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DIFFEOMORPHISMS ON THE TORUS

ORIENTATION-REVERSING MORSE-SMALE

DIFFEOMORPHISMS ON THE TORUS

BY

STEVE BATTERSON1

Abstract. For orientation-reversing diffeomorphisms on the torus necessary and

sufficient conditions are given for an isotopy class to admit a Morse-Smale

diffeomorphism with a specified periodic behavior.

A diffeomorphism is Morse-Smale provided it is structurally stable and has a

finite nonwandering set [P-S]. Several recent papers have explored the relationship

between the topology of these maps and their dynamics. In [F] Franks showed that

the periodic behavior of a Morse-Smale diffeomorphism was restricted by its

homology zeta function. For the homotopy class of the identity on a compact

surface Narasimhan proved that virtually any periodic behavior consistent with the

homology zeta function does indeed occur [N].

For orientation-reversing maps there are obstructions other than the homology

zeta function. Blanchard and Franks [B-F] have shown that if an orientation-re-

versing homeomorphism of S2 has periodic orbits which include two distinct odd

periods, then the entropy of that map is positive. This implies that no orientation-

reversing Morse-Smale diffeomorphism on S2 can have distinct odd periods. The

following theorem was conjectured in [B-F] and has been proven by Handel.

Theorem [H]. Iff: M2 —> M2 is an orientation-reversing homeomorphism of a

compact oriented surface of genus g, and iff has orbits with g + 2 distinct odd periods,

then the entropy off is positive.

Thus an orientation-reversing Morse-Smale diffeomorphism on the torus has

orbits with at most two different odd periods. In this paper we investigate whether

there are any further restrictions on its periodic behavior. In [B] we showed that it

suffices to consider the isotopy classes of the toral diffeomorphisms induced by

(¿ _J) and (¿ _¡). We will show that there is a further obstruction in the former

class but not in the latter.

I would like to thank John Franks and Lynn Narasimhan for their contributions

to this paper.

Preliminaries. In this section we state our main result following some necessary

definitions and background. We assume the reader is familiar with various stan-

dard terms and notation from dynamical systems. Further details are available in

[B], [N] and [Ni].
_
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Definition. The homology zeta function ti, of a diffeomorphism / is defined by

■n^t) = llf^0Mdet(I - ftattf-***' where f,k: Hk(M, R)-+ Hk(M, R) is the induced
map on Acth homology.

Let y be an orbit of period p for a Morse-Smale diffeomorphism. The index of y

is the dimension of E" for x e y. The orientation type A of y is defined to be + 1 if

Dfl: E" -» E" preserves orientation. For a sink orbit define A = +1. Otherwise

A = -1. We correspond a triple (p, u, A) to y which consists of the period, index,

and orientation type of y. For a diffeomorphism whose nonwandering set consists

of a finite number of hyperbolic periodic points, its periodic data is defined to be

the collection consisting of these triples (where the same triple can occur more than

once provided it corresponds to different orbits).

The following theorem of Franks relates the homology zeta function to the

periodic data.

Theorem [F]. Let f: M -> M be a Cx map with a finite number of periodic orbits

all of which are hyperbolic. Then tj//) = 11,(1 - A,/*)*"0"'*'-

This theorem restricts the Morse-Smale periodic data that can occur in a given

isotopy class. For orientation-preserving diffeomorphisms on T2 there are only two

other restrictions, each of which is obviously necessary.

Theorem [B]. Let g G Dif^T2) and suppose g preserves orientation. There exists a

Morse-Smale diffeomorphism f on T2 isotopic to g and with periodic data

{(/>,., «„ A,.)}?=-, if and only if
(l)u¡ = 0 and Uj = 2 for some i andj,

(2)r,Ä(/) = n?.1(l-A,./".)<-1)"/+'

(3) A, = +1 for each i with u¡ £ {0, 2).

In this paper we investigate the situation for orientation-reversing diffeomor-

phisms. In both cases the work is simplified by the following two lemmas from [B].

Lemma 1. Let A G G/(2, Z) and suppose that both eigenvalues of A are roots of

unity. Then A is similar over the integers to exactly one of the following matrices:

\0     1/    I    0     -l)'    l-l     oJ'    l-l      -l)'

ll        i)'    (o    -l)'    (o     -l)'

m e (0, 1, 2, . . . ).

Lemma 2. Let f,g,h£\ Diff(M) with f Morse-Smale and hf = gh. Then g is

Morse-Smale and the periodic data of g is equal to the periodic data of f.

The isotopy class of a diffeomorphism of the torus is completely determined by

its action on first homology. Franks' theorem implies that if the diffeomorphism is

Morse-Smale then the eigenvalues of the induced map are roots of unity. Thus to

study the periodic behavior of Morse-Smale orientation-reversing diffeomorphisms

of the torus, it suffices to consider the isotopy classes of maps on T2 induced by
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(¿ _í) and (¿ _J). For example any periodic behavior that can be produced in the

isotopy class determined by (¿ _ {) can also be produced in (^ ¿) by simply applying

the differentiable conjugacy induced on T2/Z2 by (~j _Ç).

We now partition the relevant isotopy classes into two groups. Those whose

induced map on first homology is similar over the integers to (¿ _^) will be said to

be of even type (because this group includes all those of the form (¿ 2nx)). Those

sharing this relationship with (¿ _ ¡) are of odd type.

Note that maps of both types have homology zeta function 1. Consequently this

important invariant fails to distinguish periodic data that might occur in one class

but not the other. The following definition characterizes that data in the present

situation.

Definition. If p is odd then the collection {(p, 0, 1), (p, 2, - 1), (2p, 1, +1)} is

a minimal data collection.

Minimal data collections contain the fewest number of periodic orbits possible in

a Morse-Smale diffeomorphism of the torus. We now can state the main result of

this paper.

Theorem. Let g G Diff(7'2) and suppose g reverses orientation. There exists a

Morse-Smale diffeomorphism f on T2 isotopic to g and with periodic data

{(pi,ui,^Yi_xifandonlyif

(l)u¡ = 0 and u¡ = 2 for some i andj,

(2)T?g(/)=i=n?_1(i-A,.^)<-1)",+,)

(3) A,. = +1 if u, = 0 and A,. = (- iy if «, = 2,
(4) {/»,-}"_ i contains at most two different odd numbers,

(5) if g is of even type then {(/>,, u¡, A,)}"=1 te not a minimal data collection.

The necessity of conditions (1) and (3) is clear. The necessity of conditions (2)

and (4) is a consequence of the results stated from [F] and [H] along with Lemma 1.

In the following section we will show that conditions (l)-(4) are together sufficient

for nonminimal data collections. In the final section we will show that minimal

data collections can be realized by Morse-Smale diffeomorphisms in classes of odd

type but not in classes of even type.

Nonminimal data collections. Suppose P = {(/>,., u¡, A,)}"., satisfies (l)-(4) and is

not minimal. We now outline the procedure involved in constructing Morse-Smale

diffeomorphisms with periodic data P. First the data is organized into pieces and

the torus is divided into cylinders (see Figure 1). Isotopies are then performed on

each cylinder (annulus) so as to obtain a map which is isotopic to reflection across

a vertical plane through the center of the torus. The isotopies put all the orbits with

odd period r in the top cylinder. Odd period q orbits are put on the bottom

cylinder. Some of the even orbits will also be put into these cylinders with each

remaining orbit isotoped into a pair of side cylinders of the same height.

Employing Lemma 2, we will have completed the argument for nonminimal data

in classes of even type. Finally adding another cylinder on each side, putting a

Dehn twist in exactly one of them, and then nipping, we can preserve the periodic

data but change the isotopy class to one of odd type.
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odd period r
& some evens

Figure 1

To begin the construction we algebraically organize the data P into pieces. The

data in each piece is sufficiently compatible that it can be realized on an annulus or

pair of annuli. Applying Lemma 5 of [B] and Lemma 2.1 of [N] the data can be put

into the following form where q and r are odd and each s¡ is even.

n o - v«)(-^i=i
i - tq i"-
i -

n¿«i

i + /<
i + /<

(i -12")

(i - f)(i + f)

m3

(1 - /*)(! + /*)(! + t2") ...(1 + t2'  ")

1 - t2""

1 - tr

1 - f

1 + tr

1 + f

(1 - /*)

(i - r)(i + r)

^ (i - tr)(i + tr)(i + t2r)...(i + /2"'"'r)

,=i 1 - r»

?r (1 - /JQ(1 + /*)(! + f^)...(l + t2"'"s')

, = i "                        (1-/^)

Let A = {x £\ R2|l < |x| < 3), C = {x G A\ \x\ = 2} and A be the diffeomor-

phism of A onto itself obtained by reflecting about C. Suppose mx + m2 + m3 +

m4 > 0 and that the data Q generated by these terms includes at least one sink. We
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must now construct an orientation-reversing diffeomorphism of A into itself in

which C is an invariant set containing all of the orbits of period q. The periodic

data of this map will be Q.

Example. mx = m2 = m3 = I, m4 = 0, q = 3.

The desired map is obtained by composing the following three.

(1) The time-one map of a flow whose dynamics are shown in Figure 2.

(2) Rotation by 2w/3.

(3) A.

• sink

® saddle

o source

Figure 2

Note that the rotation near the boundary can be removed by a further isotopy.

Lemma 3. For any n > 0, there exists an orientation-reversing diffeomorphism f of

Z) = {jcGR2||x|<1) onto its image with periodic data

{(2" + 1, 0, 1), (1, 1, - 1), (2, 1, - 1), (22, 1, - 1), ... , (2", 1, - 1)}.

Furthermore, for some R > 0, e > 0, the restriction of f to the annulus

{x G R2|l — R < |x| < 1} te given by fir, 9) = (r — e, tr — 9) and there exists

a filtration of D for f

Proof. In the proof of Lemma 3.1 in [N] define h0(r, 9) = (r, it — 9).

Lemma 4. If Q is nonempty and contains a sink then there exists an orientation-re-

versing diffeomorphism f of A into itself with periodic data Q. Furthermore, for some

R > 0, e > 0 any point x within R of either boundary is mapped along radii to the

point between x and h(x) whose distance is e from h(x). There is also a filtration of A

forf.
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Proof. The construction of / involves combining the techniques of the example

with Lemma 3.

Now suppose m5 + m6 + m7 + ms > 0 and the corresponding data includes a

source. Then using the inverse of the Lemma 4 construction yields an overflowing

invariant orientation-reversing diffeomorphism of A. The periodic data of this map

includes all of the period r data of P.

Referring back to Figure 1, we have the diffeomorphism defined on the top and

bottom cylinders. Points near the boundaries of these cylinders are mapped over to

the opposite arm and downward.

The diffeomorphism is completed by realizing the remaining even periodic data

in pairs of cylinders along the sides. This is accomplished in Lemma 5 which

involves a straightforward modification of Lemma 3.3 in [N]. Lemma 6 (see 3.2 of

[N]) will be required if either there are no sinks or no sources in the mx through ms

blocks.

Define Alc = {x G Ä2|A < |jc| < c} and let & be the disjoint union of the

annuli A ¡ 3 and A 2 3.

Lemma 5. For any even s > 2, m > 0 there exists a diffeomorphism f of & onto its

image with periodic data

{(2-5,0, +1), (s, 1, 1), (s, 1, -I), (2s, 1, -l),...,(2m~xs, 1, -1)}.

Furthermore for some R > 0, e > 0, / maps the annulus A\ X+R along corresponding

radii a distance e onto A{_e X+R_t and maps A3_R 3 onto A3i_R_   3_t where i =£j.

Lemma 6. For any even s > 2, m > 0, there exists a diffeomorphism f of & onto its

image which maps A \ 3 into A2 3, A2 3 into A j 3, and has periodic data

{(2ms, 0, + 1), (s, 1, + 1), (s, I, -1), (2s, 1, - 1), ... , (2"-V 1, - 1)}.

Furthermore for some R > 0, e > 0, / maps A\ X + R and A'3_R 3 along corresponding

radii a distance e into A\ 3 where i =£j.

Note that the nonminimality assumption implies 2w, > 2. Thus there will be at

least two annuli to join together. If P has less than two odd periods, the construc-

tion is similar and involves either putting only even periods on the top and/or

bottom annulus or putting the same odd periods on these annuli.

Minimal data collections. Let P be a minimal data collection (i.e., P =

{(p, 0, + 1), (p, 2, - 1), (2p, 1, + 1)} where/? is odd). To complete the proof of the

theorem we must show that P can be realized in an isotopy class of odd type but

not in one of even type. For p = 1 the former is easy and the latter has been shown

in an unpublished argument of Franks.

Suppose that/is a Morse-Smale diffeomorphism on 7"2 with periodic data P. Let

[qx, q2, . . . , q2p], [rx, r2, . . ., rp], and [sx, s2, . . . , sp] be the saddle, source, and sink

orbits respectively.

Since there is only one saddle orbit, / has no points which are heteroclinic

between saddles. Consequently the unstable manifolds yield a cell decomposition

of T2. We obtain a graph G" from the 1-skeleton as follows. G" has 3p vertices
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corresponding to the sinks and saddles. Two vertices are adjacent if and only if

their stable and unstable manifolds intersect. The valence of a vertex is the number

of edges connected to it. From the stable manifold cell decomposition a graph, Gs,

is similarly defined with source and saddle vertices. Let G be the union of G" and
Gs.

Due to the periodicity there are two possibilities for G" (see Figure 3). Either

each saddle vertex is adjacent to one sink vertex or to two sink vertices. This is also

the case for Gs. Since the graph G must be connected, either Gu or Gs must also be

connected. Thus we can assume that the saddles in G" are of valence two.

%
9

<*4 <*S «I«

Valence I saddles

<*6

Valence 2 saddles

Figure 3  (possible G" for p = 3)

We wish to show that Gs must also be a graph in which each saddle is of valence

two. Suppose this is not the case and consider the stable manifold cell decomposi-

tion. The boundaries of the two cells are obtained from G via the fact from [P] that

cl[Ws(s)] n Ws(q) ^ 0 if and only if Ws(s) n W"(q) =£ 0. If the saddles in Gs

were of valence one then this boundary would be disconnected. Thus we conclude

that the graphs G", Gs, and G are completely determined.

Following a procedure in [M] one could now compute tr(T2, sx), the fundamental

group of T2 at the basepoint sx, from these graphs by first finding the free group

tt(G", sx) and then obtaining, from G, relations among the generators of ir(G", sx).

The action of / on these generators is completely determined. Following a rather

lengthy computation it could thus be shown that / must be of odd type. We can

avoid this computation by noting that / can only be of one type and then showing

that maps of odd type do exist.
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Let B - (¿ _ {) and define kp : R2 -> R2 by k2 -* R2 by kp(x, y) = (x + l/p, y). A

Morse-Smale diffeomorphism with periodic data P will be obtained by composing

B and kp with a map q> which is isotopic to the identity.

For p = 1 <p is chosen to be a diffeomorphism which commutes with B, is

isotopic to the identity, and has the fixed hyperbolic dynamics on the unit square

which are shown in Figure 4. Note that the polygons are preserved by B. Thus the

periodic data of the map induced by B ° <p is {(1, 0, + 1), (1, 2, - 1), (2, 1, -1-1)}.

Figure 4  (p = 1)

We now describe the unit square dynamics of <p for the general case. For

/ = 0, . . ., 2p the point (1/2, i/2p) is a hyperbolic fixed saddle. Fixed hyperbolic

sources and sinks occur at (0, i/p) and (0, (2/ + l)/2p) respectively (see Figure 5).

Figure 5  (p = 3)

Consider the segment from (0, 0) to (0, 1/2) and its period 2p orbit in T2 under

B ° kp. The even iterates are vertical lines from the bottom sources to the saddles.

Odd iterates are parallel lines from the top sources to the saddles. Each of these

lines will be half of the stable manifold for its saddle endpoint. Following a similar
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procedure with the line from (1, 0) to ((2p — l)/2p, 1/2) generates the other half

of the stable manifold (subject to smoothing). The unstable manifolds are obtained

by iterating the lines from (0, 1/2) to (l/2p, 0) and (l/2p, 1/2) to (l/2p, 0).

Perturbing near the saddles yields smooth curves which will be the stable and

unstable manifolds of <p. Now let <p be a diffeomorphism with these dynamics

which commutes with B ° kp. Then B ° kp ° <p induces an odd type Morse-Smale

diffeomorphism with periodic data P.
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