of the components of Hj that is not

irreducible between E,_i and Fj such that £,_, n C ¥= 0 and Fj n C ¥= 0. It

follows that X \(Ej_x u Cu F}) c 77, and has at least & components, where

k > n. Since A is a 0n-continuum this is impossible and so A < n.

Consider the sets 77,, . . . , Hn+X. Since each of these sets has at most n compo-

nents, there exists an integer j such that 1 < j < n and Hj has at least as many

components as Hj+X. If each component of 77, intersects at most one component of

HJ+X, then let C be a component of 77, that is not irreducible between Fy_, and Fr

Let C be a proper subcontinuum of C that intersects both Ej_x and Fj. Then
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ôi = Ej_x u (Hj \ C) u C u 77,.+ , is a continuum, F, \ ß, c C and F, + , \ ß, =

C° \ C ¥= 0. If, on the other hand, some component 77, intersects more than one

component of 77,+ , then some component C of 77, intersects only components of

77,+ , that are also intersected by some other component of 77,. Then Qx = Ej_x u

(77, \ C) u 77,+ , is a continuum and 77, D £,+ , \ Qx = C° =£ 0. In either case, it

follows that Rn+X = ß, U (77,+2 u • • • U77„+,) is a continuum (if j = n, then

Rn+X = Qx) and En +, \ Rn+, is a nonvoid subset of the interior of En+,.

Next consider the n + 1 sets 77„ + 2, . . . , 772n+2. Repeating the above argument,

we can find an integer j such that n + 2 < j < 2a + 1 and continuum ß2 such

that ß2 D 77, + ,, F,+ , \ Q2 c 77, and F,+ , \ ß2 ^ 0. Now 7?„+, D 77„+, and each

component of Q2\ En+X has a limit point in 77n+1. Hence R2n+2= 7?„+, u

(Ô2X ^+1) U (77, + 2 u • ■ • UT72n + 2) is a continuum and E2n+2\ R2n + 2 has at

least two components, each in the interior of E2n+2. After this procedure has been

followed n times, a continuum 7?n(n + 1) is obtained such that Fn(„+1) D Ä„(n+1)

and F„(„+1) \ Rn(„+i) has at least « components, all lying in the interior of F„(n+1).

But X \ £„(„+,) ¥= 0, so X \ 7?n(n+1) has at least « + 1 components, which is

impossible. This contradiction shows that Tn(n+X)+X(x) \ Tn(n+X\x) = 0 and,

therefore, that F"("+1)+1(x) = Tn(-n + X)(x), for all x E A". This completes the proof

of the theorem.

As corollaries of Theorem 1 are the following two theorems.

Theorem (Kuratowski). 7/A' is an irreducible continuum, then X has a monotone

upper semicontinuous decomposition, the elements of which have void interior and

whose quotient space is an arc, if and only if X contains no indecomposable

subcontinuum with nonvoid interior.

Proof. For an irreducible continuum X, the condition that X contains no

indecomposable subcontinuum with nonvoid interior is equivalent to the condition

that if 77 is a subcontinuum of X with void interior, then F(77) has empty interior

also. Now A is a 02-continuum and Theorem 1 yields the conclusion that the

quotient space is a finite graph. However, the quotient space is also irreducible

between two points so in fact must be an arc.

More generally, if A- is a continuum irreducible about n points, then the two

conditions are equivalent and since A" is a 9n-continuum, Theorem 1 yields the

desired conclusion with a finite graph for the quotient space. Since the quotient

space is also irreducible about n points, it is a dendrite (a metric tree). This general

result is a theorem of Vought [6, Theorem 1].

Theorem (Vought). If X is a continuum that is separated by no subcontinuum

then X admits a monotone, upper semicontinuous decomposition the elements of which

have void interiors and for which the quotient space is a simple closed curve if and

only if for every subcontinuum 77 with void interior it follows that T(H) has void

interior.

Proof. Since A is a 0,-continuum the conclusion follows with a finite graph for

the quotient space. However, the quotient space is clearly a 9X-continuum itself so it

must be a simple closed curve.
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As seen in the proof of Theorem 1, the characterizing condition for the decom-

position using the set function T implies that A contains no indecomposable

subcontinuum with nonvoid interior. For an example of a 9X -continuum in which

this latter condition will not ensure the nondegenerate decomposition, see [5, p. 71].

However, it might seem plausible to expect the condition that [F(x)]° = 0 for all

x E A to yield the desired decomposition. This is stronger than requiring that X

not contain any indecomposable subcontinuum with nonvoid interior (the implica-

tion between these two conditions can be proved by means of the third paragraph

in the proof above, where all that is needed is that [F(x)]° = 0 for all x). But even

so, this additional strengthening of the hypothesis will still not be enough to give

the decomposition, as the following example shows.

Example 1. A 9X-continuum X such that [F(x)]° = 0 but F2(x) = X, for all x in

A.

In the x_y-plane, let M be the plane indecomposable continuum with one end

point, described by Knaster [3, p. 204]. Let K be a (topological) Cantor set in M

intersecting each composant of M in at most one point but not intersecting all

composants of M. Such a set exists by [4, p. 305]. Let C be the standard Cantor set

in the interval [0, 1] on the z-axis. Let A be a homeomorphism from {(c„ c-f) in

C X C|c, < c2) onto K and extend A to C X C symmetrically, i.e., let A(c2, cx) =

h(cx, c2) if c, < c2. Let X be the decomposition space of M X C whose set of

nondegenerate elements is {{(A(c„ c2), c,), (A(c,, cf), c2)}|c, < c2) and let P be the

projection function from M X C onto A. If (q, c) E M X C is not a member of

some nondegenerate element of A, then we will consider (q, c) rather than {(q, c)}

to be a point of X.

The decomposition is easily seen to be, not only upper semicontinuous, but

continuous and to result in a connected space. Hence, A" is a compact metric

continuum.

We wish to show, by an indirect proof, that A is a 0,-continuum. Assume X has a

subcontinuum Y that separates X. First we will show if c E C then either Y

contains the whole "level" L(c) = P(M X {c}) of X or some component of

[A \ Y] n L(c) is dense in L(c). Let c be a member of C such that Y ~2 L(c). Then

there is an open subset C of C and an open subset D' of M such that

(7)' X C) n Y = 0. Let A be a composant of M that does not intersect K. If

y n P(A X {c}) = 0, then some component of [X \ Y] n L(c) is dense in L(c).

Suppose Y n P(A X {c}) ¥- 0 and let (p, c) E Y n P(A X {c}). Let Z be the

closure of the (p, c)-component of lTl[I\ P(K X C)]. Clearly, Z c L(c) and

Z n P(K X C) =?*= 0. Then -nx(P X(Z)), where irx is the projection function from

M X C onto M, is a subcontinuum of M containing p and a point of Ä" but not

intersecting D'. This is impossible since/? E A and K n A = 0. Since the intersec-

tion of any two dense open subsets of M is a dense open subset of M, it follows

that Y separates A between two points (p, cx) and (p, c2), where p E M \ K. From

this it follows that Y separates A between two sets D X C, and 7) X C2 where

(1) C, and C2 are "intervals" in C that are open and closed relative to C, (2)

each member of C, is less than each member of C2, (3) D is an open set in
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M \ P(K X C) and (4) Y <Z_ P(M X [C, u C2]). For each c, in C, and each c2 in

C2, let A(cx, c2) be the (A(c,, c2), c,)-component of [M \ D] X {c,} and let A(c2, cx)

be the (A(c,, c2), c2)-component of [A/ \ D] X {c2}. Then K n ^(c,, c¡) U

A(c2, c,)) t^ 0, since F(^4(c,, c2) u ^4(c2, c,)) is a connected set that intersects both

D X C, and Z) X C2, and 7 separates A between them.

Let Kx = {A(c„ c2)|c, E C, and c2 E C2} and let K2= K \ Kx. Then AT, and tf2

are topological Cantor sets. For each kx £\ Kx and A2 E K2, the A,-component of

M \ D is the A,-quasicomponent of M \ D and does not contain A2, and so, there is

a separation of M \ D between A, and A2. Since Kx and K2 are compact, there is a

separation of M \ D between Kx and /T2, i.e., M \ D = R u S, separated, where

R D Kx and 5 D 7cT2. Then F(7? X [C, u C2]) D P(A(cx, c2) u /l(c2, c,)), if c, E

C, and c2 E C2, so 7>(7? X [C, u C2]) n ^ ^ 0. Also, Y £ P(M X [C, U C2]) so

/•(ÄTj X C) n r^0 and, hence, [A \ F(Ä X [C, U C2])] n K ^ 0. But

P(R X [C, u C2]) is both open and closed in A \ (D X [C, U C2]), since 7? X [C,

U C2] is open and closed in [M X C]\(D X [C, U C2]) and any element of X

that intersects 7? X [C, u C2] is contained in it. It follows from this that Y is not

connected, contrary to the assumption that y is a subcontinuum of X.

We now wish to show that, if x E A, then T(x) = P(M X [ir2(P~x(x))]), where

w2 is the projection function from M X C onto C, i.e., T(x) is the union of the

"levels" of A that x lies on. Since any "level" intersects every other level and since

F2(x) = T( T(x)) contains T( y) for each y in T(x), it will follow immediately that

F2(x) = X, for each x in X.

Suppose A is aposyndetic at P(a, c) with respect to P(b, c) and let 77 be a

continuum contained in A \ P(b, c) and containing P(a, c) in its interior. Without

loss of generality we assume that P(a, c) = (a, c) and P(b, c) = (b, c). Then there

exist open sets 7), and D2 in M \ K and an open and closed "interval" C, in C such

that 7), X C, c H and [D2 X C,] n 77 = 0. Let c £\ Cx and let q be a point in D2

and in the h(c, c)-composant of M but not in the A(c, c)-component of M \ Dx.

Then, since components of M \ Dx are quasicomponents and K is compact, there is

a point set D3 in M \ Dx that is open and closed relative to M \ Dx, contains q

and misses K and part of D2. Then D3 X C, is open and closed relative to

[M X C] \ [7), X C,]. Consequently, P(D3 X C,) = D3 X C, is open and closed

relative to X \ [7), X C,] and so [P(D3 X C,)] \ 77 is open and closed relative to

X \ H. But [F(7)3 X C,)] \ 77 is a proper subset of X \ H and X \ 77 is connected

since A" is a ö,-continuum. From this contradiction we conclude that T(P(a, c)) D

{P(d, c)\d E M) for all c E C. This implies that T(x) D P(M X [ir2(P~l(x))]), for

all x in A".

If C, is a subset of C, then F(M X C,) is connected since, for each two points c,

and c2 of C,, the "levels" P(M X {c,}) and F(A/ X {c2}) intersect in the point

{(A(c,, c2), c,), (A(c,, Cj), c2)}. If C, is an open and closed set then any boundary

point of P(M X C,) is {(A(c„ c), c,), (h(cx, c), c)} for some c, in C, and some c in

C \ C,. From this it follows that T(P(q, c)) c P(M X {c}), if ? ¥- h(c, cx) for all c,

in C \ {c}, and T(P(q, c)) c [F(Af X {c}) u F(M X {c,})], if ^ = A(c, c,) for

some c, in C \ {c}.
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Let x = P(q, c). From the above we see that T(x) c [P(M X {c}) u

P(M X {c,})] = P(M X (c, c,}), if ? = A(c, c,), and otherwise T(x) c

P(M X {c}). In either case T(x) c P(M X [7r2(F~'(x))]) and so we now have

T(x) - F(A7 X [7r2(F-'(x))]). Clearly [F(x)]° = 0 and, as we saw above, F2(x) =

X.

Similar examples of ^„-continua, for n > 1, can be constructed from n copies of

X by identifying all of the bottom "levels" (copies of P(M X {0})). In these

examples [F(x)]° = 0 and F3(x) is the whole continuum, for each point x, but    .

F2(x) is the whole continuum if and only if x is in the identified level.

Question. Is there a 0-continuum X, that is not a 0,-continuum, such that

[T(x)]° = 0 and F2(x) = X, for each x in XI

Next some lemmas are established for the purpose of proving the main theorem

which is the result of replacing Tn(n+ X)(x) by F2"(x) in Theorem 1.

Notation and terminology. If 6 is a collection of point sets and 6' is a subcollec-

tion of 6 (is a point of (2*), then 7(6', 6) is the collection of all members of 6 that

intersect some member of 6' (contain the point 6', respectively), 72(6', 6) =

7(7(6', 6), 6), etc., and 7.(6) is the minimum number i such that 7'(x, Q) = Q for

some point x in 6*. Let N(G) be the number of elements of 6.

Lemma 2. If 6 is a nonvoid, coherent collection of point sets having either 2« or

2n — 1 members, for some positive integer n, then L(G) < n.

Proof. The proof is by induction on N(G). The conclusion obviously holds if

N(G) = 1 or 2. Assume the conclusion holds for all 6 such that N(G) < A and

assume 6 is a coherent collection of sets such that A/(6) = k. Let n be such that

k = 2« or A = 2« — 1. Let A, E 6 be such that 6 \ {A,} is coherent. Let A2 and A2

be such that 6 \ (A,, A2) and 6 \ {A,, A2} are coherent. If either A, n A2 or A, n A2

is void, then rename if necessary so that A, n A2 is void. In this case or if both

intersections are nonvoid, Q' = G \ {A„ A2} is a coherent collection and each of A,

and A2 intersects some member of 6'. Now N(Q') = N(G) — 2 < A, so there is a

point x in (&')* such that 7m(x, 6') = 6', for some m < n - 1. But 7m+1(x, 6) =

7(6', 6) = 6 and m + 1 < n, so L(6) < m + 1 < n.

Lemma 3. Let X be a 9-continuum, P be the projection map of X onto a monotone,

upper semicontinuous decomposition of X with nowhere dense elements, and [p, q] be

an arc in P(X) such that (p, q) = [p, q] \ {p, q) is open. Then if r and s are two

points in c\[P~x((p, q])] \ P~x((p, q\), then r E T(s).

Proof. Suppose r £\ T(s), i.e., suppose there is a subcontinuum H of X such that

/•E77°c77cA\ {s}. Let z be a point of P~x((p, q)) n 77 such that the z-com-

ponent Z of H n cl[P~x((p, q))] contains a point of P'x(p). Let p' = P(z) and

M = Z u P~l([p', q])- By construction, M 2! P~x((p, q)), since s £\ M and s E

cl[P ((p, q])]. This contradicts Lemma 1, so r E T(s).

Lemma 4. If X is a 9-continuum such that (U,*i T'(x)\x E A"} is an upper

semicontinuous decomposition  of X with  nowhere dense elements onto a  locally
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connected 9n-space, then for each x in X, U fLx T'(x) = F2"(x) and there is a y in

T2n(x) such that T"(y) = T2n(x).

Proof. Let P be the projection function from X onto the decomposition space,

let x E X and let p = P(x). By [1, Theorem 4.9, p. 158] any locally connected

9n-continuum has order < 2n at each of its points so there exist points qx, . . . , qk

of F(A") \ {p}, for some A < 2«, such that [p, q¡] n [p, qß = {p} unless /' = j and

U j-x[p, q¡) is an open neighborhood of p. For i = 1, . . . , A, let C, =

cl[p-x((p, q¡])] \ P-X((p, q¡}) and let 6 = {C„ . . . , Ck). But G* = P~\p), since

P~x(p) is nowhere dense and the decomposition is upper semicontinuous. Also, 6

is a coherent collection since P~x(p) is connected. Since N(G) < 2«, it is clear that

72n(x, 6) = 6. Also, it is clear, from Lemma 3, that [7'(z, 6)]* c T'(z), for each z

in 6* = P~x(p) and each natural number i. But T2"(x) c U°°-i F*(*) = ^ "'(/>)

= e*sor2n(x)= U ,1, F'(x).

It can be seen using Lemma 2 that 7.(6) < n, i.e., it can be seen that there is a

pointy in 6* such that 7"(y, G) = G and hence such that [7"(y, 6)]* = P~l(p). It

then follows that T"( y) = F2n(x).

The next theorem, the main result of the paper, is an immediate consequence of

Theorem 1 and Lemma 4.

Theorem 2. Let X be a compact, metric 9n-continuum. Then X admits a monotone,

upper semicontinuous decomposition ty such that the elements of ^D have void interior

and the quotient space X/ty is a finite graph, if and only if [F(77)]° = 0 for every

subcontinuum H of X with void interior. Furthermore, ty = {r2,,(x)|x E A"}.

To see that no exponent smaller than In will suffice in Theorem 2, consider the

following example.

Example 2. For any positive integer n, there is a 9n-continuum Xn and a point x

in Xn such that F2"(x) i- T2n~x(x) and such that [T(H)]° = 0 for every subcon-

tinuum H of X with void interior.

Let Kx, . . ., K2n be 2« disjoint copies of the sin 1/x continuum, and, for

i = 1, . . . , 2/1, let a¡ and A, be the end points of the limiting arc in K¡, and let c, be

the other end point of K¡. Let A"„ be the union of Kx, ..., K2n with the following

identifications: A, and ai+x are identified, for i = 1, . . . , 2n — 1 and c, and c2n+,_,

are identified for / = 1.n, The unique minimal decomposition of Xn with

respect to being upper semicontinuous with F-closed elements yields a space

homeomorphic to the union of n circles of different radii that are all tangent at one

point. The only nondegenerate "point" in the decomposition space corresponds to

the common point of tangency and is the union of the limiting arcs (with

identifications). The decomposition space and Xn are readily seen to be ^„-spaces.

Let x = ax, then it is easily seen that 7"(x) = \j j_,[o,, b], for / = 1, . . . , 2«,

where [a¡, b¡] is the projection in Xn of the limiting arc in K¿, and, hence F2"(x) #

^"-'(x) (but, of course, F2"+1(x) = T2n(x)).

Added in proof. Jo Ford has constructed a 0-continuum in 7?3 that is not a

9n-continuum for any n [On n-ods (to appear)].
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H. S. Davis called 0-continua weakly irreducible continua [A note on connected-

ness im kleinen, Proc. Amer. Math. Soc. 19 (1968), 1237-1241].
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