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Abstract. This paper is divided into two parts. The first part proves a number of

general theorems on the cohomology of the classifying spaces of compact Lie

groups. These theorems are proved by transfer methods, relying heavily on the

double coset theorem [F,]. Several of these results are well known while others are

quite new. For the most part the proofs of the theorems are independent of each

other and are quite short. Nevertheless they are true in great generality. Several are

proven for arbitrary compact Lie groups and arbitrary cohomology theories.

Perhaps the most interesting of the new results relates the cohomology of the

classifying space of an arbitrary compact Lie group with that of the normalizer of a

maximal torus.

The second part of the paper generalizes many theorems to certain equivariant

cohomology theories. Some of these theorems appear in [FJ.

I. Let h be any general cohomology theory in the sense of [Dy]. As is well known,

a map p: X —* Y induces a homomorphism p*: h(Y) —* h(X). In certain situations

a transfer homomorphism t*: h(X) —» h(Y) exists also [BG], [D0]. In this paper G is

an arbitrary compact Lie group. 77 and K are closed subgroups of G. T is a

maximal torus of G with normalizer N. We shall refer often to [F0] for notation. If

p(77, G): BH —> BG is the natural projection of classifying spaces, a transfer

homomorphism exists, T(H, G): h(BH)-^h(BG) [F0, II.5]. (Technically T(H, G)

is only defined for finite-dimensional approximations of p(77, G) (Definition 1.6)

but this restriction should be overcome in the near future. Until this restriction is

removed all the theorems quoted in this paper will technically only be proven for

the finite-dimensional approximations of p(H, G).2) hs is stable cohomotopy. This

theory, represented by the sphere spectrum, acts on all others via the smash

product.

We use two properties of the transfer to prove various theorems relating h(BG)

and h(BH) for arbitrary cohomology theories.

The following is the most famous property of the transfer. We state it in a

slightly different form than usual to facilitate its applications.

Property 1.1. Let B be aparacompact and locally compact connected space. Let tt:

Y -^ B be a locally trivial fibration with fiber F a compact manifold. Then a transfer

exists t*: h(Y) —> h(B) and t* ° ir* is multiplication by the universal fixed point index
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X(F) + u G h°(B). Furthermore u G h°(B). If h = H* is singular cohomology

t* ° -it* is multiplication by x(T)- (Although not stated in this form Property 1.1

follows from the following papers, [BM], [D0], [DJ. It is true in even more

generality than stated.)

This property is quite powerful by itself. For example it is an easy exercise to

prove from it that H*(BG, Q) as Q for G finite. (Let 77 equal the trivial subgroup

of G and consider the fibration p(/7, G).)

The next property is much more complicated. However it simplifies in many

special circumstances. Let K\G\H be the double coset space obtained as the orbit

space of the left action of K on G/ H. This space breaks up into a finite disjoint

union of orbit-type manifold components {M ). Let g G G be a representative of

M. Let x#(M) = x(M) — x(M — M) be the internal Euler characteristic of M

(e.g., x# (point) = 1, x# (interior of a line segment) = -1). Let Hg = gHg~x and

let Cg: h(BH) —» h(BHs) be the usual conjugation isomorphism. This is induced by

Cg: BHg —> BH [F0, II.3]. (See also Definition II. 1 of this paper when X equals a

point.) We have the following.

Property 1.2 (Double coset theorem) [F0, II.11], [FJ.

p*(K, G) o T(H, G) = S X*(M)T(Hg n K, K) ° p*(Hg n K, Hg) ° Cg

where the sum is over the orbit-type manifold components {M} of the double coset

space K\G\H.

This theorem holds for arbitrary cohomology theories where G is a compact Lie

group and H and K are arbitrary closed subgroups of G. The formula is quite

complicated. However, as we shall see, it simplifies nicely in a number of circum-

stances.

We use the following several times.

Corollary 1.3 [F0, VI.3]. Let G be a compact Lie group and 77 any closed

subgroup of G. Let K be a torus in G. Then

p*(K, G) ° T(H, G) = Ex#Wp'(^ Hg) o Cg

where the sum is over the manifold components {M) of the fixed point orbits of K in

K\G\H where g G G is a representative of M.

If T = H = K is a maximal torus of G, then the fixed point orbits are N/ T. The

coefficients x*(M) turn out t0 oe 1 s'nce N/T is discrete and we end up with the

following formula due to Brumfiel and Madsen [BM] (see [F0, VI.5] for a more

detailed derivation of this formula from the general double coset theorem).

p*(T,G)oT(T,G) = ^Cg. (1.4)

The sum is over the elements of the Weyl group W = N/ T, where gT G W.

Following the approach in [BM] we exhibit a simple transfer proof of the

following.
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Theorem 1.5 (A. Borel).

H*(BG, Q) » H*(BT, Q)w = INV

where INV is the invariants of H*(BT, Q) under the action of W. Furthermore

H*(BG, Z) ® Z[l/| W\] =* H*(BT, Z)w ® Z[l/| W\].

Proof. p*(T, G) = Cg ° p*(T, G). (This follows since if Cg is the map which

induces Cg ([F0, II.3] or II. 1 when X equals a point), p(T, G) ° Cg = p(T, G).)

Hence the image of p*(T, G) is contained in INV. Suppose^ G H*(BG, Q). Then

T(T, G) ° p*(T, G)(y) = x(G/T)(y) = \W\(y) by Property 1.1 and the fact that

x(G/T) = | W\. This latter well-known fact is due to Hopf and Samelson [HS]. A

similar proof appears in [F2, §4]. Since | W\ is invertible in Q, T(T, G) ° p*(T, G) is

onto H*(BG, Q) and p*(T, G) is injective. On the other hand let x G INV. Then

by 1.4 p*(T, G) ° T(T, G)(x) = ICg(x) = | W\(x). Hence p*(T, G) is onto INV.

To prove the second statement we note that the crucial fact used is that | W\ is

invertible in the base ring.

Definition 1.6. We say that pJ(H, G): BHJ'—> BGf is a finite-dimensional ap-

proximation of the fiber bundle p(H, G) if p*(H, G) is a fiber bundle pullback of

p(7/, G ) by an inclusion map of a finite-dimensional subspace BG1 into BG and

BGf and BH¡ are CW complexes. For example, embed G in U(n) for some n and

let m be large. Let BG! = U(n + m)/G X U(m) where G is viewed as being equal

to its image in U(n). Similarly, let BHf = U(n + m)/H X U(m). Then if

pf(H, G): BHS -» BGS is defined by

i/(/7 X U(m)) \-+u(G X U(m))    for u G U(n + m),

p\H, G) is a finite-dimensional approximation of p(7Z, G).

The following is a generalization of Theorem 1.5 to arbitrary cohomology

theories for finite approximations of p(T, G).

Theorem 1.7. Let T be a maximal torus in a compact Lie group G. Let h be an

arbitrary cohomology theory and let pJ(T, G): BTJ' —> BG1 be a finite-dimensional

approximation of p(T, G). Let h(BTf)w ® Z[l/\W\] = INV be the invariants of

h(BTf) under the action of the Weyl group, tensored with Z[l/| W\]. Then

(T, G)®id:h(BGf)®Z[l/\W\] -INV

is an isomorphism.

Proof. The proof is similar to that given for Theorem 1.5. Let_y G INV. Then by

Property 1.1, T(T, G) ° pr(T, G)(y) = (x(G/T) + u)(y) where u G h°(BGf) ®

Zfl/IH7!] has positive skeletal filtration. Since BG^ is finite dimensional u is

nilpotent. Hence x(G/T) + u is a unit in h°(BGf) ® Z[l/| W\] and pr(T, G) is

injective. Since (1.4) applies to all cohomology theories it follows as in Theorem 1.5

that pr(T, G) ® id is onto INV.

The following well-known theorem is similar to Theorem 1.5.
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Theorem 1.8. Let G0 be a closed normal subgroup of G such that T = G/G0 is

finite (e.g., G0 could be the identity component of G). Then

p*(G0, G): H*(BG, Q) at H*(BG0, Q)T = INV

is an isomorphism onto the invariants. Furthermore

P*(G0, G) ® id: H*(BG, Z) ® Z[ 1/|T|] A H*(BG0, Z)r ® Z[ 1/|T|]

is an isomorphism.

Proof. Let H = K = G0 in the double coset theorem. Since G0 is normal in G

the double coset space is the discrete set T of fixed points of the left action of G0 on

G/G0. Since x#(pt) = 1 and T(H, H) = id we have

p*(G0, G) » T(G0, G) = ]2Cg (1.9)

where the sum is over T and gG0 G T.

By Property 1.1, T(G0, G) ° p*(G0, G) = x<T) = |T|. The proof then follows

exactly as in Theorem 1.5.

Remark. Since T is finite this proof can be deduced from the transfer for finite

coverings.

We now generalize Theorem 1.8 to arbitrary cohomology theories for finite

approximations of p(G0, G).

Theorem 1.10. Let G0 be a closed normal subgroup of a compact Lie group G.

Assume that G/G0 = T is finite. Let pf(G0, G): BG¿ —» BG* be a finite approxima-

tion ofp(G0, G). Let h(BGf0f ® Z[1/|T|] = INV be the invariants of h(BG{) under

the action ofT tensored with Z[1/|T|]. Then

p*(G0, G) ® id: h(BGf) ® Z[1/|T|] at INV

is an isomorphism for all cohomology theories h.

Proof. The proof is completely analogous to that of Theorem 1.7. (1.9) plays the

role of (1.4). We note that x(G/G0) = x<T) = |T|.

We now prove some entirely new results.

The following formula could have been arrived at easily by Brumfiel and

Madsen [BM]. Let N be the normalizer of a maximal torus T in G. Then

p*(T, G) o T(N, G) = p*(T, N) (1.11)

for all cohomology theories.

Proof. Let H = N and K = T in Corollary 1.3. Since the fixed point orbits of K

in Ä"|G|77 consist of only one point N/N (if Ng n T = T then g G W), the double

coset formula simplifies to a single term. Since x*(PO = 1 and Cg = id when g is

the identity this term equals p*(T, N). We now prove the following.

Theorem 1.12 (Reduction to Coverings).

Im p*(T, G) = Im p*(7', N)   for any cohomology theory.

Proof. This follows from (1.11) and the fact that p*(T, N) ° p*(N, G) =

P*(T, G).
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Before we state the next theorem we need a definition.

Definition 1.13. We say v G h(BH) is stable with respect to p(H, G) if

p*(H n Hg, H)(y) = p*(H n Hg, Hg)Cg(y) for all g G G. We denote the stable

elements of h(BH) by h(BH)s = S. Let p{(H, G): BH£-h9G$, n G Z+ be a

filtration of p(H, G) by finite-dimensional approximations. We use S„ to denote

the stable elements of h(BH{) with respect to pfn(H, G).

The notion of stable elements has been around for a long time [CE, p. 257]. It

should be thought of as a generalization of the notion of invariant elements under a

group action. If 77 is normal in G the stable elements are those which are invariant

under the group action of G/H.

Let Cg be the map which induces Cg: h(BH) -* h(BHg) [F0, II.3]. Since

p(Z7, G) ° Cg = p(Hg, G) (see [F0, II.2, II.3] or this paper Definition II. 1 with X

equal to a point) the image of p*(H, G) is contained in the stable elements. The

following is similar to Property 1.1 in spirit.

Theorem 1.14. Let H be any closed subgroup of a compact Lie group G. Then if

y G h(BH) is stable with respect to p(H, G)

P*(H, G)T(H, G)(y) = (x(G/77) + u)(y)

where u G h°(BH). We are using the fact that stable cohomotopy acts naturally on all

cohomology theories.

If h = 77* the formula is true without the error term u.

Proof. Let.y G h(BH) be stable. By the double coset Theorem 1.2

P*(H, G)T(H, G)y = 2x*(M)T(Hg n 77, H)p*(Hg n 77, Hg)Cg(y)

= *Zx*(M)T(Hg n 77, H)p*(Hg n 77, H)(y)

= 2x#W(xW^fl 77) + ug)(y)

by Property 1.1 where ug G h°(BH)

= ({^X#(M)x(H/Hg n 77)) + (Zx*(M)ug))(y).

Let u = 2x*(A7)Mg G h%BH). Then we have

p*(H, G)T(H, G)(y) = ({^X*{M)X(H/Hg n 77)) + u)(y).

We claim *Lx*(M)x(H/Hg n 77) = x(G/H).
This follows by a calculation in singular cohomology, 77*, with integral coeffi-

cients. Let y = p*(H, G)(l). Then y is stable and nontorsion. Thus

p*(77, G)T(H, G)(y) = 2x#(M)x(7///7* n H)(y) since we are acting in 77* and

hence can neglect the ug. On the other hand p*(77, G)T(H, G)p*(H, G)(l) =

p*(H, G)x(G / H)(l) = x(G / H)(y). Since y is nontorsion this proves the claim and

hence the theorem.

We now prove the following.

Theorem 1.15. Let G be a compact Lie group, T a maximal torus with normalizer

N. Then if h is any cohomology theory (even nonmultiplicative) ps"(N, G): h(BG{) A

S„ is an isomorphism onto the stable elements.
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Proof. As noted previously (Definition 1.13) Im pf(N, G) c $„. Let y £\

h(BGfn). Since x(G/N) = 1 we have by Property 1.1 that T(N, G)pr(N, G)(y) =

(1 + w„)(y) where wn G h°(BGJn). Let x G S„. Then by Theorem 1.14

pf(N, G)T(N, G)(x) = (1 + un)(x) where «„ G h°(BNfn). Since Z/G/and Z?7V,f have

finite dimension and u„ and tv„ have positive skeletal filtrations, un and wn are

nilpotent. Hence (1 + un) and (1 + wn) are units in h^(BN{) and h°(BG{) respec-

tively.

Remark 1.16. The extent to which Theorem 1.15 is true for the map p(N, G):

BN -^ BG depends on what happens to certain lim1 terms that appear when

passing to limits. Specifically, for p{(N, G), n G Z+, a filtration of p(N, G) by

finite-dimensional approximations, we have an exact sequence

0 -* lim1 S„ -+ h(BG) -+ lim° S„ — 0

if h satisfies the wedge axiom [Sr]. This follows by the exact sequence for h(BG),

where BG is filtered by the BG{, and the prior results. We also have an exact

sequence (which arises from the exact sequence for BN, where BN is filtered by

finite approximations BN{)

0^[liml/l(Zi^]I^S ^lim°S„^0

where [lim1 h(BN{)f are the stable elements of limx(h(BN^)). Hence if

[lim1 h(BNj¡)Y = lim1 S„ the five lemma implies h(BG) ^ S. This is trivially satis-

fied if lim1 h(BN¿) = 0. This is true for all theories satisfying the Mittag-Leffler

condition. In particular H*(BG) ~ S. In general I see no reason why lim1 S„

should equal [lim1 h(BN¿)Y.

Acknowledgement. I wish to thank Albrecht Dold for indicating how to

generalize from the case h = Z7* to this theorem.

Example 1.17. Stable elements are in general difficult to recognize. Evens [E]

calculates Im p*(N, G) for integral cohomology when G = U(ri) which by the

above theorem equals the stable elements. The answer is complicated even in this

case.

We need some notation to state the next theorem. For any compact Lie group G

let 0 -» T —> .A/ —» W —» 0 be an exact sequence where W is the Weyl group of G, T

is a maximal torus in G and N is the normalizer of T in G. Let Sp be a Sylow

/»-subgroup of W.

Definition 1.18. Let Np = tr~x(Sp). Let h(BG{,p) be the subgroup of elements

in h(BGl) which have order a power of p. Let (§>„,/?) be the subgroup of elements

of S„ which have order a power of p.

The following theorem generalizes an old result for finite groups [CE, p. 259]. (If

T is trivial, then G = N = W and Np = Sp.)

Theorem 1.19. pf'(Np, G): h(BGf,p) ^ (§„,p) is an isomorphism.

Proof. The proof follows in a similar manner to that of Theorem 1.15. We note

that x(G/Np) is prime top.

Remark 1.20. As in Remark 1.16 if lim1 h(BNf,p) = 0 and h satisfies the wedge

axiom, the theorem is true for p(Np, G). Thus H*(BG,p) A (§,/>).
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II. We generalize these theorems to certain equivariant cohomology theories in

this section. First we need to state and prove a generalization of the double coset

theorem. It follows from [F0, VI. 14].

Definition ILL Let E be a highly-connected paracompact and locally compact

free G-space (as in [F0, II]) with G acting on the right. For example, if G is

embedded in U(n) let E = U(n + m)/In X U(m) where In is the identity element

in U(n) and m is large. Let A' be a compact and locally compact space on which G

acts on the left. Let E X X be the cartesian product with G acting on the left by

g(e, x) = (eg~x, gx) where e G E, x G X. Let XG — E X G X be the orbit space of

this free action of G. Elements of XG are orbits G(e, x). Let g G G and let 77 be a

subgroup of G. Cgx: XH„ —> XH is given by Hg(e, x) -» H(eg, g~xx) and induces a

conjugation Cgx: h(XH) —> h(XH„) for any cohomology theory h. px(H, G): XH -*

Xc is defined by H(e, x) h> G(e, x). Since px(H, G) is a fibration with compact

fiber and has a base space which is locally compact and paracompact, a transfer

homomorphism TX(H, G): h(XH) -* h(XG) associated to the identity map of XH

over XG exists [DJ. h(XG) is defined to be the G equivariant cohomology of X for the

theory h.

Remark. We need the various compactness conditions for E and X since

technically the transfer is only defined in these circumstances. When generalized

suitably, as it should be in the near future, E can be the universal space for BG, i.e.,

a contractible free G-space.

If A1 is a point, we recover the situation in §1. XG = BG, px(H, G) = p(77, G),
Cgx = Cg.

Theorem II.2.

p*(K, G) o TX(H, G) = ^x#(M)Tx(Hg n K, K) ° p*(Hg n K, Hg) ° Cgx

where as in Property 1.2 the sum is over the orbit-type manifold components {M} of

the double coset space K\G\H.

If X is a point we recover the double coset Theorem 1.2.

Proof. Consider the pullback squares, where m by abuse of notation shall always

denote the map collapsing Itoa point  * .

TX -4

Y*l      px(H, G)

XK -»
px(K, C)

For any cohomology theory h, let txTX: h(TX) —» h(XK) be the transfer homomor-

phism associated to the identity map of TX. This map is compactly fixed (i.e., yx is

proper) since the fiber of yx is the compact space G/Z7 [DJ, so t™ exists. We have

by naturality [F0, 11.13] px(K, G) ° TX(H, G) = tfdx ° lx. Since px(H, G) is a

pullback of p(H, G) so is yx. Moreover m ° px(K, G) factors through BK. Hence

yx is also a pullback in the following squares (see [F0,11.18]).

IT

X h —> BH — E X f] *

i        P(H, G) i

XG        -» BG = E X G *
IT
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TX

rxi

E XKG/H

Ir
BK

p(K, G)

BH

Íp(H, G)
BG

Hence yx is a fiber bundle with structure group K acting differentiably on the

fiber G/H on the left.

The rest of the proof follows closely the proof of the double coset theorem in

[FJ. We have by [F0, V.14]

,r* -
<*x«id -2x#Wâ*JÎ

where the sum is over all orbit-type manifold components {M} of K\G\H. g G G

is a representative of M. q c TX is the total space of the subbundle of yx

corresponding to the ÄT-orbit KgH (this is the pullback of E XK KgH). kx: q —> TX

is the inclusion. x#(M) is the internal Euler characteristic (Property 1.2), and tid:

h(q) —> h(XK) is the transfer associated to the identity map of q over XK.

Since there exists a homeomorphism/: BHg n K^> E XK KgH [F0, after V.10]

over BK (i.e., y ° f— p(Hg n A", K)) we have there exists a homeomorphism fx:

Xh'cik —* 4 between the pullbacks of BHg n K and E X K KgH under the map it:

XK^> BK such that yx ° fx = px(Hg n K, K). Hence by naturality [F0, 11.13]

tid = Tx(Hg n K, K) ° f^. The theorem follows once we observe that lx ° kx ° fx

= Cgx ° px(Hg n K, Hg). This follows since these maps are the pullbacks under

the collapsing map w: Xh —» BH of I ° k ° f and Cg ° p(Hg n K, Hg) and these

maps agree [F0, V.12].

The following theorems are direct generalizations of theorems proved in the first

section of this paper (let X equal a point). Their proofs are analogous. Theorem II.3

is well known [H, p. 38]. Theorems II.4 and II.5 are well known for h = 77* [H, p.

38] but new in the generality stated. Theorems II.6, II.8, II.9, and 11.10 are

completely new.

Theorem II.3. px(T, G): H*(XG, 0)— H*(XT, Q)w is an isomorphism where T

is a maximal torus of G and W is the Weyl group. Similarly

1

\W\
p*(T, G) ® id: 77*(A-C, Z) ® Z

is an isomorphism.

This generalizes Theorem 1.5.

Theorem II.4. If E and X are finite CW complexes, then

w
H*(xTy ®z

¡

\w\

p*(T, G) ® id: h(XG) ® Z
1

W\
^h(XT)w ® Z

W|

is an isomorphism onto the invariants of h(XT) tensored with Z[l/| W\] where h is any

cohomology theory.

This generalizes Theorem 1.7.
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Theorem 11.5. Let G0 be a closed normal subgroup of G such that G/G0 = T is

finite (e.g., G0 could be the identity component of G). Let E and X be finite CW

complexes. Then

px(G0, G)®id:h(XG) ®Zi. u\st-G |r| ^h(XGf®Z |r|

is an isomorphism.

This generalizes Theorem 1.10.

Theorem II.6. Im Px(7\ G) = Im px(T, N) for any cohomology theory.

This generalizes Theorem 1.12.

We need a definition to state the analogues of Theorems 1.14, 1.15, 1.19. Their

proofs are analogous.

Definition II.7. An element y G h(XH) is stable with respect to px(H, G) if

px(H n Hg, Hg)Cgx(y) = px(H n 77«, H)(y) for all g £\ G. Denote the stable

elements by §>x.

Theorem II.8. Let y G h(XH) be stable with respect to px(H, G). Then

px(H, G) ° TX(H, G)(y) = (x(G/77) + u)(y) where u G h°(XH) and has positive

skeletal filtration in stable cohomotopy.

This generalizes Theorem 1.14.

Theorem II.9. Suppose X and E are finite-dimensional CW complexes. Then

Px(N,G):h(XG)^h(XNy =%x.

This generalizes Theorem 1.15.

Let Np be defined as in Definition 1.18. Let (Sx,p) be the subgroup of stable

elements of h(XNp) which have order a power of p.

Theorem 11.10. Suppose X and E are finite CW complexes. Then px(Np, G):

h(XG,p) ü h(XNp,p)s = C&x,p) is an isomorphism of the elements of h(XG) which

have order a power of p onto the stable elements of h(XNp) which have order a power

of p.

This generalizes Theorem 1.19.
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