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ON SPECTRAL THEORY AND CONVEXITY

BY

C. K. FONG AND LOUISA LAM1

Abstract. A compact convex set K in a locally convex algebra is said to be a

spectral carrier if, for all x, y e K, we have xy — yx £ K and x + y — xy e K.

We show that if a compact convex set K is a spectral carrier, then the idempotents

in K are exactly the extreme points of K and form a complete lattice. Conversely, if

a compact set A" is a closed convex hull of a lattice of commuting idempotents, then

AT is a spectral carrier. Furthermore, a metrizable spectral carrier is a Choquet

simplex if and only if its extreme points form a chain of idempotents.

1. Introduction. The purpose of the present paper is to describe a general spectral

theory for certain elements in a locally convex algebra over C or R from Choquet

theory's point of view.

By a locally convex algebra we mean an algebra having an identity and a locally

convex topology for which the multiplication is separately continuous. In §2, we

will consider elements in a locally convex algebra A which are contained in some

compact convex set K whose extreme points form a lattice of commuting idempo-

tents. In §3, we show that such AT is a simplex if and only if its extreme points form

a chain of idempotents. If h is a hermitian operator on a Hubert space 77 satisfying

0 < h < 1 with h = ¡o Xdex as its spectral decomposition, we can show, by means

of integration by parts, that h can be expressed as fe ed\fie), where C is the weak

closure of {ex: 0 < X < 1} and [i is a probability measure on C; thus h is

contained in the simplex co(C), the weak closure of the convex hull of C, whose

extreme points form a chain of projections.

In case that the algebra A is finite-dimensional, the situation is much simpler, as

shown in the following proposition.

Proposition 1.1. Let A be a finite-dimensional algebra (over C or R, with identity

1) and let x be in A. Then the following conditions are equivalent.

(a) x can be expressed as 2™= i (hff> where ju, are real numbers satisfying 0 < ft, < 1

and fj are idempotents in A such that fjj = 0 if i =£j.

(b) jc can be expressed as 2J_i \ek where \k > 0, 2¿_, \ = 1 and ek are

idempotents satisfying ekej = ejek = ek if k > j.

(c) x can be expressed as a convex combination of commuting idempotents in A.
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(d) There is a compact convex set K containing x with the following property: ify,

z G K, then yz = zy G K and y + z — yz G K.

Proof, (a) => (b). Without the loss of generality, we may assume that

m

x =   2    Vjfj     witn 0 <  ft,   <   JU2  <   •  •   •    <   Um  <   1.
J" 1

Let X, = ju, and Xj = fij — ¡ij_, for./' = 2, 3, . . . , m. Then \k > 0 for all k and

Now we have

2 K = nm < i.
k = \

x = 2     2  \\fj= 2  **«*.
/-I\*=1     /        *-l

where ek = 1/f=kfj. Then ekek + x = ek + xek = ek+x for /c = 1, 2, . . . , m — 1. In case

jiL^ = 1, we are done. Otherwise we let em+x = 0 and \„+1 = 1 — um. Then

x = 2*+,' A*^, where A* > 0 and 2£+,' X* = 1.

(b) => (c). Obvious.

(a) => (d). Let K be the set of those elements in A which can be expressed as

2J_, Vjfj with 0 < Vj < 1. Then x G K and K has the required property.

(d) => (c). Since x can be expressed as a convex combination of extreme points of

K, it suffices" to show that each extreme point e is an idempotent. By assumption,

both e2 and 2e — e2 are in K. Since e is an extreme point, from the identity

e=\e2 +\(2e- e2)

we obtain e2 = e.

(c) => (a). Suppose that x = 2™_! X^e* with Xk > 0, 2£_, \k = 1 and ex, . . . ,em

are commuting idempotents. We show (a) by induction on m. Assume that (a)

holds if m = s. Now we consider the case m = s + 1. If XJ+1 = 0, then (a) follows

from the induction hypothesis. Hence we assume Xi + 1 ¥= 0. Let

*i = 2 (1 - h + \)   \ek.
k-l

Since x, is a convex combination of ex, . . . , es, by the induction hypothesis,

x, = 2*_, fifc/fc for some reals ¡ik with 0 < pk < 1 and some idempotents fk with

fjfk = 0 if y ^ k. We may assume 2¿_, fk = 1. Now

r

x = (I - \+x)xx + \+xes+x =  2 0 - \+lW* + ^-t-i^+i

= 2 ((i - \+i)m* + \+i)/*«,+i + 2 (0 - \+,K)/*0 - %*i)
fc=i *=i

with 0 < (1 - \+x)iik < ((1 - K+ÙPk + \+i) < '• Hence the statement (a) is

true for m = s + 1.    □
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Next we consider the uniqueness of the expression of x in (b) of the above

proposition. Suppose that

n n

x = 2 \ek = 2 Kek
k=\ k=\

where ekej = ejek = ek and ek ¥= ej if k >j. Then we have

(1 - e2)x = X,e,(l - e2) = X,e,(l - e2).

Since e, ^ e2, we have e,(l — e2) =£ 0 and hence X, = X,. By induction, we have

\k = \k for all k. This proves the following:

Proposition 1.2. 77ie convex hull of idempotents ex, e2, . . . ,en with the property

ekek+i = ek+\ek ~ ek+ifor k = I, . . . , n — I is a simplex.

2. Spectral carriers. The following definition is motivated by condition (d) in

Proposition 1.1.

Definition 2.1. A compact convex set K in a locally convex algebra A is called a

spectral carrier if it satisfies the followng three conditions:

(a) x, y G K implies xy = yx,

(b) x, y G K implies xy G K,

(c) x, y G K implies x + y — xy G K.

Condition (b) of the above definition says that K is closed under multiplication.

If 1 is the identity of A, then condition (c) says that 1 — K = {I — x: x £: K) is

closed under multiplication.

Remark. The term "spectral carrier" suggests that elements in K have certain

spectral properties. To illustrate this point, next we show an analogue of the fact

that if p is a positive operator on a Hubert space 77, £ G H and p2£ = 0, then

Pt-O.

Proposition 2.1. If K is a spectral carrier in a locally convex algebra A, x G K,

y £\ A and x2}' = 0, then xy = 0. (Note that we do not assume x and y commute.)

Proof. From x G K and condition (c) in Definition 2.1, we have xx = 2x — x2

G K. Since x^ = 0, we have xxy = 2xy. Now x\y = xx(xxy) = xx(2xy) =

2x(xxy) = 2x(2xy) = 4x2y = 0. On the other hand, since xx G K, we have 2xx —

x2 G K. Hence 2xxy = 2jc, v — x2y G Ky, or 4xy G Ky. By induction, we can

show that 2"xy G Ky for all n > 1. Since Ky is compact, we must have xy = 0.    □

The argument used for proving (d) =» (c) in Proposition 1.1 gives the following

result:

Proposition 2.2. Extreme points of a spectral carrier are idempotents.

The main result of the present section is that, conversely, idempotents in a

spectral carrier are extreme points and they form a complete lattice. The idea of the

proof is to establish a one-one correspondence between extreme points of K and

certain faces of A'. In what follows, K always stands for a spectral carrier in a

locally convex algebra and deK stands for the set of all extreme points of K. Recall
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that a subset F of K is called a face of K if F is convex and extremal, that is, for x,

y G K,(x + y)/2 G F if and only if x, y G 7".

Proposition 2.3. // F is a face of K, then x, y G F implies xy G F and

x + y — xy G F. Hence closed faces of K are spectral carriers.

Proof. Let x, y be in F. Since F is convex, we have (x + y)/2 G F. From x,

y G K we have xy G K and x + y — xy G K. From the trivial identity

{{xy + (x + y - xy)) =\(x + y) £\ F

and the extremal property of F it follows that both xy and x + y — xy are in F.

D
Since e G 3CÄT if and only if the singleton {e} is a face of K, Proposition 2.2 is

also a consequence of Proposition 2.3.

Definition 2.2. A nonempty subset F of K is called a facial ideal of K if 7" is a

closed face with the property FK Q F, that is, if x G F and .y G 7T, then xy G F.

Proposition 2.4. If e £\ deK, then F = eK is a facial ideal.

Proof. It is easy to see that F is compact, convex and FK Q F. It remains to

show that F is extremal in K. Suppose that x, y G K and z = (x + y)/2 G F. By

Proposition 2.2, we have e2 = e. From z £\ eK and e2 = e it is easy to see that

ez = z, that is

(ex + ey)/2 = (x + >>)/2

or

e = ((e + x — ex) + (e + y — ey))/2.

Since e + x — ex and e + y — ey are in K and e G deK, we have

e = e + x — ex = e + y — ey.

Hence x = ex and y = ey. In other words, x,y G F.    □

Next we show that K has a smallest idempotent.

Proposition 2.5. There exists an idempotent e0 in deK such that e^x = e0 for all

x £\ K.

Proof. Consider the family

'S = {eK:e G deK).

By Proposition 2.4, 'S is a family of facial ideals. Hence the intersection K0 = D 'S

is also a facial ideal, provided that it is nonempty.

Note that if ex, . . . , en are in deK, then

(e,- •• O* C«i*n- •.; nenK.

Hence 9 has the finite intersection property. The compactness of K guarantees

that K0 = H ^ is nonempty.

By Proposition 2.3, K0 is a spectral carrier. Let e0 G deK0. Since K0 is a face of K,

we have 5^/0, <Z deK. Therefore e0 G deK.
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Finally we show that e0x = e0. If e G deK, then e0 G eK and hence eQe = e0. If x

is a convex combination of extreme points, say, x = 1Znkm.x \kek with ek G deK,

Xk > 0 and 2£_, X¿ = 1, then

n n

e0x =   2    Voe* =   2    Vo = eo-
k=l k=l

In general, if x G TT, then, by Krem-Mil'man's Theorem, there exists a net {xa} of

convex combinations of deK converging to x and hence we obtain

eve = e0 lim xa = lim e0xa = e0.    D

Corollary 2.6. If 0 G AT, then 0 G 3eÄ".

Corollary 2.7. 77¡ere exista a« idempotent ex in deK such that exx = x for all

x G K.

Proof. Note that I — K = [l — x: x G K) is also a spectral carrier. Apply

Proposition 2.5 to 1 — K, we can find an extreme point e of 1 — K such that

e(l — x) = e for all x G K. Let ex = 1 - e. Then ex G 3e/í and exx = x for all x

inÄ".    □

It follows from the proof of Proposition 2.5 that

Corollary 2.8. The intersection of an arbitrary family of facial ideals is a facial

ideal.

The next result is the converse of Proposition 2.4.

Proposition 2.9. // F is a facial ideal of K, then there is an extreme point e of K

such that F = eK.

Proof. Apply Corollary 2.7 to the spectral carrier F, we obtain an idempotent e

in deF such that F = eF. From the fact that F is a face of K, we have 3eF <Z deK

and hence e G deK. Since e G F, we have eK Q Fk C F. On the other hand, since

F Q K, we have F = eF Q eK. Therefore F = eK.    □

Theorem 2.10. An element in a spectral carrier K is an idempotent if and only if it

is an extreme point of K.

Proof. The "if" part, which is the easier part, is just Proposition 2.2. To show the

"only if" part, suppose that e G K and e2 = e. We claim that F = eK is a facial

ideal. It is clear that F is compact, convex and FK Ç F. Suppose that x, y G K and

z = (x + y)/2 is in F. We have to show that x, y are also in F. Since e G K, we

have 0 = e(l - e) G (1 — e)/f. It is easy to check that (1 - e)K is a spectral

carrier. Hence, by Corollary 2.6, 0 is an extreme point of (1 — e)K. On the other

hand, from z = (x + y)/2 G eK we have ez = z or

((1 - e)x + (l- e)y)/2 = 0.

It follows that (1 — e)x = (1 — e)y = 0 or x = ex and y = ey. Thus we have

shown F is a face and hence a facial ideal of K. By Proposition 2.7, there exists an

extreme point e, of K such that F = exK. From the fact that both e, and e are

idempotents and eK = exK it is easy to see that e = e,. Therefore e G 3eÄ\    □
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Remark. It follows from the above theorem that if Kx and K2 are spectral

carriers, then Kx <Z K2 if and only if deKx <Z deK2. Also, if {Ka} is a family of

spectral carriers and its intersection K = D a Ka is nonempty, then K is also a

spectral carrier and

deK =  fi   3.A..

We define an ordering among idempotents in an algebra as follows. For

idempotents ex, e2 in A, we put ex < e2 if e,e2 = e2e, = e,. With this ordering, it is

easy to check that if e,, e2 are commuting idempotents in A, then e, A e2 (the

infimum of {e,, e2}) and e, V e2 exist, in fact,

e\ A e2 = e,e2,       e, V e2 = e, + e2 — e,e2.

Thus the idempotents in K form a lattice. Let 'S be the family of all facial ideals of

K. Then the mapping <ï>: deK -+ 'S given by $(e) = eK is a one-one correspon-

dence between the idempotents and the facial ideals of K. Obviously e, < e2 if and

only if 4>(e,) Q <D(e2). Also

Hex A e2) = i>(e,) n $(e2).

If {ea} is a family of idempotents in K, then, by Corollary 2.8, the intersection

H a ®(ea) is a facial ideal and hence equals <ï>(e) for some e G deK. It is easy to see

that e is the infimum of {ea} and thus

MAü=n ®(ea).
^   a ' a

This proves part (a) and (b) of the following theorem.

Theorem 2.11. Let K be a spectral carrier. Then the following statements hold.

(a) The extreme boundary deK forms a complete lattice.

(b) If {ea} is a subset of deK with e as its infimum, then eK = D a eaK.

(c) If {ea ) is a decreasing (or increasing) net of idempotents in K, then lim ea = e

exists and e G deK.

Proof of (c). Let e be the infimum of the decreasing net {ea}. Suppose for this

moment that lim ea = x does exist. For ß > a, we have eaeß = e^. Hence, when a

is fixed, we have

x = lim eß = lim eae/3 = ealim e^ = eax.

Therefore x G eaK for all a. By (b), we have x G eK from which it follows that

xe = x. On the other hand, since e G eaK for all a, we have eea = e. Hence

e = lim ee„ = elim e„ = ex.
a a

Therefore e = x. The same argument shows that if a subnet of {ea} is convergent,

then it must converge to e. By the compactness of K, it follows that lim e0 = e. □

Remark. In general, deK is not a closed set in K. For example, let A = L°°[0, 1]

with the weak*-topology. Then K = (x G L°°[0, 1]: 0 < x < 1} is a spectral car-

rier and deK is the set of all indicator functions, which is not closed under the

weak*-topology.
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Corollary 2.11'. If K is a spectral carrier satisfying K = 1 — K then deK is a

complete Boolean algebra of idempotents.

Next we show that, under a suitable condition, the closed convex hull of a lattice

of idempotents is a spectral carrier.

Proposition 2.12. If E is a set of commuting idempotents in A such that, for all e,,

e2 G E, both ex /\ e2= e,e2 and e, V e2 = e, + e2 — e,e2 are in E and the closed

convex hull J = co(F) is compact, then J is a spectral carrier.

Proof. We write co(F) for the convex hull of E. Let x,y G co(F). Then x,y can

be expressed as 2 X^e^ and 2 ¡ijfj respectively, where ek,fj G E, \k > 0, uy > 0 and

2 X* = 2 %:= I. Hence

xv = 2(WM)
j'k

with ejj G E, Xfc/x, > 0 and

2\^, = (2\)(2 m,) = i.
j.k \   k t\ J        I

Therefore xy G co(F). Now suppose that x G co(F) and y G co(F). Then there

exists a net {xa} in co(F) such that lim xa = x. Since x^y G co(F) for all a, we

have xy = lim x^y G co(F). Finally, suppose that both x, y are in co(F). Then

there is a net {ya} in co(F) such that lim^ = y. Since xya G co(E) for all a, we

have xy = lim xya G co(F). Thus we have shown that J is closed under multiplica-

tion. Replace J by 1 - / and E by 1 — E, it follows that 1 - J is also closed under

multiplication. Therefore y is a spectral carrier.    □

From the above proposition, we see that, if F is a lattice of commuting

idempotents contained in a compact convex set in A, then E is contained in a

complete lattice of commuting idempotents in A. From the same proposition, we

see that, if F is a sublattice of deK, where K is a spectral carrier, then co(F) is a

spectral carrier contained in K. It is not hard to see that, conversely, every spectral

carrier contained in K is of the form co(£), where F is a sublattice of deK.

For the rest of this section, we consider some examples and applications to

operators defined on a Hubert space H.

For real numbers a, ß with a < ß, we write 5 ^[a, ß] for the set of polynomials

with real coefficients such thatp(a) = 0,p(ß) = 1 andp is increasing on [a, /?]. It

follows from the spectral theory for hermitian operators that, if A is a hermitian

operator on H with its spectrum a(77) contained in [a, ß], then, for each p in

í*ÍP[a, ß], we have ||/»(A)|| < 1. The converse also holds and thus we have a

characterization of hermitian operators as follows:

Proposition 2.13. An operator h on a Hubert space 77 is a hermitian operator with

a(h) G [«, ß] if and only if for all p G $Q[a, ß], \\p(h)\\ < 1.

Proof. To show the "if" part, let K be the closure of {p(h): p G $<$[a, ß]} in

the weak operator topology. Since both Í ^[a, ß] and 1 - i9[a, ß] are convex

and closed under multiplication and K is contained in the unit ball of 5(7/) which
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is compact in the weak operator topology, K is a spectral carrier. Suppose that

e G deK. Then, by Proposition 2.2, e2 = e. Since we also have ||e|| < 1, e must be a

projection. In particular, e is hermitian. By Krefn-Mil'man's Theorem, all elements

in K are hermitian. Let/>0 be the polynomial defined by

Po(x) = (ß - <x)~\x - «)•

Thenpo G í <3>[a, ß]. Thusp0(h) = (ß - a)~x(h - a) G K and hence h is hermi-

tian. Since K is the closed convex hull of a set of projections, every element A: in AT

satisfies 0 < k < 1. In particular, 0 < (ß — a)~x(h — a) < 1 from which it follows

a < h < ß, or a(h) Q [a, ß].    □

Remark. If the condition ||/>(A)|| < 1 for all p in $$[a, ß] is replaced by the

weaker condition that there exists a positive number M such that ||/»(A)|| < M for

all/» in 5<3>[a, ß], then K, the closure of {p(h): p G 59[a, ß]}, is still a spectral

carrier. If A is a well-bounded operator on H according to Smart [9], that is, there

exist constants a, ß, M with a < ß and M > 0 such that

||/»(A)|| < M(\p(a)\ + total variation ofp over [a, /?])

for every polynomial/?, then

\\p(h)\\ < M   if /? G $6>{a,0]

and hence (/? — a)~ x(h — a) is contained in a spectral carrier.

Now we give an alternative proof of Theorem XVII.2.5 in Dunford and Schwartz

[4] in case that the underlying space is a Hubert space.

Proposition 2.14. Let A be an algebra in 7/(77) which is the image under a

continuous homomorphism <¡> of the algebra C(A) of all complex continuous functions

on a compact space A. Then there exists an invertible element s in B(H) such that

s~xAs = {s~xas: a G A] is a commutative C*-algebra of normal operators.

Proof. By assumption, there exists a positive number M such that ||<K/)II <

M11/11 „ for all/ G C(A). Let K be the closure of {<#/): / G C(A), 0 < / < 1} in
the weak operator topology. Then it is easy to check that K is a spectral carrier

with K = 1 — K. Let F be the set of all idempotents in K. Then it is easy to see

that F is a bounded Boolean algebra of idempotents. By [4, Lemma XV.6.2], there

is an invertible operator s such that s~xEs consists of projections. By Proposition

2.2, deK Q E and hence, by Krefn-Mil'man's Theorem, s " xKs consists of hermitian

operators. Since every element in s~xAs is a linear combination of elements in

s~xKs, s~xAs consists of commuting normal operators. Now it is clear that the

mapping xp: C(A) -^ B(H) given by xp(f) = s~x<p(f)s is a homomorphism from

C(A) into a commutative C*-algebra. Hence xp must be *-preserving and s~xAs, the

image of xp, must be a C*-algebra.    □

3. Simplex and chain. If A" is a metrizable carrier in a locally convex algebra A,

then, by Choquet's theory, 3eÄ" is a Gs-set and, for each x G K, there exists a

probability measure ju. on K such that /x(3eÄT) = 1 and

x = I     edft(e).
JdeK
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The last identity means that, for every continuous linear functional <f>,

<p(x) = f    <¡>(e)dn(e).
JatK

The compact convex set K is said to be a simplex if, for each x, the measure u

described as above is uniquely determined by x. For the case when K is not

necessarily metrizable, the above statements have appropriate generalizations. For

details, see [1], [2].

By Proposition 1.1, the spectral carrier A" is a simplex if the lattice deK is finite

and totally ordered. The main result of the present section is: a metrizable spectral

carrier is a simplex if and only if the lattice deK is totally ordered. The "only if"

part is straightforward to prove

Proposition 3.1. If a spectral carrier K is a simplex, then the lattice 3eA" of

idempotents is totally ordered.

Proof. Let e,, e2 G A. Then e,e2 and e, + e2 — e,e2 are in deK. Since

\(ex + e2) =\(exe2 + (e, + e2 - e,e2)),

by the assumption that A is a simplex, we have either ex = e,e2 or e2 = e,e2.    □

For convenience, we introduce the following definition.

Definition 3.1. A set C of commuting idempotents in an algebra is said to be a

chain, if, for all e,, e2 in C, either e, < e2 or e2 < e,.

Proposition 3.2. // A is a spectral carrier and deK is totally ordered, then deK is

closed and the multiplication in deK is jointly continuous.

Proof. Let {ea: a G D) be a convergent net of idempotents in K and x =

lim ea. We claim that {ea) has a monotone subnet. In fact, if there exists some

a0 G D such that {ea: a > a0} is decreasing, then we are done. Otherwise, for each

a, G D, there exists some a2 G D such that ea > ea and, by means of Zorn's

lemma, we can choose an increasing subnet from {ea). By Theorem 2.11(c), every

monotone net in 3eA" converges to an idempotent. Hence x G deK. This shows that

3eA" is closed. By using a similar argument, we can show the ordering < in 3eA" is

closed, that is, {(e,f): e,f G deK, e < /} is a closed subset of 3eA X 3eA". Now the

second part of the proposition follows from the following lemma.

Lemma 3.3. Let K be a spectral carrier. Suppose that 3e A is closed and the ordering

< in deK is closed, then the multiplication in deK is jointly continuous.

Proof. Since 3CA" is compact, it suffices to show that if {ea} and {/a} are nets

with the same directed set, lim ea = e, lim fa=f and lim eja = g, then ef = g.

From the fact that eja < ea and the assumption that < is closed, we have

g = lim eja < lim e„ = e.

Similarly, we have g < /. Hence g < ef. On the other hand, since 3eA" is closed and

eayfa = ea+fa-eJa£\deK
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for all a, e + f - g = lim ea\J fa G 3eA".  Hence the element e + f — g is an

idempotent. Therefore

e + f - g = (e + f - gf = e + / + g + 2ef - 2eg - 2fg

= e + / + g + 2ef - 4g

from which we obtain g = ef.    □

Corollary 3.4. If C is a chain of idempotents in a locally convex algebra and if

K =co(C) is compact, then K is a spectral carrier and deK is a chain of idempotents

containing C as a dense subchain.

Proof. By Proposition 2.12, A" is a spectral carrier. By the proof of Proposition

3.2, we can show that C, the closure of C, is a chain of idempotents. By a

well-known result (e.g. [3, V.8.5]), we have deK Q C. On the other hand, by

Theorem 2.10, C Q deK. Hence we have deK = C.   TJ

The proof of the main result of the present section, which is the converse of

Proposition 3.2 (under the extra assumption that K is metrizable), is divided into

two stages. First we prove a special case: if 5 is a spectral carrier in 7/(77) with deS

forming a chain of projections, then S is a simplex. Secondly, we treat the general

case by establishing a "covering simplex" S in B(H) and showing that the

"covering map" is an "isomorphism" between S and A".

Now, let A be a hermitian operator defined on a Hubert space H with the

property that 0 < A < 1. Let A = /¿ XíieA be its spectral decomposition, where {ex}

is a resolution of unity which is continuous from the right. Let C be the closure of

the chain {l-ex:0<X<l}. Then it follows from Corollary 3.4 that all elements

in C are idempotents. On the other hand, ||e|| < 1 for all e in C. Therefore C is a

chain of projections. Let ¡i be the measure defined on C by assigning ¡i(A) to be the

Lebesgue measure of the set (X: 0 < X < 1, 1 - ex G A) for every Borel set A in

C. Then, for £ G //, we have

(hi í> - f ' Xd(exi O = X<ex|, €>l¿ - f W &d\

= f <(1 - ex)£, OdX = [ <et, OMe).
Jo Jc

Since linear functional of the form x -» <x£, £> with | G 77 separate points of

B(H), we have

A = j   ed[i(e).
Jc

Thus we have shown that A is the barycenter of a probability measure supported by

a closed chain of projections, an expression obtained from the spectral decomposi-

tion of A by means of integration by parts. Conversely, assuming that A =

/c edn(e), where C is a closed chain of projections and /i is a probability measure

supported by C, it is considerably more difficult to recover the resolution of

identity {eA} from C and ¡i directly such that A = Jx0Xdex; otherwise, we would
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prove the uniqueness of n by means of the uniqueness of the spectral decomposi-

tion of A, and thus would show that the closed convex hull of C is a simplex. The

last statement, laid out as a theorem as follows, is proved in an indirect way.

Theorem 3.5. If C is a closed chain of projections in 7/(77), where 77 is a separable

Hilbert space, then the closed convex hull of C (in the weak operator topology) is a

simplex.

Proof. Step I. We assume here that C contains 0, 1 and has no gap. (By a gap in

C we mean a pair (e,, e2) of elements in C with e, < e2 and ex ¥= e2 such that, for

all e G C, either e < e, or e > e2. See [5, Chapter I].)

Let {£„} be an orthonormal basis of 77. Then the mapping <b: C —» [0, 1] defined

by

0(e) =  2   2-«, U
n=l

is one-one, continuous and order-preserving. Since C has no gap, C is connected

and hence <b must be surjective. Now suppose that ¡ix, ¡i2 are probability measures

supported by C and

h = f edpx(e) = f edn2(e).
Jc Jc

Let Vj - ¡i) o $-\ ex= ^"'(X) and fß) = vßß, X] for / = 1, 2 and 0 < X < 1.

Then, for £ G H,

(hl O = J <e& Odfij(e) = f\exl Odv/X)

= fj(X)(exlO\lo-ffM)d(exlO
Jet

■ 1 .

■'O

= U\\2-((foifj(\)dex)lî)

Hence we have Jofx(X)dex = fàf2(X)dex. Since both/, and f2 are nondecreasing,

continuous from the right and the map X —> ex is continuous, strictly increasing, it

is easy to check that/, = f2. Therefore vx = v2 which in turn implies px = ¡i2.

Step II. Now we consider the general case. Let <p: B(H) —» 7/(77 ® 77) be the

mapping defined by </>(x) = x ® I. Then <b(C) is closed chain of projections in

B(H <£> H). It is easy to check that, for e,, e2 G C, the pair (e,, ef) is a gap in C if

and only if (<Ke,), <Ke2Ï) 1S a 8aP in "KO and, in such case, the rank of the

projection <i>(e2) - <Ke"i) = +oo. Hence there is a closed chain C of projections in

B(H <8> H) such that <b(C) Q C and C has no gap. (For details, see [5, pp. 17-18].)

Now suppose that

A = f edpj(e)       0=1, 2).
Jc

Let Vj = fij ° <f>_1. Then Vj is a measure on <p(C) and hence can be regarded as a

measure on C. We have

A®1= f(e(8)l)^(e)= f./^(/).
•'c yc
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By Step I, we have vx = v2. Since <j> is a homeomorphism between C and <p(C), we

must have px = jit2.    □

Proposition 3.6. Let C be a chain of projections in 7/(77) and K =co(C), wAere

the Hubert space H is not necessarily separable. Then the strong operator topology in

K coincides with the weak operator topology.

Proof. From a topological consideration, we see that it suffices to show that K is

compact under the strong operator topology. Since the unit ball of B(H) is

complete in the strong operator topology, by a well-known fact concerning com-

pact sets in a topological vector space (e.g., see [8, p. 50, Corollary II 4.3]) it suffices

to show that C is compact in the strong operator topology. Now, if {e„} is a net in

C, then, by an argument used in the proof of Proposition 3.4, {e„} has a monotone

subnet. It is well known that every monotone net of projections on 77 is strongly

convergent. Therefore C is compact.    □

Now we return to the general theory. For the rest of this section, we always

assume that A" is a metrizable spectral carrier with 3eA" totally ordered. For

technical reasons, we also assume that AT contains 0 and 1. Our goal is to show that

A" is a simplex.

Lemma 3.7. There is an order-preserving homeomorphism xp from deK onto some

compact set M in [0, 1] such that xp(0) = 0 and u>(l) = 1.

Proof. By modifying the proof of Urysohn's lemma, for given e,, e2 G 3eA" with

e, < e2, e, =£ e2, one can construct a continuous increasing function <#>: 3eA"^ [0, 1]

such that <¡>(ex) = 0 and <f>(e2) = L (For details, see [6, Theorem 1.2.1].) It suffices

to show that there exists a sequence {<//„} of continuous increasing functions from

3eA" into [0, 1] which separates points of 3eA" with ^„(0) = 0 and ^„(1) = 1; for then

we can set

00

^ = 2 2_'V'n
n=l

which is a function having the required properties. To this end, first we show that

3eA" has at most countably many gaps. Let p be a metric on K. For each positive

integer k, let Gk be the collection of all gaps (e,/) with p(e,f) > k~x. Then Gk is a

finite collection. Otherwise, by an argument used in Proposition 3.2, we can show

that there exists a sequence (e„,f„) in Gk such that {e„} is strictly monotone. For

définiteness, we assume that {en) is strictly increasing. We have

e, < /, < e2 < f2 < e3 < /, <-

By Theorem 2.11(c), both {e„} and {/„} are convergent to the same limit. But, on

the other hand,

p(lim e„, lim/„) = lim p(e„,fn) > k~x.

Thus we arrive at a contradiction. Now it is clear that the collection of all gaps,

namely, U k Gk, is at most countable. Let D be a countable dense subset of 3eA".

Let P be the collection of all those pairs (e,f) with e,f G C, e < f, e ¥^f, such that

either (e, /) is a gap of C or both e, / are in D. Then D is countable and hence can
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be arranged into a sequence, say, D = {(en,fn): n = 1, 2, . . . }. For each n, let xpn

be a continuous increasing function on 3eA" into [0, 1] such that xpn(e„) = 0 and

xp„(fn) = 1. It is not hard to see that {xpn} separates points of 3eA".    □

Lemma 3.8. There exists a closed chain C of projections on a separable Hilbert

space H and a homeomorphism <p: C-^>deK such that <p(0) = 0, <b(l) = 1 and

<KPiP2) = <KPi)<Kp2)/°'' allpx,p2£\ C.

Proof. Let xp, M be the same as those in the previous lemma. Let 77 = L2[0, 1].

For X G M, let px be the projection sending | G L2[0, 1] to X[o, \]4- (Here X[o, A]

stands for the characteristic function of the closed interval [0, X].) Then X—*px is a

one-one, continuous and increasing mapping from M onto a chain C of projec-

tions. It is straightforward to check that the inverse mapping of e —» p^ey where

e G deK, is the required mapping <p. (Note that the condition <p(pxp2) = <KP\pP(P2)

for allpx,p2 means the same as that <b is increasing.)   □

Let C and <#> be those described in Lemma 3.8. Let S be the closure of co(C) in

the weak operator topology. By Theorem 3.5, S is a simplex. Hence, for each

x G S, there exists a unique probability measure ¡ix on C such that x = fcpdlix(p).

Define <b: S —> K by putting

¡Kx) = [    ed(pxo<p-l)(e).
JdeK

It is not hard to check that rj> is continuous and affine. (For details, see [1, Theorem

II 4. 1].) Note that if x G co(C), say, x = 2 Xkpk with Xk > 0 and 2 Xk = 1, then

<Kx) = 2 Xk<j>(pk). From the fact that <#>(/"?) = <KPrM.^) ror all />, <y G C, it is easy

to check that, if x, y G co(C), then <Kx)<f>(>>) = ^>(xy). By the continuity of r> and

the denseness of co(C) in S, the last identity holds for all x, y G S. Thus we

obtain

Proposition 3.9. TAere exists a continuous affine mapping <j> from S =co(C) onto

K such that for all x, y G S, <í>(xy) = ^(x)«^^) and the restriction of <p to C is

one-one and onto 3. A".

Corollary 3.10. FAe multiplication in K is jointly continuous.

Proof. By the compactness of K, it suffices to show that if an, bn G K,

lim bn = b and lim anbn = c, then c = ab. Let xn, yn G S be such that <p(xn) = an

and <¡>(y„) — bn. By taking a subsequence if necessary, we may assume that both

{x„} and {yn) are convergent in the weak operator topology, say x = lim xn and

y = lim_y„. By Proposition 3.6, the weak operator topology and the strong operator

topology in 5 coincide. Therefore we have xy = lim x„y„. Now

ab = <í>(x)<í>( v) = <b(xy) = lim ^(x^)

= lim <b(xn)<b(y„) = lim a„bn = c.    □

Next we develop a functional calculus for elements in A. We denote by 3[0, 1]

the set of all real-valued functions / defined on [0, 1] such that /(0) = 0, fil) = 1
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and/ is monotonely increasing on [0, 1]. Recall that 5?P[0, 1] is the set of those

functions in 5[0, 1] which are polynomials. We write Í6[0, 1] for all those

functions in 5[0, 1] which are continuous.

Lemma 3.11. If a G A and p G 4<3>[0, 1], then p(a) G A".

Proof. Using summation by parts (see the proof of (a) => (b) in Proposition 1.1),

we can show that an element A in A is a convex combination of deK if and only if it

can be expressed as b = 2"_i ¡ijj, where 0 < px < /^ < • ■ • < ¡^ < 1, £ are

idempotents satisfying fjk = 0 if j ¥= k and ek = 2"_t/J G 3eA for k = 1, . . . , n.

For such b, we have

P(b)=î Pi^fj
/"I

with 0 < p( fix) < p( f^) < • • • <p(yO < 1. Thus the lemma holds for convex

combination of 3eA\ In general, we take a sequence {bn) of convex combinations

of deK such that lim bn = a. By Corollary 3.10, we have lim p(bn) = p(a). Since

p(bn) G A" for each n, we have p(a) G A.    □

Lemma 3.12. (a) 7/gGÍ6[0, 1], íAe« ¿Aere ù a sequence {qn) in 3^P[0, 1] such

that

lift. - SIL =    SUP   kPO - g(*)|-»0   as h^oo.
0<X<1

(b) 7/ / G ff[0, 1], rAen iAere exists a sequence {r„} in ty $[0, 1] such that

lim rn(X)=f(X) for all X(E[0, 1].

Proof, (a) By means of a smoothing process, it is not difficult to show that g can

be uniformly approximated by C°°-functions in 5[0, 1]. Since g is increasing,

g'(X) > 0 for all X G [0, 1]. Consider the Bernstein polynomials

bn(x) = 2o *'(£)(£)**0 - x)-*     (0 < X < 1)

and let />„(X) = /    bn(Ç)d£. Then A„(X) > 0 for all X and hence pn is a polynomial

increasing on [0, 1]. Since \\bn - g'\\x^>0, we have  \\pn - g\\x^>0. Let qn =

/>n(l)_lpn. Then qn is the required sequence,

(b) Note that/can be expressed as

00

/ = «o/o +  2   «„X,
n-l

where en > 0 for all n > 0, 2^_0 e„ = l,/0 G í 6[0, 1] and, for each n > 1, x» » a

function in 5[0, 1] such that, for all X G [0, 1], possibly with one exceptional point,

the value of x«(X) is either 0 or 1. It is not difficult to show that each Xn is tne

pointwise limit of a sequence in 5 S[0, 1]. Now (b) follows from (a).    □
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Proposition 3.13. For each a £\ K, there is a mapping from í [0, 1] into K, denoted

by f —» fia), such that:

(a) Ifp G í 9[0, 1], thenp(a) has the usual meaning.

(b) Forfi gEÍ[0,l]an¡/0<Á< 1, we have

(fg)(a) = fia)g(a),

(f ° g)(a) = fig(a)),

(Xf + (1 - X)g)(a) = X/(«) + (1 - X)g(a).

(c) ///„ G í[0, 1] andfn -* f pointwisely, then fn(a) -+ fia).

Proof. Take any x G S such that <i>(x) = a. (The symbols 5 and <i> are the same

as those in Proposition 3.9.) For / G S[0, 1], let fia) be defined by putting

fia) = <£(/(-*))• We have to show that fia) does not depend on the choice of x. By

Lemma 3.12(b), there exists a sequence {pn} in §9[0, 1] such that limpJX) = fiX)

for all X G [0, 1]. By Lebesgue's dominated convergence theorem, one can show

thatpn(x) converges to/(x) in the strong operator topology. Hence

<p(fix)) = <t>(limpn(x)) = lim <t>(pn(x)) = lim pn(a).

The limit lim p„(a) is certainly independent of the choice of x. Hence the expres-

sion fia) is well defined. The rest of the proof is routine and hence omitted.    □

Now we can state and prove the main theorem of the present section.

Theorem 3.14. If K is a metrizable spectral carrier and if deK is a chain of

idempotents, then K is a simplex.

Proof. Let <j>: S —» K be the affine mapping constructed in Proposition 3.9.

Since, by Theorem 3.5, S is a simplex, it suffices to show that <|> is one-one. Let x„

x2 G S be such that <p(xx) = <p(x2) = a. For X G (0, 1], define fx by

*«-{? T>if|<X,

x.

Then, according to the proof of Proposition 3.13, fx(a) = <p(fx(xj)),j = 1, 2. Since

fx = f\> f\(xj) is a projection and hence is in C. Since <p is one-one on C, we have

f\(xi) = f\(x2) Ior au< X G (0, 1]. Now, by the spectral theorem for hermitian

operators, we have x, = x2. Hence <j> is one-one and thus A is a simplex.    □

A spectral carrier which is also a simplex is naturally called a simplicial spectral

carrier, or simply called a simplicial carrier. Theorem 3.14 and Proposition 3.1 say

that a metrizable spectral carrier is simplicial if and only if its extreme points form

a chain of idempotents. From Choquet Theory's point of view, elements in a

simplicial carrier are nice. A natural question is, when is an element contained in a

simplicial carrier? In particular, if an element is contained in a spectral carrier, is it

necessarily contained in a simplicial carrier? Here we only give a rather modest

partial answer to this question.

Proposition 3.15. If K is a metrizable spectral carrier such that (a) 3eA~ is closed

and (b) the ordering < in deK is closed, then each element in A is contained in a

simplicial carrier.
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Proof. Let p be a metric in K and let x G K. By Kreïn-Mil'man's Theorem,

there is a sequence {x„} in co(3eA") such that lim p(x, x„) = 0. For each n, xn is a

convex combination of commuting idempotents and hence, by Proposition 1.1, x„

is contained in a finite-dimensional simplex, say, co(C„), where C„ is a finite chain

of idempotents. Let S„ = co(C„) n K. It is straightforward to check that Sn is a

spectral carrier. Since an element is an idempotent in Sn if and only if it is an

idempotent in both co(C„) and K, we have deSn = C„ n 3CA". Therefore deSn is a

chain and thus Sn is a simplex. Without the loss of generality, we may assume

co(C„) = Sn and thus xn G S„ and deSn = C„ Ç 3eA~. Recall that lim sup„ C„ (resp.

lim inf„ C„) is the set of all those elements y in A such that, for every neighborhood

Vy of y, Vy n Cn¥= 0 for infinitely many « (resp., for all except finitely many «).

By a well-known result in general topology (see, e.g., [10, Theorem 1.7.1]), {C„} has

a subsequence { C^} such that

lim sup C   = lim inf Cn (= C, say).
k - *

From lim sup^ C„ = C and the compactness of C, we see that, for a given e > 0,

there exists some k0 such that, for k > k0, we have

C„k G {.y: p(>-, C) < e}

from which we obtain

co(C„J c {y- p(y, co(C)) < e}.

Since x G co(C„t) for all k and p(x„ , x) -» 0 as k -> oo, we have p(x, co(C)) < e.

Since e > 0 is arbitrary, we have x G co(C). It remains to show that C is a chain of

idempotents.

By assumption (a), we have C Ç 3eA". Let e„ e2 G C with e, ¥= e2. Since lim

inf¿ Cn = C, there exist sequences {pk), {qk} such that/>t, qk G C^ and lim/»^ =

e,, lim ^ = e2. For each k, we have either pk < ^ or pk > qk. Hence we have

either/»¿ < qk for infinitely many k or pk > qk for infinitely many k. By assumption

(b), we have either e, > e2 or ex < e2. Therefore C is a chain.    □

Corollary 3.16. If K is a metrizable spectral carrier in which the multiplication is

jointly continuous, then each element in K is contained in a simplicial carrier.

Remark. Let x be an element in a locally convex algebra A. Suppose that x is

contained in a simplicial carrier. Then, by Lemma 3.11, the set

Sx = œ{p(x):p G 3<3»[0, 1]}

is the smallest simplicial carrier containing x. Since 5[0, 1] is compact in the

pointwise-convergence topology, by Proposition 3.13(c), we have

5x = {/(x):/Gá[0, 1]}.

We may call Sx the support of x. It is easy to see that, if x is contained in a

simplicial carrier, y G A and_yx = xy, then_yi = sy for every s in the support of x.

Thus we obtain a version of Fuglede's theorem for such x.
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