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THE GENUS OF A MAP
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ABSTRACT. The elements [ '] (f': X’ — Y’) of the genus —G(f)ofamapf: X - Y
are equivalence classes of homotopy classes of maps f’ which satisfy: For every
prime p there exist homotopy equivalences h,: X, — X, and k,: ¥; — ¥, so that
f,h, ~ kf;. The genus of f under X — G*(f) and the genus of f over Y — Gy(/)
are defined similarly.

In this paper we prove that under certain conditions on f, the sets G(f), G*(f)
and Gy(f) are finite and admit an abelian group structure. We also compare the
genus of f to those of X and Y, calculate it for some principal fibrations of the form
K(G,n — 1) > X - Y, and deal with the noncancellation phenomenon.

1. Introduction. In this paper we use the structure of the genus of an Hy-space,
which was investigated by Zabrodsky [8], to study the structure of the genus of a
map f: X - Y. In some cases we calculate the genus and compare it with those of
X and Y.

All spaces considered are pointed and of the homotopy type of simply connected
CW-complexes of finite type and either with a finite number of nonzero homology
groups or with a finite number of nonzero homotopy groups.

Throughout this paper we work in the homotopy category. We recall that for a
CW-complex X, the genus of X is the set G(X) of homotopy types of spaces Y with
Y, ~ X, for every prime p (where (), denotes the p-localization operation). We
define analogously the genus G(f) of f, G¥(f)-the genus of maps under X and
G(f) the genus of maps over Y.

1.1. DEFINITION. Let f: X — Y be a map. The elements [f'] € G(f) (f': X' > Y’)
are equivalence classes of homotopy classes of f* which satisfy: For every prime p
there exist homotopy equivalences h,: X, — X, and k,: Y, — Y, so that f,h, ~ k.f,.
(We denote the genus of f either by G(f) or by G(X, Y, f).)

The elements [f'] € G*(f) (f: X — Y’) are equivalence classes of homotopy
classes of maps f° which satisfy: For every prime p there exists a homotopy
equivalence k,: Y, — Y, so that k,f; ~ f,. (Two maps f: XY, i=1,2, are
equivalent under X if there exists a homotopy equivalence k: Y, — Y, with
kf 1 ~f2~)

The elements [f'] € G, (f) (f': X' — Y) are equivalence classes of homotopy
classes of maps f’ so that for every prime p there exists a homotopy equivalence A,:
X, > X, so that f,h, ~ f,.

To state the main results of this study we need the following notations: Let ¢ be
an integer, X a space and f: X — Y a map. Denote by Z, the group Z/tZ, by Z*
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the units in Z,, by /(X) the number of integers n with QH"(X, Q) # 0 and by
[f, f], the set of pairs (h, k) of t-equivalences h: X — X, k: Y — Y satisfying
kf ~ fh. (A t-equivalence of X is a map f: X — X so that H*(f,Z) ® Z, is an
isomorphism for every prime p which divides ¢.)

THEOREM L. Let f: X — Y be a map which satisfies one of the following conditions:

(@ f: X — Yisan H-map, H*(X, Q) and H*(Y, Q) are primitively generated and
H*(f, Q) is either a monomorphism, an epimorphism, an isomorphism or zero.

(b) X = S~ ! Y is an H-space and H*(Y, Q) is primitively generated.

©X=8"1y=gm"1

Then G(f) admits an abelian group structure and there exist integers k and r
(depending on X, Y and f) and an exact sequence

[£1]:5[(Z)/11*5 6(H) >0

where o is the composition

[ £, f]; > au(QH*(X, Z)/ torsion @ Z;) X aut(QH*(Y, Z)/torsion @ Z;)

e x e [(2#)) £1]DOD L[ (z#)/ 1]~

THEOREM II. If f: X —> Y is a map satisfying the conditions of Theorem 1 then
Gy(f) admits an abelian group structure and there exist an integer t depending on X,
Y and f and an exact sequence

[ 5[0/ 11 5 6 >0
where [f, {1 = {(h, 1) € [f, f17).

THEOREM I11. Let f: X — Y be a map satisfying one of the following conditions:

(@) X, Y are H-spaces; H*(X, Q) and H*(Y, Q) are primitively generated, and
H*(f, Q) is either a monomorphism, an epimorphism, an isomorphism or zero.

(b) X = S~ Y is an H-space, and H*(Y, Q) is primitively generated.

Then G*(f) admits an abelian group structure and there exist an integer t
depending on X, Y and f and an exact sequence

A1 5120/ 211 5 6% >0

where [ f, f1} = {(1, k) € [/, f1;})-

The proof of Theorem I relies heavily on the fact that for maps which satisfy the
conditions of Theorem I, a map f': X' — Y’ belongs to the genus of the map f:
X — Y iff for every prime p there exist p-equivalences h: X' > X, k: Y' > Y so
that fh ~ kf’. The proofs of Theorems II and III rely on similar facts. These facts
are proved in §2. The main theorems are proved in §3. In §4 some simple
conclusions are derived. §5 deals with the kernel of the obvious map G(X, Y, f) —»
G(X) X G(Y) and §6 applies this map and the main theorems to calculate the
genus of some principal fibrations of the form K(G,n — 1) > X — Y. The last
section, §7, deals with the noncancellation phenomenon.
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This paper constitutes a part of the author’s Ph.D. thesis written at the Hebrew
University under the supervision of Professor A. Zabrodsky. It is a pleasure to
thank Professor Zabrodsky for his useful advice.

2. Localization and p-equivalences. Let (X, u) be an H-space and let (Y, ¢) be a
co- H-space. We shall denote by + the operation on [Z, X] and [Y, Z] induced by
u and ¥, respectively, by ¢, the n-power map

¢"=M(Mxl)...(”xlx...xl)o(Axlx...xl)...A
\/V-\/ \/V\/

A n—1

(A-the diagonal)
and by 7, the map

=% (FVIV--- VD) e @GVIV:---VD)--- (VDY
S~ N—— oy —
(% —the folding map).
2.1. THEOREMS (HILTON, MISLIN, ROITBERG, SEE [3, 11,6]). Let X be a connected
H-space and W a space with a finite number of homology groups. For every map f:
W, — X, there exist an integer n, (n,p) =1, and a function g: W — X so that
8 ~ uf.
Moreover, given two functions f, g: W — X so that f, ~ g,, there exists an integer
m, (m, p) = 1, so that ¢,.f ~ ¢,.8.

2.2. THEOREM. Let f: X > Y be a map and let | be an integer. Suppose | =
pl‘vl A 'p;v,'
(a) If f is an H-map then:

(1) Given two spaces X', Y’', a function f': X' — Y’ and homotopy equivalences
h,: XPI, - X,, kp,: Y, > Y, satisfying fp‘hpl ~ kp' f’f‘ (r=1,...,5), there exist I-
equivalences h: X' — X, k: Y' — Y so that fh ~ kf’.

(2) Given a map f': X' — Y in Gy(f), there exists an l-equivalence h: X' — X so
that fh ~ f'.

(3) Given a map f': X — Y’ in GX(f), there exists an l-equivalence k: Y' > Y
so that kf' ~ f.

(b) If Y is an H-space and X = SX " then:

(1) Given two spaces X', Y’', a function f': SX’' — Y’ and homotopy equivalences
hpI: (SXx ')p, -X,, kp‘: Y’fi - Yh satisfying fplhp, ~ kp, f’fi (i=1,...,s), there exist
l-equivalences h: SX' — X, k: Y' — Y so that fh ~ kf'.

(2) Given a map f: SX’ - Y in Gy(f), there exists an l-equivalence h: SX' — X
so that fh ~ f'.

(3) Given a map f': X — Y’ in GX(f), there exists an l-equivalence k: Y' > Y
so that kf’ ~ f.

©IfX=S"and Y = S* ! then:

(1) Given a function f': X — Y and homotopy equivalences h,: X, — X, k,:
Y, - Y, satisfying f,h, ~ k,f, (i = 1,...,5) there exist l-equivalences h: X — X,
k: Y - Y so that fh ~ kf'.

(2) Given a map f': X — Y' in Gy(f) there exists an l-equivalence h: X — X so
that fh ~ f'.
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PROOF. (a) (1) Since X and Y are H-spaces, by 2.1, for every i there exist integers
Ry Byp (R p) = (ny;, p) =1, so that ¢, °h, and ¢, °k, are induced by
functions h/: X’ > X and k/: Y' > Y.

As fis an H-map, for every i, the p-localization of f(¢,,u o h)) and (¢,,u o k))f" are
homotopic:

Ona,i ° (i),
X, hpi ¢"2,i ° ¢"l,i
Pi Xpi pPi
f’pi fpi fpi
, kpi ¢”l,i ° ¢”2,i
YP: YPi ?Pi

rr > )

pi

Hence, there exist integers n;, (n,, p;) = 1, so that
(Pnbn, KNS ~ b (b, KV ~ D (D0, 1) ~ F(bnPn, 1)

Define m = Il;o pi B = bp)pSpn, > K = 0, /p.Pnn, Ki- Then h =35_, b7 and
k = Zi_, k! are the desired maps. Indeed since =, (h) ® Z, = 2,7 (h)® Zno =
7, (h) ® Zp,-o and A is a p;-equivalence, h is an /-equivalence. Similarly one gets
that k is an /-equivalence. It is clear that fh ~ kf".

(2) Since for every p; there exists a homotopy equivalence h,: X, — X, satisfying
Sobo, ~ f5 = lyh %5 it follows from (1) that there exists an integer n, (n, /) = 1, and
an /-equivalence h’: X’ — X so that fi’ ~ ¢,f".

Assume that n = gy - ... -q;> where every g; is a prime. Since for every g; there
exists a homotopy equivalence h,: X; — X satisfying Johy ~ fqll’ it follows from (1)
that there exist an integer m, (m, n) = 1, and an /-equivalence #”: X’ — X so that
S ~ G

Let a and b be integers satisfying an + blm = 1. Define h: X' > X by h = ¢, 4’
+ ¢,h”. Since w () ® Z, = 7 (¢p,h') ® Z, and h’ is an l-equivalence, h is an
l-equivalence. But fh = f(¢,h' + ¢,,h") ~ ¢, /0" + dpfh” ~ G,0,f" + Spd,f ~
bSansomf ~ f'; hence h is the desired map.

(3) is proved similarly.

(b) (1) Since Y is an H-space and (SX s = SX,, there exist integers n,;, n,,,
(ny;, ) = (ny;, p) = 1, so that the maps hp‘n,,.'i and 4>,,2th are induced by maps h;:
SX'> Xandk/: Y ~Y.
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Consider the following diagram:

] nnl i ° nn2 i ' hpi
Spr . SXPi Xm
To; Fo;
k,. 6, o0, .
, Pj nyi nai
pr Yo - )T,Pi
- |
¢"l,i(ki)pi

Since f, b, N, Mn,, ~ Pn,,Pn, Ky Jp» fOr every i the p-localization of f(h/m,,) and
(¢n, k))f" are homotopic. Therefore there exist integers n;, (n;, p;) = 1, so that

(¢'lg¢n|.ikil)f/ -~ ¢’l‘(¢n|,lkil)f’ ~ ¢'l;(fhi'nn2.;) ~f(h;n"lln"').
Define m = II;_, p;,
b = By s K= o B, K-

Then h =2, h’ and k = X, k/’ are the desired maps: A and k are obviously
l-equivalences and fh ~ kf’.

(2) and (3) follow from (1) in the same way that (2) and (3) of part (a) follow
from (1) of part (a).

(c) (1) Choose localizations ¢;: $” — S, §;: $>~! - §2"~! 50 that the follow-
ing diagram is commutative:

R
&

s, - s Sy
L 134 124
S2m—l - Sp?m-—l — Spfm—l
Since h,p; € (m,S"), and k,y, € (WZm_,SZ’"")p', for every i, there exists an

integer v, (v, p;) = 1, so that h,¢n, and k,y;7, are induced by maps l;, S"—> S"
and k;: S~ 1§21,
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Consider the following diagram:

h;
s” > S”
My, ¥
S” ¢i Sn hpi Sn
14 pi
Foor lf;,,. | f
g2m—1 Vi g2m-1 __pi___,szm—l
y pi Di
nvi ~ d/,’
., g2m-1 ki §2m-1 |

For n = 2m — 1 the diagram commutes; hence in this case fp’(};,.)p (k oS- FOT
n > 2m — 1 the two squares and all the rectangles except the left one are com-
mutative. Therefore in order to prove the existence of p,-equivalences, A/: S" — S”
and k{: 7"~ - §2"~! so that £, (), ~ (k))f,, it suffices to prove

2.1.1. LEMMA. For every map f': 8" — S*"~! and every integer v, there exists an
integer t so that M, f" ~ f'n,:.

PROOF OF 2.1.1. Let f;, f,: S™ — S?™~! be arbitrary maps. Consider the diagram:

Mo

s" - s”"
\E% v
S"\/ S" VT on vV S I §m=1y/ gm=1 3 g
I,V In,

g
S2m—l V S2m—l > S2m—l
Obviously the right-hand square is commutative. Considering the homology homo-
morphisms one can easily see that the left-hand square is commutative as well.
Hence n,(f, + f)) ~ n.f; + nof> and (f; + f)m, ~ fim, + fom,.

Since the order of f’: §" — S*"~! is finite there exist f;, f: S"— §>"!
satisfying f' = f; + f,, (|f;], v) = 1 and |f,|/v® (for some integer a). Hence f,7,.
~ . As for every p;, p;/v, H*(n,, Z, ) = 0, there exists an integer b so that, for
every p;/ v, m, (1 Z, ) =0 (Zabrodsky [9, proof of Theorem 4.1.4]). Hence for
every p;/v, 0 (nub)*' 7,87 '® Z, > 7,8 ® Z,. Consequently there ex-
ists an integer ¢ so that 0 = (7,x): f"‘n §m-1 |f2|77 S2m=1 Define d = abc.
Obviously for every d’ > d, (f; + )0, ~ f,nud and 7,4( f, + fz) ~ Nyefi

Since (|f;|, v¥) = 1 there exists an integer d > d so that v? = 1(|f,|). Consider
the map n,s: $?"~ ' —» §?"~!. This map is an /-equivalence; hence there exists an
integer e so that 1 = n,a.: Vilz, §2=1 _ ily §2m~1 Define ¢ = (d)". Since

f,no’ = (fl + f2)no’ ~flno’ ~fl -~ noffl -~ nv'(fl + f2) = nvifl’

t is the desired integer which completes the proof of 2.1.1.
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Let h: S"—> S", ki: §*"!— 8>~ be p-equivalences satisfying f, (%)), ~
(k))p Sy As kif', fb] € 7,8~ ! there exist integers u,, (u;, p;) = 1, so that fh/y, ~
kif'n, (n,: S"— S"). Consequently we obtain from 2.1.1 that there exist integers
w; satisfying

Jhi Ny ~ Kif My ~ (k:/ nw"')f i’
Suppose that 1,.f" ~ k{f' N, nuf ~ f'ny and p; # 2 for i > 1. Define

v=2' Hp,.",

o= | Batos@pny i<,
! By s i#1;

o < | Kirmos@epy 0= 1,
' ki/ nu"'lno/pfi’ i % 1;

h=Xh, k=Dk
Obviously 4 and k are /-equivalences. In order to prove that fh ~ kf’ it is enough
to prove that (Z; k" )f' ~ Z(k/' f").

Let 4;: $7"~1— §2m~1 x (52"~ 'y~ be the inclusion into the jth factor. There
exists a map a: $¥" ! X (§2"~'y¥~! - §2m~! 50 that for every j > 1 the diagram

S2m—1
y iy
7
S2m——l ;(S2m—l)s—l _o_‘_>s2m—1
l’l 1
S2m—l

is commutative. Therefore the following diagram is commutative:

« T &

K 2m—1 2m—1ys—1 2m—1 i

K £ x 1] ',f s x ($2m-1y s
i=2 lv , [ 96 v @viv v
T \/ oo
5 x syl gm-1y aygimot AV ZVIIVEY oy Ly g2met
v o ol Ky
'A, ] Kifv VY 2‘, Ik,fv---vzc,f
VRTRVE

WV 1V VD)o ero (VDY

(&'(x) = (x,...,x)), namely X (k/f)=a- (kif < ILkzf /27) o .



8 SARA HURVITZ

Consequently the commutativity of the diagram

s AS S Sn)s—l k,,f,
klf x n !
f fxay Py
kK x 1 —

g2m—1 > §2m—1 (S2m-1)s—1 i>1 2f > §2m-1 o (S2m—l)s—l

le

implies that (Z; k/)f' ~ Z (k! f").

Since for any two maps g,, g8,: S" — S", f(g, + &) ~ fg, + fg,, (2) follows from
(1) in the same way that (2) of part (a) follows from (1) of the same part.

Notation. Let X be an Hj-space, denote by N(X) the least integer satisfying
either, for every n > N(X), m,X = 0 or, for every n > N(X), H,X = 0. (Recall that
we consider only spaces with N(X) < o0.)

2.3. COROLLARY. (a) Given an H-fibration F — X —f> Y; if H*(f, Q) is surjective
then Gy(f) = 0.

(b) Given a fibration F — X i) Y so that Y is an H-space and X is an Hy-space: If
H*(f, Q) is injective then G*(f) = 0.

(c) (a) and (b) hold also for a fibration of the form F — SX — Y where Y is an
H-space.

PROOF. (a) Let F—» X —f-> Y be an H-fibration and let / = II, . y|torsion 7, X| -
[torsion a, F| where N = max{N(X), N(Y)}. By Theorem 2.2 there exist /-equiva-
lences h: X’ — X and h’: F — F so that the following diagram commutes

Q

FF -5 x f
I lh
F -5 X

~
Y
7
f
We shall prove that 4 is a homotopy equivalence.

As hy: 'm X' >'n, X and hy: ‘'n F’ —>'n,F (‘m,X = torsion(w,X)) are isomor-
phisms and as h, 4’ are O-equivalences, h,: 7, X’ /torsion —» 7, X /torsion and hy:
7, F’/torsion — 7, F /torsion are monomorphisms, so are hy: 7, X’ — 7, X and hy:
7,F" — 7, F and h is a homotopy equivalence if and only if A, is a surjection.

Consider the following diagram:

’ fé a, ’
mnX - @Y - @ _F
Lhy I LAy
B 3

mX - @Y > @, _,F
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Let v € 7, X be of infinite order. As H*(f, Q) is surjective, H,(f, Q) and 7 () ®
Q are injective and so is ,(f)/torsion; hence w = f,v is of infinite order as well.
0= 0w = hyd'w; hence 9'(w) =0 and there exists v’ € 7,X’ so that fyo' = w.
Hence, v — hyv’ € ker f, C torsion 7, X C im hy, v € im hy and h, is surjective.

(b) and (c) are proved similarly.

3. The structure of G(f), G*(f) and G,(f). In this section we use Zabrodsky’s
method of constructing the genus of an Hj-space (with a finite number of
homotopy or homology groups—Zabrodsky [8]) to obtain elements in the genus of a
map f: X — Y where X and Y are H-spaces. We go on to prove that every element
in the genus of a map which satisfies the conditions of Theorem I is obtained in
this way. The same method is also good for constructing G*(f), (Gy(f)) for maps
which satisfy the conditions of Theorem III (I).

3.1. DEFINITIONS AND NOTATIONS. Let P be the set of all primes. For any integer ¢
denote by P, the set of all primes which divide ¢ and by ¢ the set P — P,

Let X be an Hg-space, i.e. H*(X, Q) is a free commutative graded algebra.
Denote by [X, X], the set of homotopy classes of t-equivalences f: X — X. Denote
by #(X) the number II, (yx,)|'H"(X)|, by K(X) the space K(QH*(X, Z)/torsion)
and by /(x) the number of integers n for which QH"(X, Q) # 0. Let I" be a
splitting Hom°(QH*(X, Z)/torsion, QH*(X, Z)/torsion) - [K(X), K(X)]:
QH*(I'(f), Z)/torsion = f.

Let A be an n X n matrix. We shall say that 4 is diagonal if

A, = {Xi’ i = j,i < min(m, n),
v 0, otherwise

(some of the A;’s may be zero).

Suppose f: X—>Y is a map and X and Y are Hjspaces. Let By =
{Xmpp Xy« + + > Xy}, dim x,,, = mj, m{ <mj, and By = {y,,, y,, ...,y,,,} dim y,
=n/, n < ., be bases for QH*(X, Z)/torsion and QH*(Y, Z)/torsion in which
QH*(f, Z)/torsion is represented by a diagonal matrix 4.

Assume that QH™(Y, Q) # O forj=1,...,(X), m; <my < ... <myy, and
that QH™(Y, Q) # 0 for k =1,...,Y), n) <ny < ... <my,. Obviously for
every 1 <i <r there exists a j (1 <j </(X)) so that m; = m;, and for every
1<i <s there exists a K (1 < k < I(Y)) so that n; = n,.

Let f = I,«nH"(X, Z)| (N = max{N(X), N(Y)} and let y: X - K(X), ¢:
Y — K(Y) be rational equivalences realizing {1 s 1 ) and {zjy,,‘, cees ty,,,}
respectlvely Denote by ¢ the least common multlple of 6, 11, vI‘H"(Y, Z)|,

I, < vl m,(fiber )|, II, « y|7,(fiber ¢)| and the nonzero elements of 4.

Denote by D C Z"®*"™ the set of pairs (d,d"), d = (4, ...,d,, ) E Z'®,

=(dy,...,d, JEZ 1Y) satisfying the following conditions:

(a) Forevery i, (d,, t) = (d,,, 1) = 1.

(b) If QH"(f, Q) is a monomorphism and QH™(Y, Q) # O then d, /d,.

(c) If QH™(f, Q) is an epimorphism and QH"™(X, Q) # O thend, /d,.

(d) If QH™(f, Q) is an isomorphism then d, = d,.
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3.2. THEOREM (ZABRODSKY [8]). Let X be an Hy-space with QH™(X, Q) # 0 for
j=1,...,I(X) and let Y: X — K(X) be a rational equivalence. Suppose t(X, ) is
an integer divisible by 11, ¢ nx|'m,(fiber Y)|.

Then G(X) admits an abelian group structure and there exists an exact sequence

« 4
[X’ X]t(x,¢) - [(Zt‘(z\’.w))/ * I]I(X)“‘) G(X) -0

where a is the composition
. |det|
[X, X, .4, —> 20U QH*(X, Z)/ torsion ® Z,xp5) = [ (ZFxuy)/ %1 ]'®
and § is given as follows: Let d,, . . ., dyx, be integers satisfying (d;, «(X, {)) = 1 for
every i and let 1, QH*(X, Z)/torsion — QH*(X, Z)/torsion satisfy
det(Z,,

..... dixy

..... |

QH™(X, Z)/ torsion) = d.. Consider the following pull-back diagram
X - X
\) W
(L, ..., )
KX) S k)

If X has a finite number of homotopy groups define £(d,, . . . , dyy,)) = X and if X is
finite dimensional define §(d,, . . . , dyxy) = HLyp, x(X). '

3.3. DerFINITION. Let X be an Hjspace so that QH™(X, Q)+ 0 for i =
1,...,X(X) and let f: X — X be a map. Suppose d = (d,, . . ., dyxy) € Z'®. We
say that f realizes d if, for every i, det(QH™(f, Z)/torsion) = d,.

3.4. PROPOSITION. Let f: X — Y be a map.

(a) If X, Y are Hy-spaces, then for every pair (d,d’) € D there exist a map f:
X' > Y, G(f) and t-equivalences h: X’ — X and k: Y' — Y so that h realizes d, k
realizes d’ and fh ~ kf’.

(b) Let f be an H-map and suppose H*(X, Q) and H*(Y, Q) are primitively
generated. Then for every pair (d, d’) € D there exist an H-map f': X' — Y’ and
H-maps h and k so that (a) is satisfied.

PROOF. Let By, By, @ and ¢ be as in 3.1 and let f: K(X) » K(Y) satisfy g ~ ¢f.
Let a: K(X) — K(X) and B: K(Y) — K(Y) satisfy:

a = [le; (o;: K(Z, m)) > K(Z, m))), det(QH™(a, Z)/torsion) = d,,.

B =118, (B: K(Z, n)) > K(Z, n))), de(QH"™( B, Z)/torsion) = d,.

ga ~ Bg (such a and B exist since, for every i, g*(1,) = A, or g*(1,) = 0).
Consider the diagram

, h
X X
\
K(X) —— K(X) ’
p lg lg ; (3.4.1)
8
K(Y) —— K(Y) ,
Y'/ k \Y
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where X’ is the pull-back of X -i K(X ):— K(X) and Y’ is the pull-back of
Y3 k& k).

Since the lower trapezoid is a pull-back and ¢@fh ~ Bgf, there exists a map f”:
X’ > Y’ so that kf’ ~ fh and ¢f’ ~ gf. Consider the diagram:

o )
X, > KX); “o) X;
VF l& Lf
& (N

Yy - KY); > Y;
{df f: X > Y is a homotopy equivalence f~! denotes the homotopy inverse of f.)
Since this diagram is commutative and its horizontal rows are homotopy equiva-
lences the map f’': X’ — Y’ belongs to G(f).

(b) Choose bases {X,., - Xp}s {Vnp---»>Vn} for PH*(X, Z)/torsion and
PH*(Y, Z)/torsion, respectively, in which PH*(f, Z)/torsion is represented by a
diagonal matrix. (By Curjel [2] such bases exist.) Let ¢: X —» K(X), ¢: Y - K(Y)
realize {t~x,,,/l ey fx,,,r/} and {t},,,l s ey t},,;}, respectively. Obviously ¢ and ¢ are
H-maps.

Let g, a and B be as in part (a). Consider diagram 3.4.1. Obviously # and k are
H-maps and f* € G(f). We shall prove that f’ is an H-map:

Since the maps

(£8),: [X' X X', QK(Y)] [ X' X X, QK(Y)],
(Q),: [X' X X', QY] »[X' X X', QK(Y)]
are ¢ and f equivalences, respectively, the map
(@8), + (Q@),: [X' X X', QK(Y)] ®[ X' X X', QY] -[ X' X X', QK(Y)]

((®@B), + (29),)(a, b) = (2B)4(a) + (29),(b)

is an epimorphism (Arkowitz [1, Proposition 4.3]). This together with the fact that
¢f’ and kf’ are H-maps implies (Arkowitz [1, Proposition 10.3]) that f’ is an H-map.

3.5. COROLLARY. (a) If (d, 1) € D then Proposition 3.4 is true for Gy(f).
() If (1, d’) € D then Proposition 3.4 is true for GX(f).

PROOF. (a) Choose ¢ = @, k = 1,8 = 1.
(b) Choose 0 = Yy, h =1, a = 1.

3.6. PROPOSITION. Suppose X,, X, are H-spaces so that H*(X;, Q) (i = 1, 2) are
primitively generated; Y,, Y, are Hy-spaces; f: X, — X, an H-map, and g: Y, > Y,
a map.

Let By ={x;,...,X,,} be bases for PH*(X, Z)/torsion, and let By =
{(¥ip -+ >V} be bases for H*(Y,, Z)/ torsion. Denote by A and B the matrices of
PH*(f, Z)/ torsion and H*(g, Z)/ torsion in these bases.

There exists an integer t(f, g) depending on X,, Y,, f and g so that: Given a pair of
matrices (over Z) (C,, C,) satisfying C,A = BC,, there exist functions h;: Y; - X,
(i = 1, 2) so that the following conditions are satisfied:
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(a) The matrix of H*(h;, Z)/ torsion|(PH*(X, Z)/ torsion) relative to the bases By,
and By is (f, 8)C..
(b) fhy ~ hyg.

PROOF. It is enough to prove the proposition in case that By and By (i = 1, 2)
are bases in which the matrices 4 and B are diagonal.

Let A be the multiple of the nonzero elements of A and B and let ¢ be as in 3.1.

Let C = {(C), C)| [(Cyl < 1A, |(Cpyl < #A for every i and j, C;4 = BC,}. To
each pair (C,, C,) € @ correspond functions h;: Y; - X; the matrices of which
relative to By and By are A7C; (Zabrodsky [8, Proposmon 1.8]). Since X; and Y, are
t-equivalent to K(X;) and K(Y,), respectively, the t-localizations of fh, and h,g
coincide. Hence there exists an integer s c, so that (¢,(C e hy)g ~ f(¢,‘c s h)).
This together with the finiteness of the set C implies the e)ustence of an integer s
which is good for every pair (C,, C,) € C. We shall prove that s = ¢(f, g).

As A and B are diagonal and C;4 = BC,, for every i and j, (C));a; = by(C));-
If b; = b- b’ where b/(C,); and b’/ a; then

[(C)y/b] - bay = (C, )., 1, = by(Cy)y = bay[(C)y/ (a;/)].

Assume that [(C,);/b] = tl; + c; where |c;| <t or ¢; = 0. For every 1 <k <
max{/;} + 1 define matrices cf, C2 as follows:
c;b, k=1, c,.j[aj,./b’], k=1,
(CH)y=1th, 1<k<[+1,  (Ck)y=1t-[ay/b]. 1<k<l+]1,
0, k>1; +1, 0, k>l + 1.

Obviously, for every k, the pair (C¥, C¥) € € and (C,, C,) = Z,(C¥, C¥).

Let h*: Y, > X, (i = 1, 2) be maps the matrices of which are sC* and which
satisfy fh} ~ h¥g. Since By, are bases for PH*(X; , Z)/torsion and f is an H-map,
the matrices of =, hf (relative to By and By) are sC; and f(Z, hf) ~ 2 hy)g.
Consequently #(f, g) = s.

3.7. REMARK. If C;4 = BC, and C, = 0 (C, = 0) we obtain that

+ ~ hyg(fhy ~ »).

3.8. COROLLARY. Proposition 3.6 remains true if we substitute X, =Y, =
\/ﬁ,m 8™, f: X; — X, a function and replace By and By by bases By and By of
H*(VS™).

PrROOF. Analogous to the proof of Theorem 3.6, since if k;, k,: Y, - X, are
functions the matrices of which (relative to the bases By and By)) are C, and C,
and /|, l,: Y, > X, are functions which satisfy fk, ~ I, g, fk, ~ I,g. Then the
matrix of k, + k, is C, + C, and f(k, + k) ~ (I, + 1,)g.

3.9. CoroOLLARY. If in Proposition 3.6 Y, = X,, By = By we obtain that there
exists an integer t(f, g) depending on X,, Y,, X,, f and g, so that for every matrix C
which satisfies CA = B, there exists a function h: Y, — X, so that:

(a) The matrix of H*(h, Z)/torsion|(PH*(X,, Z)/torsion) relative to the bases
By and By is (f, g)C.

(0) fh ~ by 54 8-
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PROOF. It is enough to prove the assertion in the case that By (i = 1, 2) are bases
in which the matrix 4 of PH*(f, Z)/torsion is diagonal.
Since CA = B, the matrix C is of the form

c, C
Co ( ' 2)
Cc; C,
where C,; is completely determined by A4 and B. The corollary follows from the fact
that every matrix D of the form
0 C
»-(¢, <
G G

can be written as D = 3, g Dy, Where |(D,);| <t for every i and j and D, 4 = 0
for every k.

3.10. CoroLLARY. If in Proposition 3.6 Y, = X,, By = By = a basis for
H*(Y,, Z)/torsion, we obtain that there exists an integer t(f, g) so that for every
matrix C which satisfies A = BC there exists a map k: Y, - X, so that:

(a) The matrix of H*(k, Z)/ torsion|(PH*(X, Z)/ torsion) relative to the bases By,
and By is 1(f, 8)C.

(b) kg ~ &y sy /-

PROOF. Similar to the proof of 3.9.

REMARK. The corollary remains true if one replaces the conditions that X, is an
H-space and f is an H-map by the conditions that X, is an Hy-space and f is a map.

If A and B are matrices denote by 4 * B the matrix (§ %).

If X, Y are H,-spaces and for every 1 < i </ either H%(X, Q) ¥ 0 or H(Y, Q)
# 0 we can identify

Hom%(QH*(Y, Z)/torsion, QH*(X, Z)/torsion) with the set of matrices 42 =
AP ALs - dg

Hom%(DH*(Y, Z)/torsion, DH*(X, Z)/torsion) with the set of matrices 42 =
AP +AD+ - x AP and

Hom%(QH*(Y, Z)/torsion, H*(X, Z)/torsion) with the set of matrices 4 =

A, * A, % --. = A where
2 "

$1

and the order of the matrices 4,2, 4,” is completely determined by
H*(X, Z)/torsion and H*(Y, Z)/torsion.

We denote
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3.11. PROPOSITION. Suppose f: X — Y is an H-map, H*(X, Q) and H*(Y, Q) are
primitively generated and H*(f, Q) is either a monomorphism, an epimorphism, an
isomorphism or zero.

"

Given a fibration F” — X" — Y"” in G(f) and a commutative diagram
A

X" - X
L If (3.11.1)
v 5 x

where h” and k” realize d = (= dml, cey tdm«x)) and d’ = (= dr:.’ ey td,:m),

respectively. Then the map f”: X" — Y” is homotopy equivalent to the map f':
X' — Y', which corresponds to the pair (d,d") (d=(d,,..., dm'(x)), d =
- d,:,m)) in the construction of Proposition 3.4.

REMARKS. (1) The pair (C,, C,) which appears in Proposition 3.6 is equal to the

matrix
( cg cf
ct c?)
(2) When we write in the proof functions which correspond to the matrix

( HCP tzczg)
L,CP  ,CcP)
where t(f’, f”)/ 1, for every i, we mean functions h: X” — X', k: Y” — Y’ so that
the matrices of

H*(h, Z)/torsion|(PH*(X’, Z)/torsion)

and
H*(k, Z) /torsion|(PH*(Y’, Z)/torsion)

y, Cf and , C£
, CP ly Czb,

respectively, and which satisfy f'h ~ kf”. (Such functions exist by Proposition 3.6.)
PROOF OF PROPOSITION 3.11. We shall prove the proposition in the case d = d,
d' = d'. The proof in the case d = (xd,,... +d, )#d or d =
(xd,,..., td,:" # d’ is similar.
By Zabrodsky [8] X" ~ X', Y”" ~ Y’ and F” ~ F’. After localization at ¢ of
diagram 3.11.1 and of the outer square of diagram 3.4.1 we obtain a commutative
diagram:

are

ki
X, ~ X, > X,
h%‘x; /htV
f ¥ t
" kt
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The fact that the left trapezoid is commutative and f’ is an H-map imply (Theorem
2.2) the existence of an integer n,, (n,, 1) = 1,and maps h: X” > X", k: Y" > Y’
so that f'h ~ kf”, h, ~ @by h”'h and k ~ ¢, k, “'%,. As h and k are H-maps
(hh), ~ ¢, h and (kk), ~ P, k” Therefore there exists an mteger n,, (n2, H=1,s0
that ) ~ 0, L (hR) ~ h(9, ) and @, (¢, k") ~ ¢, (kk) ~ k(#,,k). The maps

=¢,h, k' = ¢, k satisfy ¢,,h” ~ hh’ and ¢,k” ~ kk’ (n = n;n,). Consequently
the fact that h and h” realize d and k and k” realize d’ imply that 4’ and k' realize
the same as ¢,.

Let x: ZH*(X", Z)/torsion > H*(X", Z) be a rational splitting, i.e. the map
QH*(X", Z)/torsion 5 H*X", Z )p;oj QH*(X"”, Z)/torsion is a monomorphism
of maximal rank. We shall identify QH*(X ", Z)/torsion with

x(QH*(X", Z) /torsion).

Choose bases for PH*(X’, Z)/torsion and PH*(Y’, Z)/torsion in which
PH*(f’, Z)/torsion is represented by a diagonal matrix M, and bases for
QH*(X"”, Z)/torsion and QH*(Y, Z)/torsion in which QH*(f”, Z)/torsion is
represented by a diagonal matrix N 2. Denote by N the matrix of

H*(f”, Z)/torsion|(QH*(Y", Z)/torsion)

Q
v ()

Let r be the number of generators of QH*(X, Q) and let 7 be the number
of generators of QH*(Y, Q). Define ¢’ = AX(f’, f”) where A is the multiple of
the nonzero elements of M and N. Consider the matrices A2 and A2 of
QH*(K, Z)/torsion and QH*(k’, Z)/torsion, respectively. Since 4’ and k’ realize
the same as ¢, and (n, t') = 1, the matrices (nI)™'- (42 ® Z,) and (nl)™'-
(,Z 2 ® Z,) belong to SL(r, Z,) and SL(7, Z,), respectively. As for every n there
exists an epimorphism B,: SL(m, Z) - SL(m, Z,), there exist matrices E €
SL(r, Z), E € SL(7, Z) so that B(E) = (nI)~'- (42 ® Z,) and B(E) = (nI)™'-
42 ® Z,). Consequently there exist matrices B and B (over Z) so that A2 = nE
+ tBandAQ nE + t'B.

We shall use the conditions on 42, 42 and H *(f, Q) to construct homotopy
equivalences h: X” — X’ and k: Y” — Y’ so that f'h ~ kf”. We shall discuss
separately each condition on H*(f, Q).

(@) H*(f, Q) =

Let h;: X" > X', k;: Y” - Y’ be functions which correspond to the matrix
("68 “tB)yandlet hy: X” — X', ky: Y” — Y’ be functions which correspond to the
matrix (T5% ~4%). Define maps 4: X” - X', k: Y” > Y’ by h = a(h’ + h,) + bh,,
k = a(k’ + k;) + bk,, where a and b are integers satisfying an + bt’ = 1. Since the
matrices of QH*(h, Z)/torsion and QH*(k, Z)/torsion are E and E, respectively,
h and k are homotopy equivalences. Obviously f'h ~ kf” (f is an H-map); hence
h and k are the desired maps.

(b) H*(f, Q) is a monomorphism.

relative to these bases. Obviously
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Assume that A2 is a v, X v, matrix and that A2 is a w; X w, matrix. Assume also
that for every i

n

o5 »i
M, = . and N2= .
' mwn-'s n“'h’:
] Yo, —w, 0 }o—w,
As APM = N242 and (det J,,Q, A) = 1, for every i the matrix 42 is of the form
w, Xw[ C | =
A2 = =
' 0| C
i) (0, — w) X (0, — w)
where |det C,| = n™ and |det C,| = n"~". Define
)\/m,,xi 0
M, = . 0
0 }\/mwp,'
w; X w; w;, X (v; — w),

M’ =M +«M+ - - « M,and B = ANBM'. As B satisfies

t(f, f")BM = M(f', f")NBM’'M = \e(f', f")NBQAI) = N%(f', f")NB = t'NB,
there exist maps h;: X” — X', k;: Y” — Y’ which correspond to the matrix
—«(f,f")B® ~—rB
-«f.f)B” 0
Define h, = ' + h;, k, = k' + k,. As f’ is an H-map, f'h, ~ k, f”. From this
homotopy and from the definition of h, and k, it follows that the matrices of
QH*(h,, Z)/torsion and QH*(k,, Z)/torsion are A’ = A2 — (f’, f")B? and nE,
respectively, and that A’M = nN CF. The last equality together with the facts that
(n,A\) =1 and (B,lQ),g. = 0 for every k and j that satisfy either k > w, or j > w,,
imply that for every i the matrix 4, is of the form

nk;
0 | nk, + U'B, (o, = w) X (v, = w)

where E; € GL(v; — w;, Z), E;’ € GL(w,, Z) and nE’ + I'B; = C:,.
For every i denote by D, the matrix

w; X w;(0 I'D_,:
0 —I'B;i

w; X'w;
[
A, =

*

D, =

(o, = w) X (v, — w)
where (4,),; + £(D;),; = 0 (mod n) for every k and j that satisfy either k < w; or
Jj >w,. Define D = D, + D, » --- * D, Since DM = 0 there exists a function h;:
X" — X'sothat f'hy ~ » .

Define functions hy: X” — X', k,: Y — Y’ by hy = hy + hy, kg = k,. It is clear
that f'h, ~ k,f”, that the matrix of QH*(k,, Z)/torsion is nE, that there exists a
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matrix E € GL(r, Z) so that the matrix of QH*(h,, Z)/torsion is nE and that
EM = N9E.
Let hs: X” — X', ks: Y” — Y’ be functions which correspond to the matrix

rE r'E

_ W SE 0
where E = ANPEM’ (such functions exist since #*N9E = ¢ EM and rNPE =
1(f', f")EM). Define h = ah, + bhs, k= ak4 + bks, where a and b are integers
satisfying an + bt’ = 1. As the matrices of & and k are E and E, respectlvely, and
as f’ is an H-map, h and k are homotopy equivalences and f'h ~ kf”.

(c) H*(f, Q) is an epimorphism.

Assume that A2 is a v; X v, matrix, that A2 is a w; X w, matrix and for every i

n

-
N, = . 0
n,
——
U Xy v X (W, — v)
and
m
M, = 0
My, s,
vy Xy ‘T’T;( (w; — vy).
Since A2M = N242 and (det A2, \) = 1, for every i the matrix ff,? is of the form
. uXo(C | 0

*

G (wi = 1) X (w; — 1)
where |det C,| = n* and |det és;‘ = n"~% Define

0 X O(N/ny, 0
N:l= b
' 0 Ay,
(W, —v) Xt 0
N =N/ +N;* -+ « N and B = N'BM.

Let N and N be the matnces of DH*(f”, Z)/torsion and H*(f", Z)/torsion,
respectively. As for every decomposable element d € H*(X"”, Z)/torsion there
exists a decomposable element d’ € H*(Y”, Z) satisfying (_[”) » d’ = A\d, there
exists a matrix B” so that —AN B’ = NB”. Define B = (2), B = (8).

As B’ satisfies

At(f, f")NCB = At(f', f")NCN’'BM
= A(f', f")Y(NI)BM = N1(f', f")BM = t' BM,
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B and E satisfy ¢(f', f ”)1\75 = t’EM . Consequently there exist functions 4;: X" —
X', k;: Y” - Y’ which correspond to the matrix
( —tB ——)\t(f',f”)B')
0 — t(f’, fll)B”
Define h, = h" + h,, k, = k' + k,. The matrices of QH*(h,, Z)/torsion and
QH*(k,, Z)/torsion are nE and A’ = A2 — A\(f’, f")B. As f'h, ~ k,f", E and A’
satisfy nEM = N24’. This together with the fact that (n, \) = 1 and (B;)y; = 0 for
every pair (k, j) satisfying either k > v, or j > v,, imply that for every i the matrix
A, is of the form
o Xy nE; | 0
A, =
: | nE; + t'B,

(w; — 0) X (w; — v)

where E; € GL(w; — v, Z), E € GL(v;, Z) and nE; + ¢'B; = (f,‘.
For every i denote by D, the matrix

v, Xv 0 0
D = ’ '’
(t’Dx, 7B, | (w, - 0) X (w, - v)

Si

where (4;); + ¢(D;); =0 (mod n) for every i and j satisfying either i > v, or
J <v.DefineD =D D, » -~ =D, Smce, for every i and j, D is divisible by
A, there exists a matrlx D so that — N DD ND. Denote D’ = (Q) D’ satisfies
ND’ = 0; therefore there exists a function ky: Y”" — Y'sothatky f” ~ «.

Define hy;: X” - X', and k0 Y” — Y’ by hy = hy, k, = k, + k5. It is obvious
that f'hy ~ k,f”, that the matrix of QH*(h,, Z)/torsion is nE, that there exists a
matrix E so that the matrix of QH*(k,, Z)/torsion is nE and that EM = N2E.

Let hg: X” — X', ks: Y” — Y’ be functions which correspond to the matrix

VE r'E

0 «f,fE
where the matrix E satisfies — ' N°E = «(f', f")NE. Define h = ah, + bhs, k =
ak, + bks where a and b are integers which satisfy an + bt = 1. As the matrices of

QH*(h, Z)/torsion and QH*(k, Z)/ torsion are E and E, respectively, h and k are
homotopy equivalences. Obviously f'h ~ kf”; hence h and k are the desired maps.

3.12. COROLLARY. Proposition 3.11 is also true for a map S*"~' — X where X is an
H-space so that H*(X, Q) is primitively generated.

PrOOF. The assertion follows from Corollary 3.8 in the same way that Proposi-
tion 3.11 follows from Proposition 3.6.

3.13. COROLLARY. Let f: X — Y be a map which satisfies conditions (a) or (b) of
Theorem 1. Given a map f": X" — Y in G,(f) and a t-equivalence h”: X" — X'
realizing d = (+ Qs oo idm«x)). Then the map f”: X" — Y is homotopy equiva-
lent to the map f': X' — Y which corresponds to the pair (d, 1) (d = -5 ,,,m))
by the construction of Proposition 3.4.
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ProOF. The corollary is obviously true if f satisfies condition (b), namely if
X = S2n-—l'

Suppose f satisfies condition (a). By Corollary 2.3, G,(f) =0 if H*(f, Q) is
either an isomorphism or an epimorphism. Therefore we have only to check the
cases H*(f, Q) = 0 and H*(f, Q) is a monomorphism.

Choose bases for PH*(X’, Z)/torsion and PH*(Y', Z)/torsion in which the
matrix A of PH*(f’, Z)/torsion is diagonal. Define ¢ = At(f’, f”), where A is the
multiple of the nonzero elements of A. Assume d = d. Using the considerations of
Proposition 3.11 one obtains that there exists a map h’: X” — X’ which realizes the
same as ¢, and satisfies f'h’ ~ ¢,f”, and that the map f”: X” — Y is homotopy
equivalent (over Y) to the map f": X' — Y.

(ifd = (+d,, ..., *d, )+ d the proof is similar.)

3.14. COROLLARY. Let f: X — Y be a map which satisfies the conditions of Theorem
II1. Given a map f”: X > Y" in G*(f) and a t-equivalence k”: Y" — Y realizing
d = (xd,,..., idn,(y,)- Then the map f”: X — Y” is homotopy equivalent (under
X) to the map f': X — Y’ which corresponds to the pair (1,d") (d' = (4,, ..., d,:,(x))
by the construction of Proposition 3.4.

PRrOOF. If H*(f, Q) is either a monomorphism or an isomorphism then G,(f) =
0 by Corollary 2.3. If H*(f, Q) is either an epimorphism or zero, one chooses bases
for QH*(X"”, Z)/torsion and QH*(Y”, Z)/torsion in which the matrix B of
QH*(f”, Z)/torsion is diagonal, then one defines ¢ = At(f’, f”) where A is the
multiple of the nonzero elements of B. Using the Corollary 3.14 follows from
Corollary 3.10 in the same way that Proposition 3.11 follows from Proposition 3.6.

In Theorems I, IT and III we referred to an integer f. We shall define it now:

3.15. DEFINITION. () If f: X — Y is a map satisfying the conditions of Theorems
Ior Il and Y # S2"~!, we define f = t(f, f) (of 3.6).

®) If X =582 Y=_S8%""(n>m) and the order of f is odd we define
[ = order(f).

(©) If X=282""1 Y =581 (n>m) and the order of f is even, we define
{= | f|°, where v is an integer satisfying 7 »of ~ * .

(By the proof of Theorem 2.2 such an integer exists.)

3.16. PROPOSITION. (a) Let f: X — Y be a map which satisfies the conditions of
Theorem 1. There exists a surjection § = §&: D — G(f) satisfying the following
conditions:

() &(d, d’) = £(d + ts,d’ + Is") whenever (d, d’) and (d + s, d’ + Is’) belong
toD.

(2) If f is an H-map, then for every pair (d,d’) € D, §(d, d’) is an H-map.

() If D' = {(d, 1) € D} then £|D’ is on Gy(f) and for any two pairs (d, 1),
(d+ ts,1)in D', £(d, 1) = £(d + s, 1) in Gy(f).

(b) If the map f: X — Y satisfies the conditions of Theorem IIl and if D" =
{(1,d’) € D) then the map £|D"” (¢ from (a)) is on G*(f) and

g(1,d) =¢(1,d + is)
in Gy(f), whenever (1,d") and (1,d" + ﬁs') belong to D"
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PrOOF. Propositions 3.4 and 3.11 imply that there exists a surjection §': D —
G(f), that £|D’ and ¢|D” are on G,(f) and on G*(), respectively, and that if f is
an H-map, then §'(d, d’) is an H-map for every pair (d, d’) € D.

We shall prove part (a)(1) (parts (a)(3) and (b) are proved similarly). We shall
distinguish two cases:

(a) f satisfies conditions (a) or (b) of Theorem I.

®) f: 2"~ 1 5§71 (n > m).

The proof of case (a). It follows from Propositions 3.4 and 3.11 that for every pair
1+ 15,1+ ts) €D, §(1+ts,l+ts)—£j(l D=((f: X->Y).

Let (d,, dj) € D be a pair which satisfies (d,d, d|d") = (1 + ta, 1 + ta’) where
(a,a) € Z'® x Z'™, Assume that £(d, d’) = (f': X’ - Y’) and that

gd+1s,d + 1) = (f": X" > Y").
Since (d,(d + fs), dj(d + is')) = (1 + t(a + d,s), | + (@’ + d|s")), it follows from

Proposition 3.4 that £.(d,, d) = §;.(d,, d]) = f. Consequently there exists a com-
mutative diagram

e i X"
AN "
Ny
f lf f
! /"1/ o
Y Y"

where h; and h, realize d,, and k, and k, realize d;. Using this diagram we obtain
(in the same way that we proved Proposition 3.11) that

¢(d, d)=¢(d+ ts,d + 1s).

The proof of (b). Assume that £(d,d’) = (f: S* ' S8?"!) and that
g d+ts,d + 1s) = (f7: S~ > §?™1). As for every f' € G(f) the order of f’
is equal to the order of f, we obtain from the choice of { that g, ;o f' ~ flaeis
hence £(d, d’) = £(d + s, d’ + 15).

3.17. THE PROOF OF THEOREMs I, II, aAND III. We shall prove Theorem I.
Theorems II and III are proved similarly.

Let 8: D — [(Z¥)/ £ 1/®*XT) be the map

B(dps - - - s Gy By - - 5 )

= (d,,,l(mod f),... (mod ?), d, , (mod 7), . (mod t))

’ m:(x) " "'"')
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By Proposition 3.16, £: D — G(f) factors through Im 8. We shall calculate Im .
To this end we shall distinguish among four cases:

(1) H*(f, Q) = 0. If (d, d’) € D there is no relation between d and d’; conse-
quently Im B = [Z}/ + |J®)+ID),

(2) H*(f, Q) is an isomorphism. (d, d') € D iff d = d’; consequently

Im B = {(d,d) €[(Z#)/ 1] "D =[Z2/+1]"O}.
() H*(f, Q) is a monomorphism. Suppose d = (d,,, - . ., dy, ) E[(Z)/ = 10

andd’ = (d;, ..., d, ) €[(Z})/*1]D. Define d = (d,, . - d ) € Z'™ by
g - { d,, m; # n; for everyj,
m c'd';, m; = n;,

where 0 < ¢, < fis an integer satisfying d =g d,; (mod 7). Obviously (d, d’) € D
and B(d, d’) = (d, d’). Consequently Im ,B = [(ZF)/ £ 1]/@+IDN,

@ H‘( f, Q) is an epimorphism. Suppose d and d’ are as in (3). Define d=
,... d, )€ Z'Mby

ny’

" Cips n = m,

where 0 < ¢; < { is an integer satisfying d’ = d,,y (mod 7). Obviously (d, d) € D
and B(d, d) = (d, d’). Consequently Im 8 = [(Z}#)/ £ 1J/¥O+!D),

Define an integer k as follows: If H*(f, Q) is either a monomorphism, an
epimorphism or zero put k = I(X) + /(Y) and if H*(f, Q) is an isomorphism put
k = I(X) = I(Y). By Proposition 3.16 and the calculation of Im B, the surjection
¢: D - G(f) induces a surjection §: [(Z?)/ * 1] - G(f). Define an action on G(f)
by &(d, d’) - &d,, d]) = ¥dd,, d'd}). Propositions 3.4, 3.11 and 3.16 imply that the
action is well defined, that G(f) with this action is an abelian group and that the
sequence

P { d,,  n; # m,for every j,

[£fl— [(Z*)/+ 1] 5 G(f)—+0
is exact.

4. Some consequences of Theorems I, II, and III. We assume that all the maps
satisfy the conditions of Theorem I or of Theorem III (Theorem I when we speak
of G(f) or Gy(f), Theorem III when we speak of G*(f)).

4.1. LEMMA. Let f: S~ ' — S?™~! (n > m) be a map. If the order of f is odd then
G(f) = Gam-(f) = (Z})/ £ 1]

ProOOF. (d,d’) € Im a’ C [(Z}}))/ £ 11% if and only if d = d’ (mod(| f])).

REMARK. It is clear that for any map of the form f: $" —» S”, G(f) = 0.

42. LEeMMA. If f: X —> Y is a map and f is a rational equivalence then each map f':
X' 5 Y’ in G(f) is obtained as the pull-back of X —f> Y(lL Y’ where k is a t:equiva-
lence. In particular for every f' € G(f), F' ~ F.
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ProOF. Follows from the construction that appears in Proposition 3.4.

4.3. LEMMA. Let fi: X, —> Y, and f,: ng Y, be maps.
(@) Each map in G(f, X f) (Gy,xy, (i X f2)s G*X>X(f, X f)) is of the form
81 X g, where g, € G(f) (8; € Gy(f), & € G*(f))
M) If (1) QH"(X,, Q) # 0 whenever QH"(X,, Q) # 0,
(2) QH"(Y,, Q) # 0 whenever QH"(Y,, Q) # 0,
then
1) G(f; X f) = fi X G(fy.
() G*(f, X f) = fi X G*(fy.
(3) Gy(fy X f) = fi X Gy(f).
@) If Y, = K(Y)), X, = K(X,) and f, ~ » then G(f, X f)) = Gx(fl X f)=
Gfi X f) =0.

4.4. COROLLARY. Let f: X > Y be a map. There exists an integer n so that
G(f": X"->Y")=0.

PrOOF. If f' € G(f) and f' = ¥d, d’) then (f')" € G(f") satisfies (f)" =
£(d", d™). Consequently (f)*?/2 ~ f®/2, (¢(f) = the Euler number of / = the
order of Z*.)

REMARK. It is obvious that the corollary is also true for G*(f) and Gy (f).

4.5. LEMMA. Every map in G(proj: X X Y — Y) is of the form proj: X' X Y' —
Y’ where X' € G(X)and Y' € G(Y).

4.6. LEMMA. Let f: x5 Ybea map (Y # S*™°h.

(@) Every map in G(o,f) (G*(¢,/)) is of the form ¢.f' where f' € G(f) (f' €
G*(f).

(b) If X is an H-space then every map in G(f¢,) (Gy(fd,)) is of the form f'¢p,
where f' € G(f) (f' € Gy(f)).

() If X = S~ then every map in G(fn,) (Gy(fn,)) is of the form f'n, where
I € G(f) (f' € Gy(/))

PrROOF. We shall prove (a). The proofs of (b) and (c) are similar.

Since f* and (¢,f)* can be diagonalized simultaneously we can apply diagram
34.1 (with thq same ¢ and ¢) to construct G(f) and G(¢,f). Suppose
§(d,d) =X’ !—> Y)and §, ;= (g": X' - Y’). From diagram 3.4.1 we obtain that
there exist an H-map k: Y’ — Y and a map h: X’ — X (obviously if fis an H-map
h is, also, an H-map) which realize d’ and d, respectively, and which satisfy
kg ~ (¢,f/)h and kf’ ~ fh. The last homotopy together with the fact that k is an
H-map imply that k(¢,f") ~ (¢,f)h. Therefore by Proposition 3.11 the map ¢,f" is
homotopy equivalent to g.

5. The map G(X, Y, f) » G(X) X G(Y). The map G(X, Y, f) » G(X) X G(Y)

exists for every map f: X — Y. An immediate consequence of Theorem I is that for
maps f: X — Y which satisfy the conditions of Theorem I the above map is a

homomorphism and the compositions G(X, Y, f) = G(X) X G( Y)p:)OJ G(X) and
G(X, Y, f) > G(X) X G(Y)"> G(Y) are epimorphisms.
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In this section we deal with the kernel of the map G(X, Y, f) » G(X) X G(Y)
only for maps f: X — Y which satisfy the conditions of Theorem I. In case that this
map is a monomorphism and G(Y) = 0 (G(X) = 0) we conclude (by the previous
paragraph) that G(X, Y, f) = G(X) (G(X, Y, f) = G(Y)).

All the notations in the next lemma, except the addition of indices to indicate the
dependence in d and d’, are taken from diagram 3.4.1.

5.1. LEMMA. Let X and Y be H-spaces so that H*(X, Z) and =Y are torsion free.
If f: X — Y is a map which satisfies the conditions of Theorem 1 then

|ker(G(X, Y, f) > G(X) X G(Y))|
=|{[vs88.4] €[ X, K(Y)]|(d, d") € D,d, d; <, Vi}|
where v,.: K(Y) — K(Y) and §;: K(X) — K(X) are homotopy equivalences satisfying
Yaba ~ @ and 5,4 ~ 0,.

PRrOOF. It follows from diagram 3.4.1 that if £(d, d’) = f’ then ¢, f' ~ g € 4,.
Suppose £'(d, d’) belongs to ker(G(X, Y, f) - G(X) X G(Y)). The above homo-
topy together with the homotopies y,¢, ~ ¢ and 8,y ~ 8, imply that v 'of ~
88,y (where v, ! denotes the homotopy inverse of y,) or equivalently that qf’ ~
Y4 88,y. The truth of the lemma follows from the last homotopy and from the fact
that the map [X, Y] - Hom(H*(Y, Q), H*(X, Q)) is one-to-one (Zabrodsky [9,
Lemma 5.3.1]).

REMARK. By 3.17 it is enough to take pairs (d, d’) € D which satisfy d,, d/ < I
for every i.

5.2. Examples of maps for which the map G(X,Y,f)— G(X) X G(Y) is a
monomorphism. (All the maps considered are assumed to satisfy the conditions of
Theorem 1.)

ExaMmPLE 1. X - K = Il K(Z, n;), H*(X, Z) is torsion free and H*(f, Z) is
onto.

Every d’ € Z'® can be realized in K. Assume that (d, d’) € D and that d can
be realized in X. Let h: X — X be a map which realizes d. As H*(f, Z) is onto
d,/d; whenever QH"(X, Q) # 0. Consequently there exists a map k: K — K which
realizes d’ and satisfies fh ~ kf. Therefore by Proposition 3.11, £(d, d’) = f and the
map G(X, K, f) » G(X) X G(K) - G(X) is an isomorphism.

ExaMPLE 2. f: X — K(X), f is a rational equivalence and H*(f, Z) is onto.

G(f) = G(X), since if f: X — K(X) belong to G(f) there exists a pull-back
diagram

x 5 x
W Vs
Kx) 5 k)

where & and k are t'-equivalences (Lemma 4.2). Consequently H*(f’, Z) is onto and
there exists a homotopy equivalence g: K(X) — K(X) so that gf’ ~ f.

To state the next two examples one needs the following notations: If X is a
CW-complex denote by A,: X — X, the homotopy approximation of X in dim < n
(i.e. m.h, is an isomorphism for k¢ < n and 7, X,, = O for k > n).
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ExaMPLE3. h,: X — X,,.

Assume that (d,d’) € D and that d and d’ can be realized in X and X,
respectively. Since if f: X — X realizes d, f,: X, — X, realizes d’, one obtains from
Proposition 3.11 that £(d,d’) = h, and the map G(h,) - G(X) X G(X,) is a
monomorphism. Moreover, since the map H*(h,, Z) is an isomorphism in dim <
n, the composition G(h,) > G(X) X G(X,) - G(X) is an isomorphism and G(h,)
= G(X).

ExaMPLE 4. f: SU(m) — SU,,,_,, m < n, and H*(f, Z) is onto.

Assume that (d, d’) € D, that d and d’ can be realized in SU(m) and SU,,_,,
respectively, and that §(d, d') = g € G(f). Since f,: 7,SU(m) > 7,SU,,_, is an
isomorphism in dim < 2m — 1 and an epimorphism in dim2m, g, is also an
isomorphism in dim < 2m — 1 and an epimorphism in dim 2m. Therefore
H*(g, Z) is an epimorphism and the fact that the map G(f) — G(SU(m)) X
G(SU,,_,) is a monomorphism follows from the next lemma:

5.3. LEMMA. Given maps f,, f,: SU(m) — SU,, _, so that H*(f,, Z) and H*(f,, Z)
are surjections. There exists a homotopy equivalence g: SU,,_, — SU,,_, so that

gfl ~f2'

ProoOF. By Lemma 1.5 in Zabrodsky [7], there exists a map g: SU,,_, —» SU,,_,
so that gf, ~ f,. Obviously H*(g, Z) is an isomorphism for kK < 2m — 1. Assume
that g is not a homotopy equivalence and that k is the least integer for which
QH?*1(g, Z) # *1. Consider the diagram

f SU2n—l
/ Wl
h of g
SU(m) e SUsk 41 —2E SUzk+1

h2k+l,2k—] h2k+l,2k—l

82k—1 SU

SUZk-—l 2k-1

where g}, ., is a homotopy equivalence which covers the homotopy equivalence
81— 1- (By Zabrodsky {7, Corollary 1.4] such a homotopy equivalence exists.)

As hy, _ f, ~ 8k~ 1Mo -1 J; and the fibration K(Z, 2k + 1) - SU,, ., »> SU,, _,
is principal, there exists w € [SU(m), K(Z, 2k + 1)] so that hy, ,.,f, ~
W * (8 +1Pw+1f)) where = is the action of [SU(m), K(Z, 2k + 1)] on
[SU(m), SU,,_,]. Obviously w is decomposable. Since H*(f,, Z) is onto there
exists a decomposable element w € [SU,, ., ,, K(Z, 2k + 1)] so that w ~ wh,, ., f,.
Define g}, ., = W * g5;,,- Obviously g7, ,, is a homotopy equivalence and
&+ 1Pk +1S1 ~ hap i1 fo- Consequently g7, ., can be lifted to a homotopy equiva-
lence g”: SU,,_,; —» SU,, _, so that g"f, ~ f,.
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6 Computatlon of G(a), Gy(a) and G, ,,)(a) for some fibrations
X Lys K(G, n). We assume that all the fibrations in this section are Hopf
fibrations which satisfy the conditions of Theorem 1.

In order to calculate G(a), Gy(a) and Gy .(a) (in some of the cases) we need
the following lemma:

6.1. LEMMA. If the fibration K(G,n — 1) > X—f> Y is innduced by a: Y — K(G, n)
then G(f) = G(a) and G,(f) = Gy(a).

PrOOF. Suppose X ’L Y’i)K(G, n) belongs to G(a). Define maps h: G(a) —>
G(f) by a’ — f’ where f” is the fiber of a’ and k: G(f) — G(a) by f' — a’ where f" is
induced by a’. As each of the maps & and k is the inverse of the other G(f) = G(a).
The fact that G (a) = G,,( /) is proved similarly.

Case 1. F —> K(Z, m)——>K(Z n).

Obviously G(a) = 0 for n < m. Assume that n > m and that (d,d)€E D C Z 2,
Since H"(a, Q) = 0 there is no relation between d and d’. In contrast with this, the
existence of maps h: K(Z, m) —> K(Z, m) and k: K(Z, n) - K(Z, n) satisfying -
ah ~ ka implies that d = d’ (mod(|a[)). Consequently G(a) = [(Z};)/ = 1].

For the same reason ng @) = Gz m(a) = [(Zl‘:‘,l)/ +1].

Case2. F—» K(Z™, n) S K(Z', n), k,m > 1.

G(a) = 0, since one can choose bases for H(K(Z' n), Z)=Z ! and
H"(K(Z™, n)Z) = Z™ in which H"(a, Z) is represented by a diagonal matrix and
use these bases together with the conditions on D to construct for every pair
(d,d) € D maps h: K(Z™, n)—> K(Z™, n) and k': K(Z', n)— K(Z', n) which
realize d and d’, respectively and satisfy ah ~ ka.

In the same way we obtain that Gy z:,\(a) = Ggzm (@) =0

Case 3. F > K(Z', n) > K(Z,, n) (k,1 > 1).

We prove that G(a) = 0 by constructing to each vector (x,, ..., x) (x; € Z,)
and to each number d € Z,« an / X / matrix A (over Z) so that det A = d and
A(xpy .o X)) = (dxy, ..., dx) (mod p*).

Consider the vector (x,,...,x). Each x; is of the form x; = ap% where
(a, p) = 1. Without loss of generality assume that k, < k; or every i. Let b be an
integer satisfying a,b = 1 (mod p*) and let 4 = (a;) be the following matrix:

4 = | b(d— Dapkr 1
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namely
d, i=1j=1,
—_ ki—k, 1 ] =
a; = b(d — ap , i#=1lj=1,
|8 i#*1l,j=1
0, otherwise.
Obviously det4 =d and A(x,,...,x)=(dx,,...,dx) (modp*). (a,x, =

(d = 1)x; (mod p*) fori > 1.)
Case 4. F > K(G, m) » K(H, m), G and H are finite p-groups.
It is obvious that G(a) = GX®™(a) = Gy (@) = 0
Case 5. X, , | ff) X, 5 K(G, n + 2), the Postnikov approximation of X.
It follows from Lemma 6.1 and from Example 3 in §5 that G(a) = G(h,) =
G(X, 4 0)-
Case 6. X > Y—) K(G, n), m,a is an epimorphism.

Suppose X —> Y3 K(G, n) is in Gy(a). Let k, k' X > X be tA-equivalenccs
satisfying fk ~ f’ and f'k’ ~ f (by Theorem 2.2 such t-equivalences exist). We shall
prove that Gy(a) = G(X) by showing that k is a homotopy equivalence.

It is obvious that ky: 7, X — 7, X is an isomorphism for m # n, n — 1 and that
m,k and =, f are monomorphisms. As m,a is onto 7,_,k is also an isomorphism.
Consequently in order to prove that k is a homotopy equivalence it is enough to
prove that m,k is an epimorphism. But =,fc m .k = #,f and #,f o w, k' = =,.f;
hence =, f(7,k ° w, k') = u f, m,k o m,k’ = 1 and =,k is an epimorphism.

Case 1. X > Y5 K(G, n), G is a finitely generated free group, H"(Y, Z) is
torsion free and H"(a, Z) is a surjection.

Assume thatd = (d,, . . . , dyy) € Z'¥ can be realized by a map h: Y — Y and
that (d,d) € D ¢ Z'™*'. As ker H*a, Z) = 0 implies d, = d’ and
ker H"(a, Z) # 0 implies d,/d’, there exists a map k: K(G, n) - K(G, n) which
realizes d’ and satisfies ka ~ ah. Hence by Proposition 3.11, ¢(d, d’) = a and
consequently G(a) = G(Y).

7. Noncancellation. In the following proposition we use the notations of Theorem
3.2.

7.1. PROPOSITION. Let X and Y be Hg-spaces so that QH™(X, Q) # 0 for
1<i<IX)and QH™(Y, Q) # 0 for 1 <i < I(Y), and let Y: X — K(X) and ¢:
Y - K(Y) be rational equivalences. Denote by t the least common multiple of (X, {)
and (Y, ¢). Assume that

) e[(z¥)/ 11" and
) €[(zp)/ 1]

d= (d"l’ °? ":(x)

— ’
= (dpy -+ > dmy,,
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satisfy the following conditions:

d m. = n.
, 'n? i Yis
@) d,,,—[l

, m; # n; for every j.

’

d,,
) d,={ " .
" 1, n, # my for every j.

n = m,

IfX' =4d)e G(X)and Y =§d’) € G(Y) then X' X Y~ X X Y'.

ProoF. It follows from the definition of £ that if Y’ = §(d") € G(Y) then
Y = £(d")"") € G(Y’). Consequently X' X Y =§(1,...,1) € G(X X Y’) and
X'XY~XXY.

An immediate consequence of this proposition is

7.2. COROLLARY. Let X be an H-space and let Y be an Hy-space. If I(X) = I(Y)
+ 1 then for every X' € G(X) there existsa Y’ € G(Y)sothat X' X Y~ X X Y'.

Using Corollary 7.2 together with Theorem 2.2 one obtains

7.3. LeMMA. Let F 2> X —> Y be a fibration satisfying the conditions of Theorem 1.
(a) For every fibration F’—»X —+ YinGy(f), X X FF= X' X F

(b) If f is a rational equivalence then for every fibration F ’—>X ’—> Y’ in G(f),
X XY =~=X"XY.

PROOF. (a) Choose bases for 7, X /torsion and «, Y /torsion in which = f/torsion
is represented by a diagonal matrix 4. Let ¢ be an integer divisible by |7, X| - |7, Y|
for n < max{N(X), N(Y)} and by the nonzero elements of 4. By Theorem 2.2
there exist z-equivalences h: X’ — X and k: F’ — F so that fh ~ f" and jk ~ hj'.

The choice of ¢ together with the commutativity of the diagram

T+ 1 Y
4 N
Ky
w, F’ - w,F
Ly Ly
hy
m, X' - 7, X
N y
i
m,Y

imply that det(ky|ker jy) = 1, det(hy|[(7, X"’ /torsion)/ker f;]) = 1 and
det(hylker f;) = det(k,l[(vr‘F ’/torsion) /ker j,]).

Consequently one obtains from Proposition 7.1 that X X F' =~ X’ X F.

(b) Let ¢ be as in 3.1 and let h: X' — X, k: Y’ — Y be t-equivalences satisfying
Jh ~ kf’ (by Theorem 2.2 such #-equivalences exist). Since det(QH*(h, Z)/torsion)
= det(QH*(k, Z)/torsion), X' X Y~ X X Y'.
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