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SUBMONOTONE SUBDIFFERENTIALS

OF LIPSCHTTZ FUNCTIONS1

BY

JONATHAN E. SPINGARN

Abstract. The class of "lower-C1" functions, that is functions which arise by

taking the maximum of a compactly indexed family of C' functions, is char-

acterized in terms of properties of the generalized subdifferential. A locally

Lipschitz function is shown to be lower-C1 if and only if its subdifferential is

"strictly submonotone". Other properties of functions with "submonotone" subdif-

ferentials are investigated.

0. Introduction. One of the nice features of convex optimization is the link with

monotone mappings. A monotone mapping (Minty [5]) is a multivalued function T:

R" z$ R" (one which maps points in R" into subsets of R") having the property

that (xx — x2,yx — _y2> > 0 whenever y¡ G T(x¡), i = 1, 2, where ( ■ , •> denotes

the usual inner product on R ".

If/: R" —* R is convex, then 3/ the subdifferential off, is the monotone mapping

defined by

3/(x) = {f £\Rn:f(z) >f(x) + ($,z-x)Vz(ER"}.

Similarly, saddle functions give rise in a natural way to monotone mappings. Due

to this, the problems of minimizing convex functions or of finding saddle points of

convex-concave functions can be rephrased as "variational problems" (i.e., finding

a point x such that 0 G 7Xx) for a monotone mapping T), often resulting in

considerable simplification. For example, Rockafellar [8], [9] has exploited the link

between monotone mappings and saddle functions to unify and simplify the

existing theory of multiplier methods in convex programming.

If f: R" —> R is a locally Lipschitz function, then following Clarke [1] we take the

generalized subdifferential of / to be the multivalued mapping df:R"^R" defined

by taking 3/(x) to be the convex hull of the set of all limit points of sequences of

the form (V/(xn)), where xn —» x and / is differentiable at x„ for all n. The

multifunction 3/ is locally bounded, upper semicontinuous, nonempty-, compact-,

and convex-valued [1], and satisfies a mean-value property [3].

It is the aim of this paper to show that a concept closely related to monotonicity,

e.g. "submonotonicity", plays a natural role in the analysis of nondifferentiable,
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nonconvex problems. We will do this by demonstrating how properties of locally

Lipschitz functions can be related to monotone-type properties of their generalized

subdifferentials.

Our most important result appears in §111, where a complete characterization is

obtained, in terms of properties of the generalized subdifferential, for the class of

"lower-C1" functions. A function/: R" —» R is lower-Cx provided that for each

x G R", there are a compact set S, a neighborhood U of x, and a function g:

U X S —* R such that g and Vxg are continuous jointly in x and s, and such that

fix) = maxjSS g(x, s) for all x G U. It will be shown that the lower-C1 functions

are precisely those locally Lipschitz functions whose generalized subdifferentials

are "strictly submonotone".

In §11, some implications of the submonotonicity property are developed, and

several equivalent characterizations are given. This concept is then contrasted with

properties that have been discussed by other authors. Among these are regularity in

the sense of Clarke [2], quasi-differentiability in the sense of Pshenichnyi [6], lower

semidifferentiability in the sense of Rockafellar [10], and semismoothness in the

sense of Mifflin [4].

The closed unit ball in R" is denoted by B = {x G R": |x| < 1}. If K c R" is a

compact convex set, then *ir% is the support function of K, defined by ^K") =

sup{<M, x>: x G A"}. For any u G R", we let A„ = {x G K: (u, x> = ^%(u)}.

Thus Ku is the set of all points in K for which u is an outer normal.

A set-valued mapping T: R" =J R " is closed provided the set {(x,y): y G T(x)}

is closed. T is locally bounded if for every x G R " there are e > 0 and R > 0 such

thati' G 7Xx), |x — x| < e implies \y\ < R.

We will say the sequence (x„) converges to x in the direction u G R", written

x„ ->u x, provided x„ -» x and either u = 0 or u ¥= 0, (x„ — x)/|x„ — x| —» u/\u\,

and x„ t^ x for all sufficiently large n.

Iff: R" -> R, the directional derivative of/at x (when it exists) is the function

f,,.   x _ ,-      /(x + tu) - fix)

I. Submonotonicity. In this section, T: R" =J R" denotes a convex-valued closed

and locally bounded multifunction. T will be called submonotone at x G R" provided

lim inf       </ ; * *' - *> > o.
x'—>xt x'^x \X X\

yeT(x),y'eT(x')

( T is trivially submonotone at x if T(x) = 0.) T is directionally upper semicontinu-

ous (d.u.s.c.) at x provided that for all u G Rn, whenever xk —*u x and^ G T(xk)

for all k, then for every e > 0 there exists k0 such that r(x¿) c 7'(x)u + eB

V k > k0. For u = 0, this is automatically satisfied since T is assumed to be closed

and locally bounded. Equivalently, T is d.u.s.c. at x if and only if for all u ¥=0,

whenever xk —>u x and T^) ^ yk —*y, then y G T(x)u. If T is submonotone

[respectively, d.u.s.c] at all x G R", then T is submonotone [resp., d.u.s.c.].
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(1.1) Theorem. Let T: R" ^ R" be convex-valued, closed, and locally bounded (as

is the case if T = 3/ with f locally Lipschitz). Then T is d.u.s.c. at x if and only if T

is submonotone at x.

Proof. If T is not submonotone at x, there is e > 0 and there are sequences

x„ -* x, x„ ¥= x,yn G T(xn), y'„ G T(x), such that <x„ - x, yn - y'n//\xn - x| < -e

< 0, V n. We may clearly assume x„ -»„ x for some u ¥= 0, and since T is closed

and locally bounded, that yn —*y G T(x) and y'n^>y' G T(x). Then ^^(w) >

(u,y'} — e > (u,y}, so Tis not d.u.s.c.

Suppose that T is submonotone at x. Let xn —»u x, u ^ 0, yn G 7'(xn), yn -+y.

Since 7" is closed and locally bounded, y G T(x) and we will be done if we can

showj G 7<x)u. If z G T(x),

/ V ,•        On  - Z>X» -  *)   .    ft(_y — z) • w = hm-¡-¡- > 0

since T is submonotone at x. Since this holds for all z G T(x), y ■ u > ^^(w),

showing that T is d.u.s.c. at x.    □

Of course if /: R" —» R is convex, 3/ is monotone, and hence submonotone. The

fact that 3/ is directionally upper semicontinuous in this case is proved by

Rockafellar [7, Theorem 24.6].

The multifunction T: R" =£ R" will be called strictly submonotone at x provided

r   • t     <*i - *2>yi -yi> „. nhm inf       -¡-¡-> 0.
*,*x2 |x, - x2|

x¡—*x, /'— 1, 2

_y,e7*(jí,), i-l, 2

Strict submonotonicity clearly implies submonotonicity.

Next, we state a characterization of strict submonotonicity similar to the one

provided in Theorem 1.1 for submonotonicity. The proof is similar, so it has been

omitted.

(1.2) Theorem. Let T: R" z$ R" be convex-valued, closed, and locally bounded.

Then T is strictly submonotone at x if and only if whenever xn —» x, x'n —» x, xn ^ x'n,

yn e T(xn), y'n G T(x'„), yn -+y, y'„ -*y', x„ - x'n -»e 0, one also has vy' <vy.

II. Lipschitzian functions. Next, we turn our attention to a particular class of

multifunctions, namely those that are the generalized subdifferential for a locally

Lipschitz function/: R" —> R. Thus, if T = 3/, we ask what the submonotonicity of

3/implies about/

If/is locally Lipschitz, the Clarke derivative of/is the function

_,.       .      ,. fix + h + tu) - fix + h)
f°(x; u) = hm sup —-'——-'- .

tio '
A-.0

f°(x; ■) is a continuous sublinear function which is the support function of 3/(x).

For every u,v£\R", f°(x; ■), being a finite convex function, possesses a finite

directional derivative at u in the direction v which we denote by f°(x; u; v).

Alternatively, we could define /°(x; u;  ■) to be the support function of 3/(x)„.
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Clearly f°(x; 0; •) = f°(x; •)• Let us also define

f^(x; u; v) =

fix + h + tv) - fix + h)    .,        '_
hm sup —-——-    if u ^ 0,

a->„o *
'/>lio

/°(x;t>)    ifw = 0.

Clearly f~*(x; u; v) < f°(x; v). Also./^x; u; •) is sublinear, sof~*(x; u; •) is the

support function of some subset of 3/(x). As we shall see, that subset is 3/(x)u

exactly when 3/is submonotone or, equivalently, d.u.s.c. To see that/~*(x; u; •) is

sublinear, note that it is positively homogeneous and

'^                     ,     ,.            fix + h + t(vx + v2)) - fix + h)
J   (x; u; vx + v2) = hm sup -

fix + (h + tvx) + tv2) -fix + (h+ tvx))
< hm sup-

fix + h + tvx) - fix + h)
-f-hrn sup-

= /""(x; u; v2) + /""(x; u; vx).

(2.1) Theorem. Let f: R" —> R be locally Lipschitz. 3/ is d.u.s.c. at x if and only if

f(x; u; v) = f^(x; u; v) for all u,v£\ R".

Proof. (<=^) Let u =£ 0, xk -»„ x, df(xk) 3 yk -+y. To show 3/ is d.u.s.c, it must

be demonstrated that y G 3/(x)u. Fix an arbitrary v G R". Then

. «,        v      ,.            f(xk +h + tv)- f(xk + h)
v-yk < f(xk> v) = hm sup-

/i-»0 '

so hk, tk > 0 can be found with

1   „ fixk + hk + <kv) - fixk + K)
v ■ yk —- < -

k k

and max(it, \hk\) < \xk — x\/k. Hence,

v y = lim v ■ yk < lim sup
k

f(xk + hk + tkv) - f(xk + hk)

k

< f^(x; u; v),

where the last inequality follows from the fact that

xk-x + hk^u0   and    tk/\xk - x + hk\i0.

But/~*(x; u; v) = f°(x; u; v) by assumption, so v ■ y < /°(x; u; v) = ^*fl.x) (*>) for

all v, which implies that.y G 3/(x)„.

(=>) Fix u ^ 0, v G R". First wè show that /°(x; u; v) >f(x; u; v). Pick

sequences hn ->„ 0, tn/\hn\\,0 such that

,_,           v      r      /(* + K + tnv) - fix + K)
f  (x;u;v)=  hm-.
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By the mean-value property (Lebourg [3]), there is, for each n,

y„ G 3/(x + hn + cntnv)

with 0 < cn < 1 such that

fix +hn + tnv) - fix + K)
v ■ y„ =-.

'n

Without loss of generality, we can assume that yn —* y for some y G 3/(x). Since 3/

is assumed to be d.u.s.c. at x, we have_y G 3/(x)u. Hence/~*(x; u; v) = hm v ■ yn =

v • y < **Âx)u(v) = /"(*; "; v), as desired.

To prove the opposite inequality, fix u ^ 0, v G R", w G 3/(x)u, and we will

show w ■ v < /~*(x; u; v). From this, the desired inequality follows by taking the

supremum in w.

By d.u.s.c, we may find 8n > 0(n = 1,2, ■ • ■ ) such that 0 < Ô < 5„ implies

3/(x + ô(u + v/n)) c 3/(x)u + „/n + B/n2.

Clearly we may assume <Sn —>0. Let xn = x + dn(u + v/n) and choosey G 3/(x„).

Then x„ -*„ x and yn G 3/(x)„+t)/„ + B/n2. Since yn G 3/(x„), we may find tn > 0

andh„ G R" such that

1   „ fixn + K + t„v) - f(xn + h„)
v ■ y„-<-,

"      n t.

maX{|^Mn}   <\Xn  -  X\/n-

Next, we will show that lim infn yn ■ v > w ■ v. Since

xn + nn->ux    and   tj\xn - x + hn\\,0,

this will imply

fixn + h„ + t„v) - fixn + h„)
w ■ v < lim inf ^-=-2-"——^-=-— < Mx; u; v)

'n

which is the desired result.

For each n, choose^ G 3/(x)u+t)/„ such that \yn — y'n\ < n~2. Then

y* ' (« + v/n) = y'n- (" + «/«) + (^ - y'n) • (" + «/")

> w (« + ü/n) - «_2|m + v/n\

(because w G 3/(x),^ G df(x)u+v/„)

1 1

n „2
« + — v

n

u + — v
n

(because w G df(x)u,y'n G 3/(x))

1                1 /,
> y„-u + —w- v- \\u \ +

n n2\

(because \yn - yn\ < n~2). So

y„- v > w■ v-a + u H— o
n\'   ' «   |/

and hence lim inf ^„ • v > w ■ v, as desired.    □

)

•
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Combining our results so far, we obtain the following:

(2.2) Corollary. If f: R" —► R is locally Lipschitz, then the following are

equivalent

(i) 3/ is submonotone at x,

(ii) 3/ is d.u.s.c. at x,

(iii)f-(x; •; •) = /•>(*; •; •)•

Now that we have acquired a better understanding of the submonotonicity

property of 3/ and what it implies about / a logical question to ask next is: Just

how strong is this property? In other words, if we take a look at "regularity" or

"subdifferentiability" properties that have been studied for nondifferentiable func-

tions by other authors, then which of these implies or is implied by the submono-

tonicity of 3/?

A locally Lipschitz function /: R" -» R is said to be semismooth at x G R"

(Mifflin [4]) provided that xk —*u x and yk G df(xk) imply that (u,yk} —*f'(x; u).

(2.3) Proposition. If 3/ is submonotone at x then f is semismooth at x.

Proof. If xk -*u x and yk G df(xk) then every subsequence of (yk) has a

subsequence converging to some point in df(x)u by directional upper semicontinu-

ity. Hence (u,yk) -» ^„(m). By Proposition 2.5, t^u) = f'(x; u).    □

The function fix) = -|x| is semismooth, but 3/ is not submonotone at x = 0, so

the converse of 2.3 is false.

Following Pshenichnyi [6], let us say that/is quasi-differentiable at x if there is a

closed convex set K such that f'(x; ■) = ^K(). The function fix) = -\x\ is not

quasi-differentiable, so it is natural to ask whether every locally Lipschitz function

which is both semismooth and quasi-differentiable has a submonotone subgradient

mapping. The answer is negative. Consider the function /: R2 —* R defined as

follows:

fia, b) =

0   if a < 0,

a2/4   if a >0,\b\ > a2/2,

\b\-b2/a2   if a >0, \b\ <a2/2.

Then / is differentiable at all points where either b =£ 0 or a < 0. At all points

x = (a, 0) with a > 0, f is quasi-differentiable since f'(x; ■) = *&%(') vñth K =

[(0, -1), (0, 1)]. / is also locally Lipschitz, and it is not hard to check that / is

everywhere semismooth. However, 3/ is not d.u.s.c. since 3/(0) = K but (0, 0) G

3/(0, b) for all b ^ 0.

A locally Lipschitz function /: R" —» R will be called regular at x (Clarke [2])

provided that/'(x; •) = ^*/(x)(). Clearly this is a stronger property than quasi-dif-

ferentiability. The function / of the previous paragraph is not regular at 0, so it is

natural to ask whether semismoothness plus regularity implies the submonotonicity

of 3/ This time the answer is affirmative:

(2.4) Proposition. 3/ is submonotone at x if and only if f is semismooth and

regular at x.
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Proof. Suppose / is semismooth and regular at x. If xn —*u x (u ^ 0), yn G

3/(x„), and.y„ -*y then y G 3/(x) and

(y, u) = lim(yn, u)

= /'(x; u)    (by semismoothness)

= *a)(*)(")    (by regularity),

so y G 3/(x)H. Hence 3/ is d.u.s.c, hence submonotone at x. The other direction

follows by Propositions 2.3 and 2.5.    □

Rockafellar [10] has defined z G R" to be a lower semigradient for /at x if

/(x + gp) - f{x) VlieJ?..

/J.0

If such a z exists, / is lower semidifferentiable.

(2.5) Proposition. Let f: R" —» R be locally Lipschitz, 3/submonotone at x. Then

fix + tv) —fix)        __     .  .     -.
hm   —-í-=^-^ = ^x)(w)    Vw G /?".

/« particular, f is  lower semidifferentiable at  x  and 3/(x)  is  the set  of lower

semigradients. Also, f is regular at x.

Proof. If u = 0, equality follows easily from the fact that / is locally Lipschitz,

so suppose ii^O. Let /„|0, vn -> u. For each n, there is c„ G (0, 1) and yn G

9/0 + c„tnvn) such that (fix + t„v„) - f(x))/tn = yn ■ v„. Since x + cnt„v„ ->„ x,

we must have.y„ • u -h> *$Ax)(u). Thus

fix + t„vn) - fix)

ln

Hence/is lower differentiable and 3/(x) is the set of lower semigradients. It is then

obvious that/ is regular at x.   □

The converse of 2.5 is false: fix) = x2 sin x"1 is locally Lipschitz and differen-

tiable but 3/ is not submonotone at x = 0.

It is also possible for a function to be regular and lower semidifferentiable but

for 3/ not to be submonotone. Consider, for example, any function f:R—>R

satisfying the following properties:

(i)/(x) = x - x2 for x = 1/2, 1/3, 1/4,_

(ii) /' exists and is decreasing on (l/(n + 1), l/n), f'+(l/(n + 1)) = 1 and

f'_(l/n) = 0,n = 2,3,4,_

(iii)/(x) = I for x > | and/(0) = 0,

(iv)/(-x) = fix) for all x.

Since |x| - x2 < fix) < |x| for all x,/'(0; u) = \u\ for all u. Also, 3/(0) = [-1, 1] so

/is regular at 0. But 3/is clearly not submonotone at 0. Note that the behavior off

is nice at all points x =£ 0.

Since the property of strict submonotonicity is central to this paper, it is useful to

mention an example of a function /:  R2 —» R2 such that 3/ is submonotone
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everywhere, but is not strictly submonotone. The function is

fix,y) =

\y\    ifx<0,

\y\ - x2   if x > 0, \y\ > x2,

(x4 - .y2)/2x2   if x > 0, \y\ < x2.

It is easily checked that / is locally Lipschitz, that 3/ is everywhere submonotone,

and 3/(0, 0) = [(0, -1), (0, 1)]. If we let x„ = (l/n, l/n2), x'„ = (l/n, -l/n2),yn =

(2/n, -1), y'n = (2/n, I), n - 1,2,..., and u = (1, 0), then x„ -+u 0, x'n -*a 0,

y„ G 3/(x„), andy'n G df(x'n) for all n. However,

(x„ — x'y„ — y')
-;--.-= -2    for all n

\x„ - xn\

so 3/ is not strictly submonotone.

III. Lower-C1 functions. In this section, we characterize the class of lower-C1

functions in terms of their generalized subdifferentials. In Theorem 3.9, it is

demonstrated that a locally Lipschitz/ is lower-C1 if and only if 3/ is strictly

submonotone. The term "lower-C1 function" was suggested to us by Professor R.

T. Rockafellar.

(3.1) Lemma. Let f: R" -> R be locally Lipschitz, x,y G R". For every e > 0, there

are neighborhoods  U of x and  V of y such  that if x' G U and y' G V, then

\**/ix')(y) - ^*Axi(y')\ <e-

Proof. Let k be a Lipschitz constant for / on a neighborhood U of x. Then

3/(x') c kB for all x' G U, and it follows that k is a (global) Lipschitz constant for

^*/(x)(')- Take V to be the open ball of radius e/k centered at.y.    □

(3.2) Lemma. Let f: R" —> R be locally Lipschitz. Then

Hm inf fix'+ ty) - fix') _ > 0   yjy 6 RH (3 3)
x —.x I

HO

if and only if, for any compact K c R " and any e > 0, there is a neighborhood U of x

and X > 0 such that

V + rt-M-W»^ (3.4,

whenever x' G U, y' E K, 0 < t < X.

Proof. Assume (3.3) holds, and fix K c R" and e > 0. Since / is locally

Lipschitz, (3.3) implies

Hm inf &*' + (y')-fix') _ >Q   yyeR„
x'—*x t

y-*y

40
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This and Lemma 3.1 imply that for each.y G A" we may find neighborhoods Uy of

x, Vy ofy, and \ > 0 such that ^fixl(y) - *^*')(/) > -e/2 and

**• +«?-**> - *Sf,M > -/2

whenever x' G Uy,y' G Vy, and 0 < t <\. Pick a finite subcover Vy , . . . , Vy^ for

K, and let U = Uy¡ n • • • n VVm and X = minf^, . . . , \J. For any x' G Í/,

.y' G A", and / G (0, X), let / be such that^' G Vy, and we get

V < /

> -e/2 - e/2 = -e,

as desired. The opposite direction of the lemma is obvious.   □

(3.5) Proposition. ///: R" —» R is locally Lipschitz, then 3/is strictly submonotone

at x if and only if (3.3) holds.

Proof. (=>) If y = 0, the assertion is trivial. Without any loss of generality, we

may assume that \y\ = 1. Fix e > 0. Since 3/is strictly submonotone at x, there is

r > 0 such that

|x, - x2|

whenever |x, - x| < 2r, y¡ G 3/(x,) for i = 1, 2, and x, ¥= x2. Let x' and t be

chosen so that |x' — x| < r and 0 < t < r. We will complete the proof by showing

that

?* + »-**>-*M*>~

Choose anyj', G df(x')y. By the mean-value theorem of Lebourg [3], we may fi id

s G (0, t) and y2 G 3/(x' + sy) such that fix' + ty) - fix') = t(y,y2}. Letting

x, = x' and x2 = x' + sy, we have

fix' + ty)- fix') -*Ù*)(y) = <y,y2-yi>

<x2 - xx,y2 -yx)
> -e.

1*2        -*ll

(«=) Next, suppose (3.3) holds, and let e > 0 be given. By Lemma 3.2, there is a

neighborhood U of x and X > 0 such that

fix' + tu) - fix')       _ ,      .  ,
-;   Jy   - *îa-')(m) > -£/2

whenever x' G U, \u\ < 1, and 0 < t < X. We may also assume that U is small

enough so that \z — z'\ < X for all z, z' G If. Fix x, G U, y¡ G 3/(x,) for i = 1, 2,
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with xx ^ x2. Let t = |x2 — x,| and u = (x2 — xx)/t. Then

<x, - x2,yx -y2/
-p^—-j-= -<«,,,> - (-u,y2)

> -^Xl)(«)-^,2)(-«)

f(xx + tu) - f(xx)

+ /(x2-fu)-/(x2)_ }

> —e/2 — e/2 = — e,

which shows that 3/ is strictly submonotone at x.    □

(3.6) Lemma. Let f: R" -> R be locally Lipschitz, let C and K be compact sets in

R ", and suppose that 3/ is strictly submonotone on C. Then

limnf/(^tv)-/(x)_ 0
xE:C I

no

Proof. Let e > 0 be given. By Proposition 3.5 and Lemma 3.2, for each x G C,

there is Xx > 0 such that (fix' + ty) - f(x'))/t - ^Âx.y(y) > - e whenever |x' -

x| < Xx, y G K, and 0 < t < Xx. Let x,, . . . , xr G C be such that for every x G C

we have |x - x,| < Xx for some /'. Let X = min^ , . . . , Xx ). Then for any x G C,

y G A, we have

fix + ty)- fix) (v)>-E

whenever 0 < t < X.   □

(3.7) Lemma. Let <p(/) be real-valued, defined for t > 0 sufficiently small, such that

lim,^,, (¡>(t) = 0. 77ien there is a continuously differentiable function a(t) defined on

[0, a] for some a > 0 such that a(0) = a'(0) = 0, a(t) > t<p(t), V t G (0, a].

Proof. Let a > 0 be such that <b is bounded above on (0, 2a], and let ak = a/2*,

k = 0, 1, .... If ß is the infimum of all affine functions I: R-* R which satisfy

l(ak) > <b(t) for all t G (0, 2ak] and all k = 0, 1, 2, . . . then the following proper-

ties are easily checked:

ß is continuous, concave, nondecreasing on [0, a],

ß(0) = 0,
ß > <í> on (0, a],

ß is affine on [ak + x, ak], k = 0,1,2,_

Also, ß'+, the right derivative of ß, has these properties:

ß'+ is finite, nonnegative, and nonincreasing on (0, a),

ß'+ is constant on [ak+x, ak), k = 0, 1, 2, ...,

ß'+ is integrable on [0, a].
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This last assertion is proven as follows. Whenever 0 < u < v < a,

ß(v) - ß(u) = j  ß'+(s) ds

(cf. Rockafellar [7, 24.2.1]). Since ß'+ > 0 and ß is continuous,

Cß'+(s) ds = lim   Cß'+(s) ds = ß(a) - ß(0) < oo,
•'0 "-*0   Ju

so ß is integrable. Note that since ß(0) = 0, ß(t) = }'0 ß'+(s) ds for all t G [0, a].

For each k = 1, 2, ... , pick ck such that \(ak + ak+x) < ck < ak,

(ak - ck)(ß'+(ak+x) — ß'+(ak)) < ak + x. Define ¡i: (0, a) -* R to be the function that

agrees with 1 + ß'+ on the intervals [ak + x, ck] (k = 1, 2, ... ) and on [ax, a0), and

is affine on the intervals [ck, ak] (k = 1,2, . . .). Then ju, is continuous, nonnega-

tive, and nonincreasing on (0, a) and

V   n(s) - ß'+(s)ds > 0   forallk = 0,l,2,...,t£\[ak + x,ak].

Since 0 < n < ß'+ + 1 and /3^_ is integrable, it follows that ju is integrable. Then

for all t G [0, a], f'0^s) ds > f'0ß'+(s) ds = ß(t).

Define a(t) = tf'0p(s) ds for all t G [0, a]. Clearly,

a is continuously differentiable on (0, a].

a(0) = 0.

a(t) > t<b(t) for t G (0, a].

It remains only to show that a is continuously differentiable at 0. We have

a'(0) = hm   -^ = hm   ('^(s) ds = 0.

Also, for r > 0,

o'(/) = f'ii(s) ds + tti(t) = /"'(/i(i) + M(0) *
•/o •'o

< 2 J  n(s) ds    (since p is nonincreasing)
-'o

sohm^0a'(0 = 0.    D

(3.8) Proposition. Let f: R" —> R be locally Lipschitz. Ifdfis strictly submonotone

then for every compact C c R", there is a continuously differentiable a: [0, a] —* R

such that a(0) = a'(0) = 0 and

fix + ty) >f(x) + r*frx)(y) - <x(t)

whenever x G C, \y\ = 1, and 0 < / < a.

Proof. For t > 0, define

*/) = -   mf   min(/(*+ '>)-/(*) - nUy),0).

xec
bl-1
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Then <b > 0 and by Lemma 3.6, lim,^ <p(t) = 0. By Lemma 3.7, there is a

real-valued function a(t) which is continuously differentiable on [0, a] for some

a > 0 such that a(0) = a'(0) = 0 and a(t) > t<j>(t) for all / G (0, a]. It follows that

fix + ty) > fix) + f*%Kx)(y) - a(t) whenever x G C, \y\ = 1 and 0 < t < a.    \J

(3.9) Theorem. Letf: R" -> R be locally Lipschitz. f is lower-Cx if and only ifdfis

strictly submonotone.

Proof. (=») Suppose 3/is strictly submonotone, and fix x G R". By Proposition

3.8, there are a > 0, and a Cx function a : [0, a] —> R such that a(0) = a'(0) = 0

and fix + y) > fix) + ($,y} — a(\y\) whenever |x - x| < 1, \y\ < a, and f G

3/(x). Let b = min{l, a/2). Then

fix) >fix') + (x - x', £> - a(\x - x'|)

whenever |x — x| < b, \x' — x| < b, and f G 3/(x'). Let U = (x: |x — x| < b)

and 5 = {(x', f ): |x' - x| < ¿>, f G 3/(x')}. If we define

g(x, x', f ) = /(x') + <x - x', O - o(|x - x'|),

then g has the properties required for the definition of "lower-C1 function".

(=>) Fix x G R", let [/, S, and g be as indicated, and let K c Í/ be a compact

convex neighborhood of x. By compactness, Vxg(x, s) is uniformly continuous on

K X S. So, defining for t > 0

r,(t) ~    sup     \Vxg(z,s)-Vxg(z',s)\

ses
\z-z'\<t

we have lima0 17(f) = 0. By Lemma 3.7 there is, for some a > 0, a C1 function a:

[0, a]^> R such that «(0) = a'(0) = 0 and a(t) > rn(t) for all t G (0, a].

Fix x, x' G A such that x ¥= x'. For each 5 G S, by the mean-value theorem,

there is x" G A on the line segment (x, x') such that g(x', s) — g(x, s) = (x' — x) •

Vxg(x", 5). Then

[ g(x', s) - g(x, s) - (x' - x) ■ Vxg(x, s)]/\x' - x|

= (V^x", s) - Vxg(x, s))(x' - x)/\x' - x\

>   -V(\X"-X\)>   -T,(|X'-X|)>   -   a^,'~^ ■

Hence, for all s G S,

g(x', s) > g(x, s) + (x' - x) • Vxg(x, s) - a(\x' - x|).

Let f G 3/(x) be arbitrary. By Clarke [1, Theorem 2.1], we may find sx, . . . ,

sk G S and numbers A„ . . . , Xk such that

S - 2 \ V,g(x, *i),       A,. > 0, 2 \ = 1. g(x, s,) = fix).

Then

fix')> SW.ii)

> 2\(*(*. **) + (*' - *) • V*g(x, s,) - a(|*' - x|))

= f{x) + (x' - x) ■ ? - a(|x' - x|).
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Since this holds for all f G fix), we have shown that for all x, x' G A" with x # x',

we have

fix') >f(x) + *$<„(*' - x) - a(\x' - x|).

It then follows easily that 3.3 holds at x = x and hence by Proposition 3.5 that 3/ is

strictly submonotone at x.    □

Acknowledgement. We wish to thank Professor R. T. Rockafellar for sharing

many valuable insights with us.

References

1. F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262.

2. _, Generalized gradients of Lipschitz functional, Adv. in Math, (to appear).

3. G. Lebourg, Valeur moyenne pour gradient généralisé, C. R. Acad. Sei. Paris Ser. A 281 (1975),

795-797.

4. R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control

Optimization 15 (1977), 6.

5. G. J. Minty, Monotone (nonlinear) operators in Hubert space, Duke Math. J. 29 (1962), 341-346.

6. B. N. Pshenichnyi, Necessary conditions for an extremum, Marcel Dekker, New York, 1971.

7. R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1972.

8. _, The multiplier method of Hestenes and Powell applied to convex programming, J. Optimiza-

tion Theory Appl. 12 (1973), 6.

9.   _, Augmented Lagrangians and applications of the proximal point algorithm in convex

programming, Math. Oper. Res. 1 (1976).

10. ._, The theory of subgradients and its applications to problems of optimization, Lecture Notes,

Univ. of Montreal, Feb.-March, 1978.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332


