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SCHUR PRODUCTS OF OPERATORS AND THE ESSENTIAL

NUMERICAL RANGE

BY

QUENTIN F. STOUT

Abstract. Let S = {e„}™_i be an orthonormal basis for a Hubert space DC. For

operators A and B having matrices (a¡,),™ _i and (¿>,j)£y_i, their Schur product is

defined to be (<Ju6«)¡^_i- This gives ®(3C) a new Banach algebra structure,

denoted <$>6. For any operator T it is shown that T is in the kernel (hull(compact

operators)) in some ®s iff 0 is in the essential numerical range of T. These

conditions are also equivalent to the property that there is a basis such that Schur

multiplication by T is a compact operator mapping Schatten classes into smaller

Schatten classes. Thus we provide new results Unking ®(DC), 9>s and ®(®(DC)).

Let DC be a separable infinite-dimensional Hubert space, and A, B be bounded

operators on %. For an orthonormal basis S = {en: 1 < n < 00} of %, A and B

have matrix representations (aiJ)^j-x and (£>,•,)"_,. In 1911 Schur [15, p. 8] proved

that the termwise product (fl«ô«)j5-n denoted A * B, is itself a bounded operator

with norm satisfying \\A * B\\ < ||j4|| ■ \\B\\. This multiplication will herein be

called Schur multiplication, as opposed to the more common, but falsely crediting,

"Hadamard multiplication". Schur's result shows that once a basis & is selected,

then * defines a commutative Banach algebra, denoted by %&. While there is a

surge of interest in applications of Schur multiplication (see, for example, Bennett

[3], Johnson and Williams [6], Pommerenke [11], or Styan [18]), litle is known about

the structure of ©s. In particular, few connections between the structure of %(%)

and ®e have been explored, though Varopoulos [20] has asked whether the linear

structure of % (%) forces %6 to be a g-dgebra. Except for Bennett [4] and Ruckle

[13], the systematic study of Schur multiplication as a means of obtaining unusual

operators in '$>('&>(%)) is a relatively untouched concept, even though several

interesting operators are Schur multipliers, e.g., Kwapien and Pelczynski [8].

It is important to keep in mind that A * B depends upon a choice of basis. The

symbol A& will be used to denote the element of <$>(*$>(%)) defined by A¿(B) =

A * B, where * is with respect to the basis S.

It will be shown that the following conditions (and several others) are equivalent

for any operator T.

(i) 0 is in the essential numerical range of T.

(ii) There exists a basis & such that T is in kernel(hull(3Cg)), where %& is the

ideal of compact operators in %&.
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40 Q. F. STOUT

(iii) There exists a sequence of bases £„ such that T& —* 0 uniformly in

<&(<&(%)).

(iv) There exists a basis ®i such that, for any p with 0 < p < oo and any q with

p/(p + I) < q < oo, T^is a compact operator mapping the Schatten class Gp into

As a motivation for interest in the last condition, notice that for an operator T

with 0 in its essential numerical range (for example, any projection with infinite

kernel), there is a basis ?F such that T^ maps %(%) into Q^, the Hilbert-Schmidt

class. Since an operator is in 0^ if and only if the entries of its matrix with respect

to any basis are square summable, this shows a plethora of operators whose entries

are not in l2, and yet which, when acting as Schur multipliers, map %(%) into

matrices whose entries are in l2. Such behavior is impossible with the usual

multiplication in $ (%).

This paper is part of the author's Ph.D. thesis written at Indiana University

under the supervision of Professor John B. Con way. Mention should also be made

of Professor James P. Williams, who motivated the author's original interest in <3JS,

and of Professor Grahame Bennett, with whom the author has had many discus-

sions.

1. Preliminaries. Let X and  Y denote Banach spaces and let tfu(X, Y) and

%(X, Y) denote, respectively, the continuous and compact linear operators from X

to Y. Let T be an operator in % (X, Y). For any integer n > 0, the nth approxima-

tion number of T, denoted a„(T), is given by an(T) = inf{\\T — F\\: F £\

%(X, Y), rank(F) < «}. For 0 <p < oo the Schatten p class of operators in

%(X, Y), denoted Qp(X, Y), is here defined to be the set of operators T such that

2?-o an(TY < «• Goo(*> Y) can be taken to be either <&(X, Y) or %(X, Y) in

this paper, though the former is rarely used elsewhere. For a Hubert space %,

Gp(%, %) will be shortened to Gp.

A quasinorm || ||, can be defined on Gp by \\T\\p = (2"_0 aJJ'Y)1^. If

I •'< p < oo, then Qp is a Banach space, but forp < I, \\ || is not a true norm. It is

complete (see McCarthy, [9, Corollary 3.2]), and there is a constant cp such that

\\A + B\\p < cp(\\A\\p + \\B\\p). (From [9, Theorem 2.8] one can show cp = 2X'P~X

is the best possible value.) Similarly 9)(Gp, Gq) and %(Gp, Gq) will not be Banach

spaces if q < 1, but will be complete and satisfy an altered triangle inequality. || ||

will be used to denote the quasinorm in these spaces.

Given any A in %(%) and any basis S, a matrix representation (atJ) of A can

also be viewed as a bounded, continuous function on N X N, where N denotes the

natural numbers. Thus 9>s can be imbedded as a subset of C(N X N), which is in

turn naturally isometrically isomorphic to C( /?(N X N)), where for any completely

regular space X, C(X) denotes the Banach algebra of bounded continuous com-

plex-valued functions on X, and ß(X) denotes the Stone-Cech compactification of

X. These injections allow one to construct the maximal ideal space of %e, denoted

As. (This will make use of the natural identification between maximal closed

regular ideals and multiplicative linear functionals.)
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1.1. Theorem. The map (i,j) t-> (Aejt e¡) of N X N into As extends to a homeomor-

phism o/U{Z)":Z)cNxN such that, for all i in N the cardinalities of D n {/}

X N and of D n N X {/'} are not greater than one), as a subset of 65 (N X N), onto

Ag w/ZA í/ie regular or hull-kernel topology (i.e., 65Ê is a regular Banach algebra).

□

A proof of this theorem can be found in Stout [17].

Recall that an element of 9>(%) is a compact operator if and only if for any

sequence of projections {Pn) converging strongly to the identity, A — P„APn

converges to 0 in norm. If S = {^„}"-i is a basis and Pn is taken to be the

orthogonal projection onto the first n basis vectors, then it is easy to see that the

compact operators form an ideal in 65s. Denoting this ideal by %s, it is also

straightforward that for any T in 65 s, T will be in every maximal ideal which

contains %s (i.e., T is in kernel(hull(5Cs))) if and only if for every e > 0, t has only

finitely many entries with absolute value greater than e. A matricial property

related to this is the small entry property: T in 65 (%) has the small entry property if

for every e > 0 there is a basis {en) such that \(Ten, e„)\ < e for all n and m. Clearly

no nonzero scalar can have either of these properties, nor can any operator close to

a scalar.

For an operator T we use We( T) to denote its essential numerical range, i.e., the

numerical range of the image of T in the Calkin algebra %(%)/%(%). For any

T, We(T) is nonempty, compact, and satisfies We(T + X) = We(T) + X for any

scalar X. Further, We(T) = {0} if and only if T is compact. Proofs of these

assertions may be found in Bonsall and Duncan [5]. The following theorem states

only a few of the conditions known to be equivalent to 0 e We( T). Proofs may be

found in Anderson [1] or Anderson and Stampfli [2].

1.2. Theorem. For any T in 65 (%) the following are equivalent.

(a)0 <E We(T).

(b) There exists a sequence {/,} of unit vectors converging weakly to 0 such that

{Tfn,fn)^0.
(c) There exists a basis {en) such that (Te„, e„) -> 0.

(d) T = AX - XA for some X, A in 65 (%) with A selfadjoint.

(e) For any p > 1 and any e > 0 there exists a basis {en} such that 2„|(7en, e„)\p

<e.    □

It should be mentioned that Anderson's proof of the equivalence of (a) and (e)

uses two deep facts: the equivalence of (a) and (d), and Kuroda's result [7] that for

any selfadjoint operator A, any p > 1, and any e > 0, there is a diagonal operator

D such that \\A — D\\p < e. One by-product of the main theorem is a direct proof

of this equivalence.

2. The main theorem. The next two lemmas are used repeatedly in the remainder

of the paper.



42 Q. F. STOUT

2.1. Lemma. Suppose N(n) is a sequence of positive integers and e(n) is a sequence

of positive numbers. If T £\ 65 (%) and {e„} is a basis such that (Ten, en) -» 0, then

there is a new basis {e'n: n £\ N, 1 < / < N(n)} such that, for all n and m with

n =£ m, and all 1 < h < N(m), 1 < i,j, k, I < N(n),

(a) \(Te', ehm)\ < 2\\T\\/N(max(n, w))1/2.

(b)\(Te,n,ei)\<2\\T\\/N(n).

(c)\(Te',e>)-(Tenk,ei)\<e(n).

Proof. Define a new sequence (ô(n)} of positive real numbers by 8(n) =

e(n)/(2max{N(i)2: 1 < i < «}). We first show that {en} can be relabeled as {g¡,:

«=1,2,..., 1 < / < N(n)} with max{|(7g¿, g{)\, \(Tgi, g'm)\) < 8(n) for all m <

n and 1 < i < N(m), 2 < j < N(n). To show this, let g\ = e,. As n -» oo we have

(Tg\> e„)^>°> (Te„,g\)->Q and (Ten>en)^>Q> so there exists a A: > 1 such that

max{\(Tgx, ek)\, \(Tek, g\)\, \(Tek, ek)) < 0(1). Let g, = ek. Since also (Tg2, en)^0

and (Te„, g2)—>0, we can select an I >k so that setting g\ = e, satisfies

max{|(7g{, g])\, \(Tg\, g¡)\} < 5(1) for all 1 < i < 3. Continuing in this manner

one can find g'x for /' < N(l). Then let g2 be the element of least index among {e„}

not already chosen. One can now find g\, g\, . ■ ■ as before.

Notice that the only estimate available for (Tgxm, gx) is \(Tgxm, gxm)\ < || T\\.

For each positive integer k let uk denote a primitive Acth root of unity, and let

AZ(Ar) denote the k X k matrix whose (i,j) entry is u£~X)(J~X)/\/k. Viewing

M(N(n)) as an operator on the subspace of % with basis gx, . . . , g^K let

e'n = M(N(n))(g¡¡). Since M(k) is always unitary, ex, . . ., e"<-n) forms a new basis

for this subspace. Straightforward computations show that (a), (b) and (c) are

satisfied.    □

The following lemma, offered without proof, is probably well known. It is

interesting to contrast these bounds with those in Theorem 6.2 of Bennett [4],

which gives norms for multipliers on 65 (lp(n), lq(n)). The differences occur because

a given matrix has larger multiplier norm on 65 (l2, l^ than on 6j.

2.2. Lemma, (a) Let Pn be an n-dimensional orthogonal projection. Then the map

T-> PnTPnfrom Gp to Gq has norm nmM(0' >/?-i/rt for any p an¿ q in (Q, oo].

(b) Let B = (b¡j) be a matrix such that by = 0 if j > 0 and \b0\ < 1 iff < n. Then,

as multipliers from Gp to Gq, B and its transpose have norms no greater than

nmH(0' »/«"'A 1/2- Wp. i/?-i/p) for a¡¡ p ana< q in (0, qq]. Further, given n, there is a

matrix B so that the multiplier norm of B in 9>(Gp, Gq) attains the bound given for all

p and q in (0, oo].    □

We now give the main theorem.

2.3. Theorem. For any T in 65 (%) the following conditons are equivalent.

(a) 0 G We(T).

(b) There is a basis & such that T £\ kernel(hull(9Cs)).

(c) T has the small entry property.

(d) There exists a sequence of bases & (ri) such that T&,nX —» 0 uniformly in

65(65(30).
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(e) For every sequence {<*„} of positive numbers with {an} £\ /,, there is a basis

{en} such that \(Te„, en)\ < anfor all n.

(f) There is a basis S such that for all q in (0, oo] and r in (q/(q + 1), oo],

Ts 6 %(Gq, Gr).

Proof. It is straightforward, using Theorem 1.2, that (e)-»(a), (d)-»(c) and

(f) -» (b) -> (a). Therefore, it will suffice to show (c) -> (a), (a) -> (e), (a) —> (d) and

(a)-(f).

(c) -» (a): If T has the small entry property, then for any e > 0 there is a basis so

that all entries of the matrix of T have absolute value less than e. In particular, the

diagonal entries of the matrix must have an accumulation point X with |X| < e. By

Theorem 1.2 and the scalar translation property of numerical ranges, X £\ We(T).

Since We(T) is closed, 0 G We(T).

(a) —> (e): Without loss of generality we may assume that {a„} is nonincreasing.

Assuming (a) to be true, Theorem 1.2 guarantees the existence of a basis {/„} such

that (Tfn,fn) ->0 as n -^ oo. We construct a new basis {en} as follows: if \(Tfx,fx)\

< a„ let e, =/,. Otherwise let N be as small as possible such that 2,*_xan >

\(Tex, ex)\. Pick distinct vectors f2, . . . ,fN from {/„} such that

m,s¡)\ < (2 <- w»fù,)/N

for 2 < i < N. This will insure that |(7/,,/,)| + 2?mj¡W¡J¡)\ < 2^.,a„.

There is a ßx in (0, 1) such that, if e, = ßxfx + *d"l - ß2 f2, then \(Tex, ex)\ = a,.

Letting e'2 =yl — ß2 fx — ßxf2, we have ex and e'2 spanning the same subspace as

/, andf2. Since the trace is invariant on finite-dimensional subspaces we must have

\(Te'2, e'2)\ + ^3\(Tf,f)\ < 2^_2a„. If N = 2, or if it should otherwise happen

that }(Te2, e'2)\ < a2, then set e2 = e'2, "forget" that/3, • • • >/v were ever picked, and

reset A^ to be 2. If this does not occur, then there is a ß2 in (0, 1) such that setting

e2 = ß2e'2 + -y/l - ßl f¡ and e'3 =v/l - ß\ e'2 - ß2f3 will give \(Te2, e¿\ = a2 and

\(Te'3, e'3)\ + 2f_4|(7/', f)\ < 2„ = 3a„. Continuing in this manner yields

e3, e4, . . ., €fl.

Let /^+1 be the element of least index in {/„} not chosen previously. If

l(7/v+i>/v+i)l < aN+i tnen Put eAf+i=/v+i- Otherwise, let M be such that

\(TfÑ+vfÑ+i)\ < ^^N+Xan. Pick distinct vectors fN+2, . . . ,fM from {/„} which

are also distinct from all previously picked vectors and that satisfy \(Tf,f)\ <

(1".N+xotn - \(Tf„+x,fN +,)|)/(M - N). This procedure will then yield

eN+x, . . . , eM. Continuing in this manner will give the required basis.

(a)^(d): Fix n and let S(n) be the basis obtained from & using Lemma 2.1

with N(m) = 2(m + n)! and e(m) = 1. Let R' and 5" be operators defined by

(fl'e/, e$) = f (Tei> em)        if « = / and i < m,
[ 0 otherwise.

(Sty, e*) = Í W, ek)        if 1 < / and i = w,

10 otherwise.
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The« \\T&(n)\\ < 2||R¿(n)|| + ||5g(n)||, while from Lemmas 2.1 and 2.2(b) we have

II*smII. Wskn)\\ < 117*11 • 21-»*-)'/2. This gives ||7-g(B)|| < ||r|| • w2-»'/2.
(a) — (f): We use Lemma 2.1 with N(n) = 2n! and e(/i) = 2_(n+1)! to find a basis

S. Let P",Rn, and 5" be operators defined by

0 if / < n and m <n,

, e£)     otherwise.

= n and m < n or / < n and m = n,

(P"e' eJ) =
v      "  m;      Ure/.e^,)     otherwise.

10 otherwise.

(5ne/, e£) = ( (Te'" ^)        if / = w = n,

10 otherwise.

For fixed # and r, it suffices to show that H/'gU —»0. Only the hardest case,

0 < r < q < 1, will be shown. Let C be such that \\A + B\\r < C(\\A\\r + \\B\\r).

(Recall that C = 21/r_1 will work.) Decomposing P" into sums of block matrices,

one has

I P" II      ¿ c iÄiiL+2 c^disr'-'L+iiÄr'L) (•)

The norm of R£ is no greater than C times the sum of the norms of its two

rectangular blocks. Each block has as its smallest dimension 27~'jV(/) < 2("~1)! + 1.

The choice of N(n) guarantees that no entry of R" is greater than ||y|| • 21_/l!/2.

Using Lemma 2.2(b) one sees that there is a constant a such that

II z> « II       «^  T — n!/2 + a(n—1)!
H-KslUr  * ¿

The norm of Sg can be estimated by noticing that its nonzero entries are, by

Lemma 2.1(c), very nearly equal. Treating Sg as a small perturbation of a

multiplier with all its nonzero entries equal, one can show that there is a constant ß

such that
II VII      < ■7n!(l/'-- 1/9-1) + ̂

Substituting these estimates into (*), one sees that there is a constant A such that

\\P"\\       < i42~"'nún(1/2' l + l/l-l/r) + a<n-iy.

As long as I + l/q - l/r > 0, \\Pl\\qr — 0 as n — oo.    Q

Notice that Theorem 2.3(e) is a significant improvement upon Theorem 1.2(e).

Considering the importance of Kuroda's theorem in the proof of Theorem 1.2(e),

Theorem 2.3(e) seems to suggest that Kuroda's result can be refined. A natural

conjecture is: let Í be any convex ideal strictly containing 6,. (See Stout [16] for

definitions. Convex ideals have also been called interpolating ideals and majorizing

ideals, e.g. in Russu [14].) Then for any selfadjoint operator A there is a diagonal

operator D such that A — D G 5. Further, if 5 is symmetrically normed and e > 0

is given, then D can be chosen so that A — D has 5-norm less than e.

Let a&(T) denote the spectrum of T in 65s.

2.4. Corollary. For any T in 65 (%) there is a basis & such that os( T) has at

most two accumultion points.
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Proof. Let X G We(T). Then 0 G We(T - X) so, by Theorem 2.3(e), there is a

basis & such that 0 is the only accumultion point of a&(T — X). Then 0 and X are

the only accumulation points of os( T).   □

2.5. Corollary. // T G <$> (%) then

(a) T& G 3C(65 (%))for all bases & iffT is compact,

(b) Ts G %(<$>(%)) for some basis S iff 0 G We(T).

Proof. To prove (b) it is sufficient to show that if 0 £\ We(T), then for any basis

& = {e„}, rs G %(<$>(%)). By Theorem 1.2(b) there is a constant d > 0 such that

\(Ten, en)\ > d for all but finitely many n. Thus T&(en ® en) is not converging in

norm as n -^ oo, so T& is not compact.

Both directions of (a) need to be proven. If T is not compact then there is a X in

We(T) with X =£ 0. By Theorem 1.2 there is a basis & = {en} such that (Ten, en) —*

X. As was shown previously, T& is not compact. Finally, assume T is compact and

let S = {en} be any basis. Define Pn to be the projection onto the first n elements

of &. Since P„TPn — T in norm, (PnTPn)&-> T&. Since (P„TPn)s is of finite rank

in 65 (65 (%)), T& is compact.   □

One consequence of Theorem 2.3 is that if there is a basis S such that

T G kernel(hull(3Cg)), then there is a basis l3r such that T^T) is compact. In Stout

[17] it is further shown that T&(T&(T)) is compact, though it may occur that T¿(T)

is not.

3. Further remarks. One can prove the following theorem by a more careful use

of Lemmas 2.1 and 2.2. However, the details are uninstructive and will not be

given. In part (c) we use a generalized Schatten class, which we have defined by

approximation numbers. In Pietsch [10] there is an axiomatic theory of i-numbers,

any of which could be used to define Schatten classes, where all definitions agree

on Hubert space. Approximation numbers are the largest possible i-numbers [10,

Theoem 3.2], which implies that our Schatten classes are the smallest possible.

3.1. Theorem. For T in 65 (DC) the following are equivalent.

(a) 0 G We(T).

(b) T = 0, or there is a basis {en} such that the doubly indexed sequence (Ten, em)

is in np>2lp^ U q<2lq.

(c) There is a basis & such that for all q in (0, oo], r in (q/(q + I), oo], and p in

(2/(1 + min(0, l/q - l/r)), oo], T5 G Gp(Gq, Gr).   □

Related to Theorems 3.1(b) and 2.3(e) there is the following open question: given

an operator T such that 0 G We(T), and a sequence {a„} which is not in l2, does

there exist a basis {en) and a bijection m from N X N onto N such that \(Ten, en)\

< al(nm) for all n and ml This question is similar to two better known ones also

concerned with matrix representations.

(i) Given a normal operator N, does there exist a diagonal operator D such that

N - D G Gp.

(ii) Given an arbitrary operator T, does there exist a basis {en) and bounded

linear operator S such that \(Ten, em)\ = (Sen, em)l
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Question (i) is in the Weyl-von Neumann-Kuroda-Berg sequence of results and

was recently answered in the affirmative by Voiculescu [21]. Question (ii) has been

mentioned by Halmos and is related to work of Sunder [19].

The following proposition shows that the restriction r > q/(q + 1) in Theorems

2.3(f) and 3.1(c) is necessary.

3.2. Proposition. Let P be an orthogonal projection with infinite-dimensional

range. If q G (0, oo] and r = q/(q + 1) then P& & 65(6,, Gr) for any basis S.

Proof. P is a positive operator with infinite trace, and hence \Z(Pen, en) = + oo

for any basis S = {en}. Therefore, for any q, there is a sequence {an} such that

{an} G lq but {(Pen, en)an) £\ /,, where r = q/(q + 1). If A is a diagonal matrix

with diagonal {an}, then A £\ Gq and P*A & Gr.    □

This raises the following question: suppose T G 65 (DC) and there is a basis {en}

such that 2n|(7e„, en)\ < oo. Does there exist a basis 5" such that T9 G

65 (65(DC), G,)? Use of duality shows that if T G 6, then T6 G 55 (95 (DC), Gx) for
all bases S. (This fact was used in Johnson and Williams [6].) Further, this is a

characterization of trace class operators.

It is also possible to show that the restrictions onp in Theorem 3.1(c) cannot be

relaxed. However, one can improve the theorem by adding that if T is not 0 then

Ts can also be made to be 1-1 and have dense range. (It can never be onto.) To do

this it is necessary and sufficient to show that & can be chosen so that all entries of

the matrix of T are nonzero. This can be accomplished by incorporating the

techniques of Radjavi and Rosenthal [12].
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