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THE GENUS OF A MAP

BY

SARA HURVTTZ

Abstract. The elements [/'] (/': X' -» Y') of the genus - G(f) of a map/: X -* Y

are equivalence classes of homotopy classes of maps /' which satisfy: For every

prime p there exist homotopy equivalences f^: X'p —» Xp and kp: Y'p -* Yp so that

fphp — kj'p. The genus of / under X - Gx{f) and the genus of / over Y - Gy(f)

are defined similarly.

In this paper we prove that under certain conditions on /, the sets <?(/), Gx(f)

and Gy(f) are finite and admit an abelian group structure. We also compare the

genus of/ to those of X and Y, calculate it for some principal fibrations of the form

K(G,n — 1) -» X -» X, and deal with the noncancellation phenomenon.

1. Introduction. In this paper we use the structure of the genus of an H0-space,

which was investigated by Zabrodsky [8], to study the structure of the genus of a

map /: X —> Y. In some cases we calculate the genus and compare it with those of

X and Y.

All spaces considered are pointed and of the homotopy type of simply connected

CW-complexes of finite type and either with a finite number of nonzero homology

groups or with a finite number of nonzero homotopy groups.

Throughout this paper we work in the homotopy category. We recall that for a

CW-complex X, the genus of X is the set G(X) of homotopy types of spaces Y with

Yp « Xp for every prime p (where ( ) denotes the p-localization operation). We

define analogously the genus G(f) of /, Gx(f)-the genus of maps under X and

Gy(f) the genus of maps over Y.

1.1. Definition. Let/: X -» Y be a map. The elements [/'] G G(f) (/':*'->• Y')

are equivalence classes of homotopy classes of/' which satisfy: For every primep

there exist homotopy equivalences A : X^—> Xp and k : Y'p -+ Yp so thatj^A^ — kjfl.

(We denote the genus off either by G(f) or by G(X, Y,f).)

The elements [/'] G Gx(f) (/': X —» Y') are equivalence classes of homotopy

classes of maps /' which satisfy: For every prime p there exists a homotopy

equivalence kp: Yp -» Y so that kj' ~-fp- (Two maps /: X —> Y¡, i = 1, 2, are

equivalent under X if there exists a homotopy equivalence k: Yx —» Y2 with

kfx~f2.)
The elements [/'] G GY(f) (/': A" -» Y) are equivalence classes of homotopy

classes of maps /' so that for every prime p there exists a homotopy equivalence hp :

XL -> XB so that/A —/„'.
p       p Jp p     Jp

To state the main results of this study we need the following notations: Let t be

an integer, X a space and/: X -» Y a map. Denote by Z, the group Z/tZ, by Z*

Received by the editors December 5, 1978 and, in revised form, September 26, 1979.

AMS (MOS) subject classifications (1970). Primary 55D99.

© 1981 American Mathematical Society

0002-9947/81 /0000-0100/S08.00

1
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the units in Z„ by l(X) the number of integers n with QH"(X, Q) ¥= 0 and by

[/,/], the set of pairs (A, k) of f-equivalences A: X^>X, k: Y-» Y satisfying

kf ~ fh. (A /-equivalence of A' is a map /: A"—»X so that //*(/, Z) ® Zp is an

isomorphism for every prime p which divides t.)

Theorem I. Let f: X —» Y be a map which satisfies one of the following conditions:

(a)/: X —> y « a« H-map, H*(X, Q) and H*(Y, Q) are primitively generated and

H*(f, Q) is either a monomorphism, an epimorphism, an isomorphism or zero.

(b) X = S2"~x, Y is an H-space and H*(Y, Q) is primitively generated.

(c)X = S2""1, Y = S2"1-1.

Then G(f) admits an abelian group structure and there exist integers k and t

(depending on X, Y andf) and an exact sequence

[f,f]X[(zr)/±i]kÍG(f)^o

where a' is the composition

[f,f];^>aut(QH*(X, Z)/torsion ® Z;) X a\it(QH*(Y, Z)/torsion ® Z;)

|de,|^|det|[(z;)/±i]'^>+'(,'>-.[(z*)/±i]*.

Theorem II. If f: A"—» Y is a map satisfying the conditions of Theorem I then

GY(f) admits an abelian group structure and there exist an integer t depending on X,

Y andf and an exact sequence

[f,f]'f^[(zr)/±i]'(X)XGY(f)-,o

where [/,/]';= {(A, 1) G [/,/],-}.

Theorem III. Let f: X —> Y be a map satisfying one of the following conditions:

(a) X, Y are H-spaces; H*(X, Q) and H*(Y, Q) are primitively generated, and

H*(f, Q) is either a monomorphism, an epimorphism, an isomorphism or zero.

(b) X = S2n~x, Y is an H-space, and H*( Y, Q) is primitively generated.

Then Gx(f) admits an abelian group structure and there exist an integer t

depending on X, Y andf and an exact sequence

[f,fY;^[(z*)/±i]'(r)-^Gx(f)-+o

where[f,f]"; = {(l,k)£\[f,f];).

The proof of Theorem I relies heavily on the fact that for maps which satisfy the

conditions of Theorem I, a map /': X' -» Y' belongs to the genus of the map /:

X -^ y iff for every prime p there exist p-equivalences A: X' -* X, k: Y' —» Y so

that fh ~ kf. The proofs of Theorems II and III rely on similar facts. These facts

are proved in §2. The main theorems are proved in §3. In §4 some simple

conclusions are derived. §5 deals with the kernel of the obvious map G(X, Y,f)-*

G(X) X G(Y) and §6 applies this map and the main theorems to calculate the

genus of some principal fibrations of the form K(G,n — 1)—*X—* Y. The last

section, §7, deals with the noncancellation phenomenon.
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This paper constitutes a part of the author's Ph.D. thesis written at the Hebrew

University under the supervision of Professor A. Zabrodsky. It is a pleasure to

thank Professor Zabrodsky for his useful advice.

2. Localization and p-equivalences. Let (X, p) be an //-space and let ( Y, xp) be a

co-//-space. We shall denote by + the operation on [Z, X] and [Y, Z] induced by

p and \p, respectively, by <bn the «-power map

<p„ = p(p x 1) • • • (p x 1 x • • • xl) » (A x 1 x • • • xl) • • • A

n-\

(A-the diagonal)

and by i)„ the map

tj„ = 9 ■ ■ ■ (9 v i v • • • vi) ° o v i v- •_• yi) • ■ • o v i)*
n-1 „_1

(ÇF-the folding map).

2.1. Theorems (Hilton, Mislin, Roitberg, see [3, 11,6]). Let X be a connected

H-space and W a space with a finite number of homology groups. For every map f:

Wp^>Xp there exist an integer n, (n,p) = I, and a function g:   W^> X so that

gP ~ <f>J-
Moreover, given two functions fig: W'-» X so that fp ~ gp, there exists an integer

m, (m,p) - 1, so that >?J~<t>mg.

2.2. Theorem. Let f: X —> Y be a map and let I be an integer. Suppose I =

P\     ■ ■ -Ps   ■

(a) Iffis an H-map then:

(1) Given two spaces X', Y', a function f: X' —* Y' and homotopy equivalences

hp¡: X¿ -» Xp¡, kp: Y'Pt -» YPi satisfying fphp¡ ~ kp¡fp (r = I, . . ., s), there exist l-

equivalences A: X' —» X, k: Y' —» Y so that fh — kf.

(2) Given a map f: X' —» Y in GY(f), there exists an l-equivalence A: A" —» X so

thatfh~f.
(3) Given a map f: X —> Y' in Gx(f), there exists an l-equivalence k: Y' —> Y

so that kf —/.

(b) // y is an H-space and X = SA"' then:

(1) Given two spaces X', Y', a function f: SX' —» Y' and homotopy equivalences

hp: (SX% -* Xpi, kp: y; -» Ypi satisfying fphp¡ ~ kp¡fp¡ (i = 1,. . . , s), there exist

¡-equivalences A: SX' -» A", k: Y' -> Y so that fh ~ kf.

(2) Given a map f: SX' -» Y in GY(f), there exists an l-equivalence h: SX' -» X

so thatfh ~f.
(3) Given a map /': X -> Y' in Gx(f), there exists an l-equivalence k: Y' —> Y

so that kf — /.
(c) IfX = Sn and Y = S2m~x then:

(1) Given a function /': X —> Y and homotopy equivalences hp¡: Xp —» Xp, kp¡:

Yp¡ -» Y satisfying fphp¡ ~ kpJ' (i = I, . . . , s) there exist ¡-equivalences A: X —> X,

k:Y -» Y so that fh ~ kf.

(2) Given a map f: X —» Y' in GY(f) there exists an l-equivalence A: X —» X so

thatfh~f.
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Proof, (a) (1) Since X and Y are //-spaces, by 2.1, for every i there exist integers

"i,,> ni,i' (nu>Pi) = (*%t*Pt) = !> so that <Pn,, ° hPl and ^ » A^ are induced by

functions A,': A" -h> X and À:,': y -> y.

As/is an //-map, for every /', the/»-localization of /(</>„    ° A,') and (<bn    ° k¡)f are

homo topic:

f»V ' <«>„

0 ° (£'■)^"1,1      V   <"p,-

Hence, there exist integers «,, (n¡,p¡) = I, so that

Define m = IT*.,/»,, A/' = *m/p¡%nxh\, k¡' = ^„^fi. Then A = 2}., A," and
k = 2^_! A:/' are the desired maps. Indeed since ^„(A) ® Zp = 2, w#(A") <S> Zp¡ =

ir^(h"o) ® Zp¡ and A" is a /»^-equivalence, A is an /-equivalence. Similarly one gets

that k is an /-equivalence. It is clear that fh ~ kf.

(2) Since for every p¡ there exists a homotopy equivalence hp : X'p —» Xp satisfying

fp,hpi ~fP: = lY fPi, it follows from (1) that there exists an integer n, (n, I) = 1, and

an /-equivalence A': A" —> A" so that/A' — ^>nf.

Assume that n = qr< • . . . -q£> where every q¡ is a prime. Since for every q¡ there

exists a homotopy equivalence hq: Xq¡ —> Xq_ satisfyingfqhq¡ ~/^, it follows from (1)

that there exist an integer m, (m, n) = 1, and an /-equivalence A": A" -» A" so that

fh"~<pj'.
Let a and ¿> be integers satisfying an + blm = 1. Define A: A" —> A" by A = <f>ah'

+ <¡>blh". Since w„(A) ® Z, = trt(<bah') <S> Z¡ and A' is an /-equivalence, A is an

/-equivalence. But fh = /(<i»aA' + <i»wA") ~ <bjh' + <¡>blfh" ~ <pa<t>J' + <¡>bl<pJ' ~

Qan+btJ' ~/'; hence Ä is the desired map.

(3) is proved similarly.

(b) (1) Since Y is an //-space and (SX')Pi = SXp¡, there exist integers «,,, n2i,

(ni,i>Pi) = (n2,i'Pi) = L so that the maps hpr)n¡ and <t>„ kp¡ are induced by maps A,':

SX'->Xand'k;: Y' ~ K.
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Consider the following diagram:

Wp, ° ^2J

è      (k')v"i,iK lJPi

Since fphPiT)n¡.-n„2i ~ <*»„„<*>„,_, A^, for every i the /»¿-localization of fih'^J and

(<¡>n k'j)f are homotopic. Therefore there exist integers n,, («,,/»,) = 1, so that

Define m = Wi=xp¡,

K = h'ij]nu„i]m/p¡,   k¡ = <(>m/^„li*;.

Then A = 2, h" and k = 2, A;," are the desired maps: A and A: are obviously

/-equivalences and fh ~ kf.

(2) and (3) follow from (1) in the same way that (2) and (3) of part (a) follow

from (1) of part (a).

(c) (1) Choose localizations ip,: S" -> S£, «//,: 52m_1

ing diagram is commutative:

S2m~x so that the follow-

if

>2m-l

1/,,

C2m-1

Since hp<p¡ G (wnS")p. and A: «^ G (w2m_,S2,w ')_, for every /', there exists an

integer v¡, (v¡,p¡) = 1, so that hp(p¡T)v and kpxp¡f)c are induced by maps A,.: S" —> S"

and A7,.: S2m~x ^ S2m'x.
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Consider the following diagram:

For n = 2m - 1 the diagram commutes; hence in this case fp.(h¡)p¡ — (k,)Plfpr For

n > 2m — 1 the two squares and all the rectangles except the left one are com-

mutative. Therefore in order to prove the existence of /»,-equivalences, A,': S" —» S"

and k¡: S2"1"1 -> S2m~x so that fPi(h¡)Pi ~ (kftfc, it suffices to prove

2.1.1. Lemma. For every map /': S" -* S2m~x and every integer v, there exists an

integer t so that -qvf —/'■>)„/.

Proof of 2.1.1. Let/(,/2: S" —» S2m~' be arbitrary maps. Consider the diagram:

S"

snvsn

1»
—»

VvVVv

S"

s"\y s"
/,V/2

•»2m — 1s2m-\ y s¿

1% v ■%

s2m'x \y s2m~x

S2m-l

S2m-i

Obviously the right-hand square is commutative. Considering the homology homo-

morphisms one can easily see that the left-hand square is commutative as well.

Hence tj„(/, + f2) ~ rxjx + rjj2 and (/, + /2)t)c ~ fx% + f2r¡v.

Since the order of /': S" -* S2m~x is finite there exist/,, f2: S" -+ S2m~x

satisfying /' = /, + f2, (|/,|, v) = 1 and \f2\/va (for some integer a). Hence f2r¡v.

~ * . As for every pp Pj/v, H*(t\v, Zp) = 0, there exists an integer b so that, for

every Pj/v, tr^-q^, Zp) = 0 (Zabrodsky [9, proof of Theorem 4.1.4]). Hence for

every pj/v, 0 = (tj„0*: ■ntS2m~x ® Zp -^ ir^S2m~x ® Zp/ Consequently there ex-

ists an integer c so that 0 = (t\v„): ^tr^S2m~x -> ^<n'tS2m~x. Define d = abc.

Obviously for every d' > d, (/, + /2)t/c,■ ~/,tj^ and v</i + f¿ ~ v/i-

Since (|/,|, vd) = 1 there exists an integer d > d so that vd = l(|/i|). Consider

the map i\vi: S2m~x -^ S2m~x. This map is an /-equivalence; hence there exists an

integer e so that 1 = r)(v¿y: ^TrnS2m-x -^ ^„S2"1"1. Define t = (d)e. Since

/'V = (/i + /2)v ~f\Vv- ~/i ~ 1d/i ~ V(/l + fi) = %f>

t is the desired integer which completes the proof of 2.1.1.
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Let A/: Sa^>S", k¡: S7m~l-*33m~i be /».-equivalences satisfying fp{h\ ~

(*/)*£,- As k'J', fh; £\trnS2m-x there exist integers «,., (u„p,) = 1, so that'fh\ ~

k'J'r\u¡ (r\u.: S" -* S"). Consequently we obtain from 2.1.1 that there exist integers

w¡ satisfying

ÄV ~ *£f V ~ (*.'V<)/'-

Suppose that t\p;f ~ k'J'r\pr„ t]2,f ~/'tj2, and/», 9* 2 for /' > 1. Define

v = 2'J[pf,

A." =
AtapVOKO*      ' = 1,

h = 2 V. * = S A:/'.

Obviously A and A; are /-equivalences. In order to prove that fh ~ kf it is enough

to prove that (2,- k¡')f ~ 2(A:,"/').

Let iy. 52"""1 _^> s2"1-» x ^s¿m-iy-¡ be the mciusion into the/th factor. There

exists a map a: S2m~x X (S*""1)'"1 -> S2"1"1 so that for every/" > 1 the diagram

jrn-1

is commutative. Therefore the following diagram is commutative:

S"

r/v^-v-v-?-1        2' 2'

(J, V 1 V •■■ VI) o •■• o (^ V 1)^
-» S" V • • • V S"

Vv- vv

(A'(*) - (x,..., x)),    namely    2 (A:/'/') = « ° {Kf X ü k¡'f/2') ° A\
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Consequently the commutativity of the diagram

Sn

f

?2m-l S2m-1   x (glm-ly *S2m-x x (ßim-\y-\

i01
S2m-l

implies that (2, k'/)f ~ 2,W/')-
Since for any two maps gx, g2: S" -* S",f(gx + g^ ~/g, + fg2, (2) follows from

(1) in the same way that (2) of part (a) follows from (1) of the same part.

Notation. Let A* be an //0-space, denote by N(X) the least integer satisfying

either, for every n > N(X), irnX = 0 or, for every n > N(X), H„X = 0. (Recall that

we consider only spaces with N(X) < oo.)

2.3. Corollary, (a) Given an H-fibration F —» X -» Y; if H*(f Q) is surjective

then Gr(f) = 0.

(b) Given a fibration F —» X —> Y so that Y is an H-space and X is an H0-space: If

H*(f, Q) is injective then Gx(f) = 0.

(c) (a) and (b) hold also for a fibration of the form F —* SX —» Y where Y is an

H-space.

Proof, (a) Let F^I->F be an //-fibration and let / = II „<Ar| torsion tr„X\ ■

|torsion tt„F\ where N = max{N(X), N(Y)}. By Theorem 2.2 there exist /-equiva-

lences A: X' —> X and A': F-* F so that the following diagram commutes

F'

j/V

A" ./

ih   * y

We shall prove that A is a homotopy equivalence.

As Aj: V^A"'—»V^A" and h't: 'irmF' -*'irmF ('tTtX = torsion^^A")) are isomor-

phisms and as A, A' are O-equivalences, hf jt,X'/torsion —► w<,A'/torsion and h's:

•nnF'/torsion -* tt+F/torsion are monomorphisms, so are h%: m^X' -> ir^X and h't:

m%F' -» it,F and A is a homotopy equivalence if and only if A„ is a surjection.

Consider the following diagram:

fi 3'
■nnx'    -> w„y   ->

i*. II
/« 3

ir-A*       -» w.y      -»

*»-t*"
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Let v G mnX be of infinite order. As //*(/, Q) is surjective, //„(/, Q) and tr^(f) ®

Q are injective and so is w„(/)/torsion; hence w = ftv is of infinite order as well.

0 = dw = h'^d'w; hence 3'(w) = 0 and there exists v' G nnX' so that f$v' = w.

Hence, v — hfv' G ker /^ c torsion mnX C im A#, » £ im fi, and A# is surjective.

(b) and (c) are proved similarly.

3. The structure of G(f), Gx(f) and GY(f). In this section we use Zabrodsky's

method of constructing the genus of an //0-space (with a finite number of

homotopy or homology groups-Zabrodsky [8]) to obtain elements in the genus of a

map /: X -» Y where X and Y are //„-spaces. We go on to prove that every element

in the genus of a map which satisfies the conditions of Theorem I is obtained in

this way. The same method is also good for constructing Gx(f), (GY(f)) for maps

which satisfy the conditions of Theorem III (I).

3.1. Definitions and notations. Let P be the set of all primes. For any integer /

denote by P, the set of all primes which divide / and by t the set P — Pt.

Let X be an //0-space, i.e. H*(X, Q) is a free commutative graded algebra.

Denote by [A", X], the set of homotopy classes of f-equivalences/: X —» X. Denote

by t(X) the number R„<Nm\'Hn(X)\, by K(X) the space K(QH*(X, Z)/torsion)

and by ¡(x) the number of integers n for which QH"(X, Q) ¥^ 0. Let T be a

splitting Hom°(ô#*(A", Z)/torsion, QH*(X, Z)/torsion) -> [K(X), K(X)]:

QH*(T(f), Z)/torsion = /.
Let A be an n X n matrix. We shall say that A is diagonal if

a    - ¡K    ' = J> » < min(m, n),

I 0,    otherwise

(some of the A,'s may be zero).

Suppose /: X —> Y is a map and X and Y are //0-spaces. Let Bx =

{■*m,> *m<2. • • • . xH), dim xK = m¡, m[ < m'i+x and BY = {yn^,yni, . . . ,yK}, dimy„.

= n'¡, ni < n'i+x be bases for QH*(X, Z)/torsion and QH*(Y, Z)/torsion in which

QH*(f Z)/torsion is represented by a diagonal matrix A.

Assume that QHmJ(Y, Q) ¥= 0 for/ = 1, . . . , Z(A'), m, < m2 < . . . < m,(xy and

that QH""(Y, Q) ^ 0 for k = 1, . . . , l(Y), nx < n2 < . . . < nl(Y). Obviously for

every 1 < /' < r there exists a / (1 < / < ¡(X)) so that m\ = m}, and for every

1 < i < s there exists a K (1 < k < /( Y)) so that «,' = nk.

Let i = Un<N\'Hn(X, Z)\ (N = max{N(X), N(Y)}) and let 4>: X ^ K(X), <p:

Y —> K(Y) be rational equivalences realizing {tx^, . . ., tx^} and {ty„¡, . ■ ■ , ty„.},

respectively. Denote by t the least common multiple of t, Tln<N\'H''(Y, Z)\,

IIn<A,|irn(fiber <p)|, Il„<Ar|vT„(fiber \p)\ and the nonzero elements of A.

Denote by D c Zw+/(y) the set of pairs (d, d'), d = (dmi, ..., d^J G Zl(x\

d' = (d'n , . . . , d'n   ) G Z/(y) satisfying the following conditions:

(a) For every i, (d^, t) = (d^, t) = I.

(b) If QH"'(f, Q) is a monomorphism and QH\Y, Q) ¥= 0 then ^/^.

(c) If QH"if, Q) is an epimorphism and QH"<(X, Q) ^ 0 then </^/^.

(d) If QH\f, Q) is an isomorphism then </   = i/^.
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3.2. Theorem (Zabrodsky [8]). Let X be an H0-space with QH^X, Q) ¥= 0 for

i = 1, . . ., ¡(X) and let xp: X -» K(X) be a rational equivalence. Suppose t(X, xp) is

an integer divisible by II„<Ar(;o|Vn(fiber $)\-

Then G(X) admits an abelian group structure and there exists an exact sequence

where a is the composition

■0

, ldetl i
l'(*)[X> *W -* aut(f2Ä*(Jf, Z)/torsion ® Z^,w) -> [(Z,V,w)/± Lp:

and i is given as follows: Let dx, . . . , dl(X) be integers satisfying (d¡, t(X, xp)) = 1 for

every   i   and  let   Id. d/j¡:   QH*(X, Z)/torsion -» QH*(X, Z)/torsion   satisfy

det(Id        d   IQH^X, Z)/ torsion) = d¡. Consider the following pull-back diagram

X X

I*

d,(X)) = X and if X is

,     „        r(7'.<*<*)) ,     .

K(X) -» K(X)

If X has a finite number of homotopy groups define |(i/,,

finite dimensional define £(dx, . . . , dl(X^) = HLdimX(X).

3.3.  Definition.  Let X be  an  //„-space so  that  QH^X, Q) ^ 0 for i =

1, . . . , l(X) and let /: X -> X be a map. Suppose d = (dx, . . ., dKX))

say that / realizes d if, for every i, det({2//"v(/, Z)/torsion) = d¡.

Z'W. We

3.4. Proposition. Let f: X -» Y be a map.

(a) // X, Y are H0-spaces, then for every pair (d, d') G D there exist a map f:

X' -> Y', G(f) and t-equivalences A: A" -h> X and k: Y' -» Y so that A realizes d, k

realizes d' andfh — kf.

(b) Let f be an H-map and suppose H*(X, Q) and H*(Y, Q) are primitively

generated. Then for every pair (d, d') G D there exist an H-map /': A" —> V and

H-maps A and k so that (a) is satisfied.

Proof. Let Bx, BY, <p and xp be as in 3.1 and let/: K(X) -> K(Y) satisfy gxp ~ <p/.

Let a: K(X) -» K(X) and ß: K(Y) -* K(Y) satisfy:

a = no,, (a,.: K(Z, m\) -> K(Z, m¡)), det(ß//^(«, Z)/torsion) = d^.

ß = n A (A: *(Z, «/) -* *(Z, «,')), det(QH\ß, Z)/torsion) = fl£.
ga ~ ßg (such a and ß exist since, for every i, g*(i„¡) = \i„¡ or g*(i„) = 0).

Consider the diagram

(3.4.1)
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where A" is the pull-back of X->K(X)+- K(X) and Y' is the pull-back of

y\k(Y)Ü-K(Y).
Since the lower trapezoid is a pull-back and cpfh ~ ßg9, there exists a map /':

A" —> y so that kf ~ fh and <j>f ~ gO. Consider the diagram:

Ay     -»     KLY),-       -+       a>

1// -l«r 4/r

y;    -*    *(y),-     -+      y,-

(If/: A"-» y is a homotopy equivalence/-1 denotes the homotopy inverse of/.)

Since this diagram is commutative and its horizontal rows are homotopy equiva-

lences the map/': X' -» Y' belongs to G(f).

(b) Choose bases {xm-, . . . , x^}, {yn,t, . . . ,y„.) for PH*(X, Z)/torsion and

PH*(Y, Z)/torsion, respectively, in which PH*(f, Z)/torsion is represented by a

diagonal matrix. (By Curjel [2] such bases exist.) Let xp: X —* K(X), <p: Y -* K( Y)

realize {txm,, . . . , tx^) and {ty„^, ... ,oV}> respectively. Obviously xp and <p are

//-maps.

Let g, a and ß be as in part (a). Consider diagram 3.4.1. Obviously A and k are

//-maps and/' G G(f). We shall prove that/' is an H-map:

Since the maps

(Qß)t: [A" x A", ß/<:(y)] ->[A" X A", SIK(Y)],

(ß<p)t: [X' X A", ÜY] -*[A" X A", fl/qT)]

are t and / equivalences, respectively, the map

(Slß)t + (ß<p),: [A" X A", fiAT(y)] 0[A" X A", fíy] -*[A" X A", S2AT(y)]

((n>8)* + (M*)(a, ¿>) = (00)» + (fl«p),(¿»)

is an epimorphism (Arkowitz [1, Proposition 4.3]). This together with the fact that

<pf and kf are //-maps implies (Arkowitz [1, Proposition 10.3]) that/' is an H-map.

3.5. Corollary, (a) If(d, 1) G D then Proposition 3.4 is true for GY(f).

(b) If (l, d') G D then Proposition 3.4 ¿s true for Gx(f).

Proof, (a) Choose <p = «p, Ac = 1, 0 = 1.

(b) Choose 0 = ip, A = 1, « = 1.

3.6. Proposition. Suppose Xx, X2 are H-spaces so that H*(X¡, Q) (i = I, 2) are

primitively generated; Yx, Y2 are H0-spaces; f: Xx -+ X2 an H-map, and g: Yx —» Y2

a map.

Let Bx ■■ {Xf,..., x¡m¡) be bases for PH*(X¡, Z)/torsion, and let BY =

{y¡, ■ ■ ■ ,y¡n) be bases for H*(Y¡, Z)/torsion. Denote by A and B the matrices of

PH*(f Z)/torsion and H*(g, Z)/torsion in these bases.

There exists an integer t(f, g) depending on Xt, Y¡,f and g so that: Given a pair of

matrices (over Z) (Cx, C2) satisfying CXA = BC2, there exist functions h¡: Y¡ —» X¡

(i = 1, 2) so that the following conditions are satisfied:
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(a) The matrix of H*(h¡, Z)/torsion\(PH*(X¡, Z)/torsion) relative to the bases Bx

and BY is t(f, g)C¡.

(b)fhx~h2g.

Proof. It is enough to prove the proposition in case that Bx and BY¡ (i = 1, 2)

are bases in which the matrices A and B are diagonal.

Let A be the multiple of the nonzero elements of A and B and let / be as in 3.1.

Let G = {(C„ C2)| \(CX)0\ < tX, KC^yl < tX for every i and/, CXA = BC2). To

each pair (Cx, C2) G G correspond functions A,: Y¡ -» X¡ the matrices of which

relative to Bx and BY are XtC¡ (Zabrodsky [8, Proposition 1.8]). Since Ar, and Y¡ are

i-equivalent to K(X¡) and K(Y¡), respectively, the ¿-localizations of fhx and A2g

coincide. Hence there exists an integer i(C cj so tnat (<¡>s h^g—/(£, A,).

This together with the finiteness of the set G implies the existence of an integer s

which is good for every pair (C„ C2) G G. We shall prove that s = t(f, g).

As A and B are diagonal and C,/l = BC2, for every / and/, (Cx)0aM = ^«(Cj)«.

If A,, = b- b' where b/(Cx)0 and A'/o^. then

[(c.v*] • h = (c.)^ = *«(c2)í, = ft%[(<y#/(v*,)I-
Assume that [(C,),y/A] = i/tf + c,y where |«^| < / or c0 = 0. For every 1 < Ac <

max{/y} + 1 define matrices Cx, C2 as follows:

{Cx% =

c0b,     k = 1,

/A,       K k <liJ+l,        (€•*),=

0,        k > /,. + 1,

r-[a^/6'](    KH/j+1,

0, A: > /„ + 1.y

Obviously, for every k, the pair (Cx, C2*) G C and (C„ C^ = 2A:(C,*, C2*).

Let A,*: y, -» X¡ (i = I, 2) be maps the matrices of which are sCk and which

satisfy fhk — h2g. Since Bx are bases for PH*(X¡, Z)/torsion and/ is an H-map,

the matrices of 2*. hx (relative to Bx and 2?v) are sC¡ and /(2Ä A,*) ~ (2 A2 )g.

Consequently t(f, g) = s.

3.7. Remark. If CXA = BC2 and C, = 0 (C2 = 0) we obtain that

* ~ h2g(fhx ~ *).

3.8. Corollary. Proposition 3.6 remains true if we substitute Xx= Yx =

\/finite <y*» /: A", ̂  A'2 a function and replace Bx^ and BY by bases B'x and B'Y of

H*'<ysm>).

Proof. Analogous to the proof of Theorem 3.6, since if Ac,, Ac2: Yx —» A', are

functions the matrices of which (relative to the bases B'x and B'Y ) are C, and C2

and /,, l2: Y2-^>X2 are functions which satisfy fkx ~ lxg, fk2 ~ l2g. Then the

matrix of Ac, + k2 is C, + C2 and /(kx + k^ ~ (/, + /j)g.

3.9. Corollary. If in Proposition 3.6 y2 = A"2, BY = fi^ we obtain that there

exists an integer t(f, g) depending on Xx, Yx, X2, f and g, so that for every matrix C

which satisfies CA = B, there exists a function A: Yx —* Xx so that:

(a) The matrix of H*(h, Z)/torsion\(PH*(Xx, Z)/torsion) relative to the bases

Bx and BY ist(f,g)C.

(b) fi ~ <¡>lUtg)g.
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Proof. It is enough to prove the assertion in the case that Bx (i = 1, 2) are bases

in which the matrix A of PH*(f, Z)/torsion is diagonal.

Since CA = B, the matrix C is of the form

C\     C2'c =
C3     C4

where Cx is completely determined by A and B. The corollary follows from the fact

that every matrix D of the form

0-(°   CA
\C3     C4/

/ 0      C,\

can be written as D = 2* finite -D*, where |(-Dt)j,-| < / for every i and/ and Z^/i = 0

for every k.

3.10. Corollary. // in Proposition 3.6 Yx = A",, Z?^ = BY = a Aas« /or

H*(YX, Z)/torsion, we obtain that there exists an integer t(f, g) so that for every

matrix C which satisfies A = BC there exists a map k: Y2^> X2so that:

(a) The matrix of H*(k, Z)/torsion\(PH*(X, Z)/torsion) relative to the bases Bx

and BYi is t(f, g)C.

(b)kg~<t>,ag)f.

Proof. Similar to the proof of 3.9.

Remark. The corollary remains true if one replaces the conditions that Xx is an

//-space and/is an //-map by the conditions that A', is an //„-space and/is a map.

If A and B are matrices denote by A * B the matrix („ ^).

If X, Y are //„-spaces and for every 1 < / < / either HS'(X, Q) ^ 0 or HS'(Y, Q)

¥= 0 we can identify

Hom°z(QH*(Y, Z)/torsion, QH*(X, Z)/torsion) with the set of matrices AQ =

A°*AQ*  ■■■  *Asf,
Hom°z(DH*(Y, Z)/torsion, DH*(X, Z)/torsion) with the set of matrices A D =

A° * A£ *  ■ ■ ■  * Asf and
Hom°z(QH*(Y, Z)/torsion, H*(X, Z)/torsion) with the set of matrices A =

As,*As2*    ■ ■ ■    * As, Where

At. =
A?

A?

and the order of the matrices ASQ, A^ is completely determined by

H*(X,Z)/torsion   and   H*(Y, Z)/torsion.

We denote

-(#
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3.11. Proposition. Suppose f. X-^ Y is an H-map, H*(X, Q) and H*(Y, Q) are

primitively generated and H*(f, Q) is either a monomorphism, an epimorphism, an

isomorphism or zero.
J"

Given afibration F" -> X" -» Y" in G(f) and a commutative diagram

X"      %      X

if"

Y"

if

X

(3.11.1)

where A"  and k"  realize d = (±dm, . . ., ± ¿     ) and d' = (± d', . . . , ±d'   ),
v        m,' ' n\xy v        «i' ' "Kyr

respectively. Then the map /": X"-* Y" is homotopy equivalent to the map f:

X' -» y, which corresponds to the pair (d, d') (d = (dm¡, . . . , d^), d' =

(d^, . . . , d¿)) in the construction of Proposition 3.4.

Remarks. (1) The pair (C„ C2) which appears in Proposition 3.6 is equal to the

matrix
/ Cp     C2e \

,CXD     Ci

(2) When we write in the proof functions which correspond to the matrix

fiC,        t■>(-■)2*-2

J3c?    t4C?

where t(f,f")/t¡ for every /', we mean functions A: X" -» A", k: Y" -> Y' so that

the matrices of

H*(h, Z)/torsion|(/>//*(A", Z)/torsion)

and

H*(k, Z)/torsion\(PH*(Y', Z)/torsion)

c?
and

<2    c?

u   c?
respectively, and which satisfy/'A ~ kf". (Such functions exist by Proposition 3.6.)

Proof of Proposition 3.11. We shall prove the proposition in the case d = d,

d' = d'.   The   proof   in   the   case   d = (±dm¡, . . . , ±d     ) =£ d   or   d' =

(±d^, . . ., ±d^J ¥= d' is similar.

By'zabrodsky(1[8] X" « A", Y" « Y' and F" « F'. After localization at t of

diagram 3.11.1 and of the outer square of diagram 3.4.1 we obtain a commutative

diagram:

» X

ft

» y.
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The fact that the left trapezoid is commutative and /' is an H-map imply (Theorem

2.2) the existence of an integer «,, (nx, t) = 1, and maps A: X" —* A", Ac: Y" —> Y'

so that fh ~ kf", h, ~<¡>nh~xh" and k,—<p„ k~xk". As A and k are //-maps

(AA), •—< <f>„ A," and (kk), ~ <f>„ Ac". Therefore there exists an integer n2, (n2, t) = 1, so

that <P„2(f„h") ~ <bnJhh) ~ h(<bnh) and <t>„2(<p„k") ~ <P„2(kk) ~ k(<t>nk). The maps

A' = <p„ A, k' = <¡>nk satisfy <p„A" ~ AA' and «/»„Ac" — AcAc' (n = nxn^). Consequently

the fact that A and A" realize ¿/ and Ac and Ac" realize d' imply that A' and Ac' realize

the same as <#>„.

Let x: ZH*(X", Z)/torsion —» H*(X", Z) be a rational splitting, i.e. the map
X proj

QH*(X", Z)/torsion^>H*(X", Z) -* QH*(X", Z)/torsion is a monomorphism

of maximal rank. We shall identify QH*(X", Z)/torsion with

X(QH*(X", Z)/torsion).

Choose bases for PH*(X', Z)/torsion and PH*(Y', Z)/torsion in which

PH*(f, Z)/torsion is represented by a diagonal matrix M, and bases for

QH*(X",Z)/torsion and QH*(Y, Z)/torsion in which QH*(f", Z)/torsion is

represented by a diagonal matrix NQ. Denote by N the matrix of

//*(/", Z)/torsion|(ö//*(y", Z)/torsion)

relative to these bases. Obviously

Let r be the number of generators of QH*(X, Q) and let r be the number

of generators of QH*(Y, Q). Define t' = X2t(f,f") where X is the multiple of

the nonzero elements of M and N. Consider the matrices AG and AQ of

QH*(h', Z)/torsion and QH*(k', Z)/torsion, respectively. Since A' and Ac' realize

the same as <|>n and (n, t') = 1, the matrices (nl)~x ■ (A Q ® Zr.) and (nl)~x ■

(ÄQ ® Zt) belong to SL(r, Z,,) and SL(/% Z,,), respectively. As for every n there

exists an epimorphism ßm: SL(m, Z) -> SL(/m, Z(), there exist matrices E G

SL(r, Z), ¿T G SL(f, Z) so that &(£) = (nl)~x ■ (A Q ® Z,,) and ^r(^) = (w/)_1 '

(y4c ® Z(). Consequently there exist matrices B and B (over Z) so that /ÍQ — nE

+ t'B and ÄQ = nË + t'B.

We shall use the conditions on AQ, AQ and H*(f, Q) to construct homotopy

equivalences A: X" -> A" and A7: y" -> Y' so that /'A~~ kf". We shall discuss

separately each condition on //*(/, (?)•

(a) //*(/ (2) = 0.
Let A,: A"'-» A", Ac^ K" -» Y' be functions which correspond to the matrix

(~'oB ~'oB) and let h2- x" -* x'> k2: Y" -* Y' be functions which correspond to the

matrix (~'0B ~'0B). Define maps A: X" --> A", k: Y" -^ Y' by A = a(h' + A,) + AA2,

k = a(Ac' + Ac,) + AAc2, where a and b are integers satisfying an + bt' = 1. Since the

matrices of QH*(h, Z)/torsion and QH*(k, Z)/torsion are E and E, respectively,

Aand A7 are homotopy equivalences. Obviously fh~ kf" (/' is an //-map); hence

A and k are the desired maps.

(b) //*(/, ß) is a monomorphism.
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Assume that ASQ is a v¡ X v¡ matrix and that Ä® is a w¡ X tv(. matrix. Assume also

that for every i

M. =

m,

0

and     N? =

'u

WhSj

0 }°í - w,l}üj:    -    W,

As A QM = NQÄQ and (det ASQ, X) = 1, for every i the matrix ^p is of the form

W;     X     W;

A? =
Í C.

0 c..

where |det CJ = »"' and |det ÇJ = h"'""'. Define

m; =

o

o

w, X w, w, X (ü, — vv(),

M' = A// * M' *  ■ ■ ■  * M' and B = XNBM'. As B satisfies

t(f,f")BM = Xt(f,f")NBM'M = Xt(f,f")NB(XI) = X2t(f,f")NB = i'A/B,

there exist maps A,: A"' —» A", Ac,: Y" ^> Y' which correspond to the matrix

t(f,f")BQ     -t'B

t(f,f")BD        0

Define A2 = A' + A,, A:2 = Ac' + Ac,. As /' is an //-map, /'A2 ~ Ac2/". From this

homotopy and from the definition of A2 and Ac2 it follows that the matrices of

QH*(h2, Z)/torsion and QH*(k2, Z)/torsion are A' = AQ - t(f,f")BQ and nÉ,

respectively, and that A'M = nNQE. The last equality together with the facts that

(n, X) = 1 and (Bse)kJ = 0 for every Ac and /' that satisfy either Ac > w¡ or / > w¡,

imply that for every i the matrix A's is of the form

W; X w.

A' =
nE'

0 nE! + t'BiíJ(«%- ",)x(ü,- wi)

where E^ G GL(t>, - w„ Z), Es" G GL(w,., Z) and «£' + t'B's = Cv

For every / denote by Ds the matrix

W,    X     W;

D, =
0

0

i'd:

-t'B: (v¡ - w¡) X (o, - w,.)

where (^)jy + t'(D^)kj = 0 (mod n) for every Ac and/ that satisfy either Ac < w¡ or

/ > h>,. Define D = D, * ZX * ■ • ■ * ZX. Since DM = 0 there exists a function A,:

X" -> A" so that/'A3 ~ * .

Define functions A4: X" —* A", Ac4: F" —» y by A4 = A2 + A3, Ac4 = Ac2. It is clear

that/'A4 ~ A:4/", that the matrix of QH*(k4, Z)/torsion is nE, that there exists a
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matrix E G GL(r, Z) so that the matrix of QH*(h4, Z)/torsion is nE and that

EM = NQË.

Let A5: X" -» A"', k5: Y" —> y be functions which correspond to the matrix

t'E        t'Ê

t(f,f")É      0

where Ë~_= XNDÊM' (such functions exist since t'NQE = f'ZÍA/ and t'NDÊ =

t(f,f")EM). Define A = aA4 + AA5, k = ak4 + bks, where a and b are integers

satisfying an + bt' = I. As the matrices of A and Ac are E and E, respectively, and

as/' is an H-map, A and Ac are homotopy equivalences and/'A ~ kf".

(c) H*(f, Q) is an epimorphism.

Assume that A® is a ü, X u, matrix, that A® is a w¡ X m>, matrix and for every i

N, =

M. =

u, X u.

m i..*,

r«..

t), X (w,. - t),)

0

rç X v, v¡ X (w,. - v¡).

Since v4 eA/ = NQÄQ and (det y4,p, A) = 1, for every i the matrix ASQ is of the form

V.-    X    t>;

AC    =

0

(w¡ - Vi) X (w,. - t),.)

where |det C,.| = nv' and |det C.| = nw'~v'. Define

u, X t5,

AT ' =

(w¡ - v¡) X v¡

X/n M

V\
o

N' = N¿* N¿2*  • ■ •   * AÇ and 5' = A/'5A/.

Let N and A7 be the matrices of DH*(f", Z)/torsion and //*(/", Z)/torsion,

respectively. As for every decomposable element d G H*(X", Z)/torsion there

exists a decomposable element d' G H*(Y", Z) satisfying (/") * d' = A*/, there

exists a matrix B" so that -XNDB' = JVZi". Define z7 = (^'), ZÍ = (¿*).

As B' satisfies

Xt(f,f")NQB' = Xt(f,f")N^N'BM

= Xt(f,f")(XI)BM = X2t(f,f")BM = í'ZÍA/,
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B and B satisfy t(f,f")NB = t'BM. Consequently there exist functions A,: X"

A", kx: Y" -» y which correspond to the matrix

l-t'B      -Xt(f,f")B'\

\    0 -t(f,f")B"J-
Define A2 = A' + A,, Ac2 = Ac' + Ac,. The matrices of QH*(h2, Z)/torsion and

QH*(k2, Z)/torsion are nE and A' = ÄQ - Xt(f,f")B. As/'A2 ~ A:2/", E and A'

satisfy w£A/ = NQA'. This together with the fact that (n, X) = 1 and (B^ = 0 for

every pair (k,j) satisfying either Ac > v¡ orj > v¡, imply that for every / the matrix

A! is of the form

Ü, X «.

a: =
nE!

0

0

nE' + t'B: (w,. - t5¿) X (w¡ - v¡)

where £^ G GL(w,. - «,., Z), E£ G GL(u„ Z) and nE's¡ + f B's = Cs¡.

For every i denote by Ds the matrix

u. X v,
D. =

'i—

-t'B'J(w. -ü,)x(w,. -0|)

where (/l^),-, + t'(D¿)y s 0 (mod «) for every /' and / satisfying either i > v¡ or

/ < v¡. Define D = Ds¡ * DS2* ■ ■ ■ * Dsr Since, for every i and/, DtJ is divisible by

A, there exists a matrix D so that —NDD = ND. Denote D' = (%). D' satisfies

ND' = 0; therefore there exists a function Ac3: Y" —* Y' so that Ac3/" ~ * .

Define A4: X" -* A", and A:4: Y" --> Y' by A4 = A2, A:4 = A:2 + A:3. It is obvious

that/'A4 ~ k4f", that the matrix of QH*(h4, Z)/torsion is nE, that there exists a

matrix E so that the matrix of QH*(k4, Z)/torsion is nE and that EM = NQE.

A", k5: Y" —y y be functions which correspond to the matrixLetA5: X"

t'E t'E

0       t(f,f")E

where the matrix Ë satisfies -t'NDE = t(f,f")NË. Define h = ah4 + bh5, a7 =

£jA:4 + bk5 where a and A are integers which satisfy an + bt' = 1. As the matrices of

QH*(h, Z)/torsion and QH*(k, Z)/torsion are E and E, respectively, A and Ac are

homotopy equivalences. Obviously/'A — Ac/"; hence A and Ac are the desired maps.

3.12. Corollary. Proposition 3.11 is also true for a map S2"~' —> X where X is an

H-space so that H*(X, Q) is primitively generated.

Proof. The assertion follows from Corollary 3.8 in the same way that Proposi-

tion 3.11 follows from Proposition 3.6.

3.13. Corollary. Let f: X —> Y be a map which satisfies conditions (a) or (b) of

Y in GY(f) and a ¡-equivalence A": X" ->• A"

Y is homotopy equiva-

Theorem I. Given a map /": X

realizing d = (±dm¡, .

lent to the map f: X' —» Y which corresponds to the pair (d, 1) (d = (dm¡, . . . , d     ))

by the construction of Proposition 3.4.

±dm   ). Then the map /": X"mHXY
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Proof. The corollary is obviously true if / satisfies condition (b), namely if
X = S2n~x.

Suppose / satisfies condition (a). By Corollary 2.3, GY(f) = 0 if H*(fi Q) is

either an isomorphism or an epimorphism. Therefore we have only to check the

cases H*(f, Q) = 0 and H*(f, Q) is a monomorphism.

Choose bases for PH*(X', Z)/torsion and PH*( Y', Z)/torsion in which the

matrix A of PH*(f, Z)/torsion is diagonal. Define /' = Xt(f,f"), where X is the

multiple of the nonzero elements of A. Assume d = d. Using the considerations of

Proposition 3.11 one obtains that there exists a map A': X" —» A" which realizes the

same as <p„ and satisfies/'A' ~<t>J", and that the map/": X" -» Y is homotopy

equivalent (over Y) to the map/': A" —* Y.

(If d = (± dm¡, . . . , ± d^x) ¥= d the proof is similar.)

3.14. Corollary. Let f: X —» Y be a map which satisfies the conditions of Theorem

III. Given a map /": X —» Y" in Gx(f) and a t-equivalence k": Y" —» Y realizing

d' = (±dn , . . . , ±dn ). Then the map f": X —» Y" is homotopy equivalent (under

X) to the map f: X -^ Y' which corresponds to the pair (1, d') (d' = (d^, . . . , 4^,))

by the construction of Proposition 3.4.

Proof. If H*(f, Q) is either a monomorphism or an isomorphism then Gx(f) =

0 by Corollary 2.3. If H*(f, Q)is either an epimorphism or zero, one chooses bases

for QH*(X",Z)/torsion and QH*(Y",Z)/torsion in which the matrix B of

QH*(f", Z)/torsion is diagonal, then one defines /' = Xt(f,f") where X is the

multiple of the nonzero elements of B. Using the Corollary 3.14 follows from

Corollary 3.10 in the same way that Proposition 3.11 follows from Proposition 3.6.

In Theorems I, II and III we referred to an integer /. We shall define it now:

3.15. Definition, (a) If /: X —* Y is a map satisfying the conditions of Theorems

1 or III and Y ̂  S2""1, we define t = t(f,f) (of 3.6).
(b) If X = S2n~x, y = S2m~x (n > m) and the order of / is odd we define

t = order(f).
(c) If X = S2"-1, y = S2m~x (n > m) and the order of / is even, we define

t = |/|". where v is an integer satisfying t\^f— * •

(By the proof of Theorem 2.2 such an integer exists.)

3.16. Proposition, (a) Let f: X —» Y be a map which satisfies the conditions of

Theorem I. There exists a surjection £' = £: D —» G(f) satisfying the following

conditions:

(1) i'(d, d') = i'(d + ts, d' + ts') whenever (d, d') and (d + ts, d' + ts') belong

to D.

(2) Iffis an H-map, then for every pair (d, d') G D, £'(d, d') is an H-map.

(3) If D' = {(d, 1) G D) then £'\D' is on GY(f) and for any two pairs (d, I),

(d + ts, 1) in D', Z(d, I) = ?(d + ts, 1) in GY(f).

(b) // the map f: X —> Y satisfies the conditions of Theorem III and if D" =

{(1, d')£\ D) then the map t'\D" (^ from (a)) is on Gx(f) and

Í'(l, d') = f (1, d' + ¡s')

in Gx(f), whenever (1, d') and (1, d' + ts') belong to D".
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Proof. Propositions 3.4 and 3.11 imply that there exists a surjection £': D -»

G(f), that i'\D' and £'|Z>" are on Gv(/) and on Gx(f), respectively, and that if /is

an Z/-map, then £'(</, </') is an //-map for every pair (*/, d') G Z).

We shall prove part (a)(1) (parts (a)(3) and (b) are proved similarly). We shall

distinguish two cases:

(a)/ satisfies conditions (a) or (b) of Theorem I.

(b)f: S2"'1 ^ S2m~x (n > m).

The proof of case (a). It follows from Propositions 3.4 and 3.11 that for every pair

(1 + ts,l + ts') G D, §(1 + ts,l + ts') = $1, 1) - (/: X-* Y\

Let (dx, d{) G D be a pair which satisfies (dxd, d'xd') = (I + ta, I + ta') where

(a, a') G Z/(Z) X Z/(y>. Assume that £)(</, ¿') = (/': X' -> y) and that

£;(</ + £, </' + te') - (/": X" -* y).

Since (</,(</ + te), í/,'(í/ + ¿0) " O + 'Xa + ¿í-O. ! + '(«' + ¿i•*'))» it follows from

Proposition 3.4 that %f.(dx, d'x) = £}-(</„ </{) = / Consequently there exists a com-

mutative diagram

X

,

where A, and A2 realize dx, and Ac, and k2 realize d'x. Using this diagram we obtain

(in the same way that we proved Proposition 3.11) that

Í'(d, d') = i'(d + ts, d' + ts').

The proof of (b). Assume that Ç(d,d') = (f: S2""1 -» S2m~x) and that

£'(d + ts, d' + ts') = (/": S2"~x -> 52m-1). As for every/' G G(f) the order of/'

is equal to the order of/, we obtain from the choice of t that Vd+is'f—frld+tY'

hence £'(d, d') = £'(d + ts, d' + ts').

3.17. The proof of Theorems I, II, and III. We shall prove Theorem I.

Theorems II and III are proved similarly.

Let ß: D -» [(Z*)/ ± lf*>+*« be the map

/?«> • • •. 4*1? <? ■■■' 4*„)

= («L,(mod t), ..., dmKx) (mod t), dn¡ (mod ?), . . . , dn^ (mod /)).
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By Proposition 3.16, £': D -> G(f) factors through Im ß. We shall calculate Im ß.

To this end we shall distinguish among four cases:

(1) H*(f, Q) — 0. If (d, d') G D there is no relation between d and d'; conse-

quently Im ß = [Zf/ ± l]'W+/<y>.

(2) //*(/, Q) is an isomorphism, (d, d') G D iff d = d'; consequently

Im0= {(</,</) G[(Zf)/±l]/(Jf) + /(y)s[Z»/±l]/(Jr)}.

(3) //*(/ ß) te a monomorphism. Suppose rf = (¿mi, . . . , d^) G [(Zf)/±lf*>

and d' = «,, . . • , <<n) G [(Zf)/ ± If *>. Define J = (Jm,, . . ., d^J G Z'<*> by

í d^,       m, * nj for every/,
dm = {"*   1 <*<ç.   «* = «>.

where 0 < cx < t is an integer satisfying d   = c,*/' (mod /). Obviously (d, d') G £>

and ß(d, d') = (</, d'). Consequently Im ß = [(Z*)/ ± !]**>+«*),

(4) //*(/, g) te a« epimorphism. Suppose d and </' are as in (3). Define d =

(1, . . ., dn  ) G Z/(K) by

Í <,        ", # m, for every/,

where 0 < c, < í is an integer satisfying d'n = c¡d   (mod /). Obviously (d, d) G D

and 0(</, J) = (d, d'). Consequently Im ß = [(Z»)/± l]/(jr>+/(K>.

Define an integer Ac as follows: If H*(f, Q) is either a monomorphism, an

epimorphism or zero put k = l(X) + l(Y) and if //*(/, 5) is an isomorphism put

k = l(X) = l(Y). By Proposition 3.16 and the calculation of Im ß, the surjection

f : Z) -» G(/) induces a surjection £ [(Zf )/ ± 1]* -» G(/). Define an action on G(f)

by l(d, d') ■ £(dx, d'x) = \(ddx, d'd'x). Propositions 3.4, 3.11 and 3.16 imply that the
action is well defined, that G(f) with this action is an abelian group and that the

sequence

[//],--[(Zf)/±l]^G(/)^0

is exact.

4. Some consequences of Theorems I, II, and III. We assume that all the maps

satisfy the conditions of Theorem I or of Theorem III (Theorem I when we speak

of G(f) or GY(f), Theorem III when we speak of Gx(f)).

4.1. Lemma. Let f: S2n~x -> S2m~x (n > m) be a map. If the order off is odd then

G(f)= G^-,(/) = [(Z|*/|)/±l].

Proof, (d, d') G Im a' c [(Zft)/ ± I]2 if and only if d = d' (mod(|/|)).

Remark. It is clear that for any map of the form/: 5" -» S", G(f) = 0.

4.2. Lemma. If f: X —* Y is a map and f is a rational equivalence then each map f:
f        k

A" —* y in G(f) is obtained as the pull-back of X —* Y*- Y' where k is a t-equiva-

lence. In particular for every f G G(f), F' tm F.
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Proof. Follows from the construction that appears in Proposition 3.4.

h
4.3. Lemma. Let/,: A", -» Yx andf2: X2^> Y2 be maps.

(a) Each map in G(/, X /,) (C^^.X/j), G'^'K/i x/2)) » */ '** /««

gx X g2 wfere g. G G(f) (g, G Gy(/), & G G *<(/)).

(b) 7/(1) Ô#"(*"„ 0)^=0 wAe/iewr QTZ^A",, ß) # 0,
(2) ßZ/^r,, ß) # 0 wAe«ew ß77"(y2, ß) * 0,

rAe«

(1') <?(/, Xf2)=fxX G(f2).

(2')Gx(fx x/2)=/, X G*(/2).

(3')   Gr(/,    X  /,)=/,    X    Gyi/j).

(4') 7/ y2 = tf(y,), *2 = K(XX) andf2 ~ *   then G(fx X/j) - G*(/, X /,) =

GV(/, X /j) = 0.

4.4. Corollary. Let f. X —» Y be a map. There exists an integer n so that

G(f": X" -* Y") = 0.

Proof. If /' G G(f) and /' = l(d, d') then (/')" G G(f) satisfies (/')" -

Í(d", d'n). Consequently (fY')/2 « f*')/2. (<p(t) = the Euler number of t = the

order of Zf.)

Remark. It is obvious that the corollary is also true for Gx(f) and GY(f).

4.5. Lemma. Every map in G(proj: A" X Y -> Y) is of the form proj: A" X Y' ->

y h-Aétê- A" G G(A-) a/K/ y G G(y).

4.6. Lemma. Let f: X-» Y be a map (Y j= S2m~x).

(a) Every map in G(<pJ) (GX(<\>J)) is of the form <bj' where f G G(f) (f G
Gx(f)).

(b) If X is an H-space then every map in G(/<p„) (GY(f<bn)) is of the form f<p„

where f G G(/) (/' G GY(f)).

(c) If X = S2""1 then every map in G(/rj„) (GY(fqn)) is of the form fr\n where

f G G(f) (/' G GY(f)).

Proof. We shall prove (a). The proofs of (b) and (c) are similar.

Since f* and (<£„/)* can be diagonalized simultaneously we can apply diagram

3.4.1 (with the same tp and xp) to construct G(f) and G^J). Suppose

%(d, d') = (A" 4 y') and ^ = (g': X' -> Y'). From diagram 3.4.1 we obtain that

there exist an //-map Ac: Y' -> Y and a map A: A" —» A" (obviously if / is an //-map

A is, also, an //-map) which realize i/' and d, respectively, and which satisfy

kg ~ (<?nf)h and kf ~ fh. The last homotopy together with the fact that k is an

//-map imply that k(<p„f) ~ (<p„f)h. Therefore by Proposition 3.11 the map ^>J' is

homotopy equivalent to g.

5. The map G(A-, Y,f)^>G(X) X G(Y). The map G(A-, Y,f)-+G(X) X G(Y)

exists for every map /: X —* Y. An immediate consequence of Theorem I is that for

maps /: A" —» y which satisfy the conditions of Theorem I the above map is a
proj

homomorphism and the compositions G(X, y, /) —» G(X) X G(Y) —»  G(A") and
proj

G(A", Y,f) -► G(X) X G(Y)-^  G(Y) are epimorphisms.
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In this section we deal with the kernel of the map G(A", Y, f) -» G(X) X G( Y)

only for maps/: X -^ Y which satisfy the conditions of Theorem I. In case that this

map is a monomorphism and G(Y) = 0 (G(X) = 0) we conclude (by the previous

paragraph) that G(A-, Y,f) m G(X) (G(X, y/) = G(Y)).

All the notations in the next lemma, except the addition of indices to indicate the

dependence in d and d', are taken from diagram 3.4.1.

5.1. Lemma. Let X and Y be H0-spaces so that H*(X, Z) and it„ Y are torsion free.

Iff: X —> Y is a map which satisfies the conditions of Theorem I then

\ker(G(X,Y,f)^G(X)xG(Y))\

-\{[y,gôdxp] t[X,K{y)]\(d, d') G D, 4, d[ < ?, Vi}|

where yd,: K( Y) —» K( Y) and Sd: K(X) —» A^A") are homotopy equivalences satisfying

yd,<t>d, ~ <p and 8dxp ~ 9d.

Proof. It follows from diagram 3.4.1 that if £'(d, d') = /' then $d,f ~ g G 9d.

Suppose i'(d, d') belongs to ker(G(A\ y,/)-> G(X) X G(Y)). The above homo-

topy together with the homotopies yd<t>d— <p and 8dxp ~ 9d imply that yd,xtpf ~

g8dxp (where yd,x denotes the homotopy inverse of yd.) or equivalently that <pf —

Yd' S^d^- The truth of the lemma follows from the last homotopy and from the fact

that the map [X, Y] -* Hom(77*( Y, Q), H*(X, Q)) is one-to-one (Zabrodsky [9,

Lemma 5.3.1]).

Remark. By 3.17 it is enough to take pairs (d, d') G D which satisfy d¡, d[ < t2

for every /'.

5.2. Examples of maps for which the map G(X, Y,f)-± G(X) X G( Y) is a

monomorphism. (All the maps considered are assumed to satisfy the conditions of

Theorem I.)

Example 1. A"-> K = nfinite k(Z, n¡), H*(X, Z) is torsion free and 77*(/ Z) is

onto.

Every d' G Z,(K) can be realized in K. Assume that (d, d') G D and that d can

be realized in X. Let A: A--» A' be a map which realizes d. As H*(f Z) is onto

dn/d'„ whenever QH"(X, Q) ¥= 0. Consequently there exists a map k: K —> K which

realizes d' and satisfies fh ~ kf. Therefore by Proposition 3.11, £'(«/, d') = fand the

map G(A", K,f) -> G(X) X G(K) -* G(X) is an isomorphism.

Example 2./: X -+ K(X),fis a rational equivalence and 7Z*(/, Z) is onto.

G(f) =í G(A"), since if/': X ^ K(X) belong to G(f) there exists a pull-back

diagram

h
X -* X

if if

K(X)      X      K(X)

where A and k are /-equivalences (Lemma 4.2). Consequently H*(f, Z) is onto and

there exists a homotopy equivalence g: ^(A") —> K(X) so that gf ~~f.

To state the next two examples one needs the following notations: If A" is a

CW-complex denote by A„ : X —» Xn the homotopy approximation of X in dim < n

(i.e. trkhn is an isomorphism for Ac < n and trkXn = 0 for Ac > n).
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Example 3. hn: X -» Xn.

Assume that (d, d') G D and that d and ¿' can be realized in X and Xn,

respectively. Since if /: X —* X realizes d, fn: Xn-^> Xn realizes d', one obtains from

Proposition 3.11 that £'(d, d') = A„ and the map G(A„) -> G(A") X G(A"„) is a

monomorphism. Moreover, since the map Hk(hn, Z) is an isomorphism in dim <

n, the composition G(A„) —> G(A") X G(Xn) -» G(A') is an isomorphism and G(A„)

* G(X).

Example 4./: SU(w) —> SU2„_,, m < n, and 77*(/, Z) is onto.

Assume that (d, d') G D, that d and d' can be realized in SU(m) and SU2n_„

respectively, and that £'(d, d') = g G G(f). Since /„: w%SU(w)^ ,7'*SU2„_, is an

isomorphism in dim < 2m — 1 and an epimorphism in dim 2m, gs is also an

isomorphism in dim < 2m — 1 and an epimorphism in dim 2m. Therefore

H*(g, Z) is an epimorphism and the fact that the map G(f) —* G(SU(m)) X

G(SU2n_,) is a monomorphism follows from the next lemma:

5.3. Lemma. Given mapsfx,f2: SU(w) -> SU2n_, so that H*(fx, Z) and H*(f2, Z)

are surjections. There exists a homotopy equivalence g: SU2n_, SU2n_, so that

Proof. By Lemma 1.5 in Zabrodsky [7], there exists a map g: SU2n_, —> SU 2n-l

so that gfx ~f2. Obviously Hk(g,Z) is an isomorphism for k < 2m — 1. Assume

that g is not a homotopy equivalence and that Ac is the least integer for which

QH2k + x(g, Z) t¿= ±1. Consider the diagram

SU(w)

where g'2k+x is a homotopy equivalence which covers the homotopy equivalence

g2k_,. (By Zabrodsky [7, Corollary 1.4] such a homotopy equivalence exists.)

As h2k_xf2 ~ g2k_xh2k_,/, and the fibration K(Z, 2k + 1) -» SU2it+, —> SU2/t_,

is principal, there exists w G [SU(m), K(Z, 2k + 1)] so that h2k + xf2 ~

w * (£2*+1^2*+1/1) where * is the action of [SU(w), K(Z, 2k + 1)] on

[SU(w), SU2„_,]. Obviously w is decomposable. Since //*(/,, Z) is onto there

exists a decomposable element w G [SU2/t+1, K(Z, 2k + 1)] so that w — wA2t+,/1.

Define g2k + x = w * g'2k+x. Obviously g2k + x is a homotopy equivalence and

82k +1^2* +1/1 ~" h2k +\f2- Consequently g2k+x can be lifted to a homotopy equiva-

lence g": SU2n_, -+ SU2„_, so that g"/, ~ f2.
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6.    Computation    of    G(a),    GY(a)   and    G
/

GM)(a)   for   some   fibrations

the fibrations in this section are HopfX í+Y^> K(G, n). We assume that all

fibrations which satisfy the conditions of Theorem I.

In order to calculate G(a), GY(a) and GK(Gn)(a) (in some of the cases) we need

the following lemma:

6.1. Lemma. If the fibration K(G,n - 1) -» X-^ Y is innduced by a: Y -> K(G, n)

then G(f) « G(a) and GY(f) s GY(a).

f a'
Proof. Suppose A" -» Y' -> K(G, n) belongs to G(a). Define maps A: G(a) -»

G(f) by a' -»/' where/' is the fiber of a' and Ac: G(/) -* G(a) by/' -» a' where/' is

induced by a'. As each of the maps A and k is the inverse of the other G(f) » G(a).

The fact that GY(a) s Gy(/) is proved similarly.

Case I.F-* K(Z, m) A K(Z, n).

Obviously G(a) = 0 for n < m. Assume that n > m and that (*/, d') £\ D Ç Z2.

Since 7/"(a, ß) = 0 there is no relation between d and d'. In contrast with this, the

existence of maps A: K(Z, m) —> K(Z, m) and Ac: K(Z, n)—> K(Z, n) satisfying

ah ~ Aca implies that d = d' (mod(|a|)). Consequently G(a) m [(Z|*|)/± 1].

For the same reason GK,Zn)(a) s GK(Zm)(a) m [(Z,*,)/ ± 1].

Case 2. F-» /sT(Zm, n)-^K(Z', n), k, m > 1.

G(a) = 0, since one can choose bases for H"(K(Zl, n), Z) = Z' and

H"(K(Zm, n)Z) = Zm in which H"(a, Z) is represented by a diagonal matrix and

use these bases together with the conditions on D to construct for every pair

(d,d')£\D maps A: K(Zm, n) -> AT(Zm, «) and A:': K(Zl, n) ̂ > K(Z', n) which

realize i/ and </', respectively and satisfy aA — Aca.

In the same way we obtain that GKiZi^(a) = GK^Zr,n)(a) = 0.

Case 3.F^> K(Zl, n) -» K(Zp„, ri) (k, I > 1).

We prove that G(a) = 0 by constructing to each vector (xx, . . . , x¡) (x¡ G Zp„)

and to each number d G Zpk an / X / matrix A (over Z) so that det A = d and

A(xx, . . . ,x,) = (dxx, . . . , dx,) (mod/»*).

Consider the vector (xx, . . . , x,). Each x¡ is of the form x¡ = a^*1 where

(a,p) = I. Without loss of generality assume that kx < k¡ or every i. Let b be an

integer satisfying axb = 1 (mod/»*) and let A = (a,-,) be the following matrix:

A = b(d - l)aj>k'~k'     1

0
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namely

d, i = 1,/ = 1,

b(d - I)«,/»**"*',     i * 1,7 = 1,

1, i ¥= l,j = i,

O, otherwise.

Obviously   det A = d  and   A(xx, . . . , x¡) = (dxx, . . . , dx¡)   (mod/»*).   (a,,x, =

(¿- l)x,(mod/»*)for/ > 1.)

Case 4. F -^> K(G, m) —» K(H, m), G and H are finite/»-groups.

It is obvious that G(a) » GK{Gm\a) a GK^Hm)(a) = 0.

Case 5. A"n+, —» A"„ —> A"(G, n + 2), the Postnikov approximation of X.

It follows from Lemma 6.1 and from Example 3 in §5 that G(a) » G(A„) s

G(Xn+i)-
f a

Case 6. A"—» y—» K(G, n), tina is an epimorphism.
/' a

Suppose X—> y—> K(G, n) is in GY(a). Let Ac, Ac': A"-* A" be /-equivalences

satisfying fk ~/' and/'Ac' ~/ (by Theorem 2.2 such /-equivalences exist). We shall

prove that GY(a) s G(A") by showing that Ac is a homotopy equivalence.

It is obvious that Acs: mmX -> irmX is an isomorphism for m ¥= n, n — 1 and that

mnk and mj are monomorphisms. As mna is onto irn_xk is also an isomorphism.

Consequently in order to prove that Ac is a homotopy equivalence it is enough to

prove that w„Ac is an epimorphism. But irj ° irnk = ttJ' and itj' ° irnk' = irj;

hence w^/(wnAc ° ttnk') = trj, ir„k ° ttnk' = 1 and tr„k is an epimorphism.
a

Case 7. A"-> Y-±K(G, n), G is a finitely generated free group, H"(Y, Z) is

torsion free and H "(a, Z) is a surjection.

Assume that d = (dx, . . . , dKY)) G Z/(y) can be realized by a map A: Y —» Y and

that (d, d') G D Q Z,(y)+X. As ker H"(a, Z) = 0 implies 4, = ¿' and

ker H"(a, Z) ^ 0 implies dn/d', there exists a map Ac: AT(G, /t) -» K(G, n) which

realizes d' and satisfies ka ~ ah. Hence by Proposition 3.11, £'(d, d') = a and

consequently G(a) an G( y).

7. Noncancellation. In the following proposition we use the notations of Theorem

3.2.

7.1. Proposition. Let X and Y be H0-spaces so that QH"<(X, Q) ¥= 0 for

1 < i < l(X) and QH^Y, Q) J= 0 for 1 < / < l(Y), and let tp: X^ K(X) and <p:

Y —> K(Y) be rational equivalences. Denote by t the least common multiple of t(X, xp)

and t(Y, <p). Assume that

d = K,,...,^))G[(Zf)/±l]/w    and

d' = (d^,...,dmjG[(Zr)/±l]'(r)
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satisfy the following conditions:

(a)  ¿; =
dn,    m, = it,,

1,       m¡=£ nj for every j.

[ d'       n, = m¡,

(b)    4,-1 \*      >
^ 1,        ^ i-mj for every j.

IfX' = £(</) G G(A-) and V = £(d') G G(y) /A<?« A" X Y^X X Y'.

Proof. It follows from the definition of £ that if Y' = £(</') G G( y) then

y = £((</')-') G G(y")-  Consequently A".x Y = |(1, .... 1) G G(A" X y)  and

A" x y« A" x y.

An immediate consequence of this proposition is

7.2. Corollary. Let X be an H-space and let Y be an H0-space. If l(X) = /( Y)

+ 1 then for every A" G G(A") there exists a Y' G G( Y) so that A" X Y « X X Y'.

Using Corollary 7.2 together with Theorem 2.2 one obtains

7.3. Lemma. Let F —* X —* Y be a fibration satisfying the conditions of Theorem I.

(a) For every fibration F'-*X'->Yin GY(f), X X F' « A" X F.

(b) If f is a rational equivalence then for every fibration F' —>X' -* Y' in G(f),

X X Y' m X ' X Y.

Proof, (a) Choose bases for 7r„X/torsion and w, y/torsion in which tr^f/torsion

is represented by a diagonal matrix A. Let / be an integer divisible by \'tTnX\ • |V„ y|

for n < ma\{N(X), N(Y)) and by the nonzero elements of A. By Theorem 2.2

there exist /-equivalences A: A" —> X and Ac: F' —* F so that/7i —■/' and/Ac — A/'.

The choice of / together with the commutativity of the diagram

«n+iY

*i
tr„F' -* mnF

iJ't ih
h

^nX' „ -* *nX

v,

imply that det(AcÄ|ker/j) = 1, det(Ajt|[(7rtA''/torsion)/ker/j]) = 1 and

det(As|ker/j) = detiAcs|| (77^ 7" / torsion)/ker/j1 j.

Consequently one obtains from Proposition 7.1 that X X F' m A" X F.

(b) Let / be as in 3.1 and let A: X' -* X, k: Y' -» Y be /-equivalences satisfying

fit — Ac/' (by Theorem 2.2 such /-equivalences exist). Since det(QH*(h, Z)/torsion)

= det(QH*(k, Z)/torsion), A" X Y as X X Y'.
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