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INVARIANCE OF SOLUTIONS TO INVARIANT NONPARAMETRIC

VARIATIONAL PROBLEMS

BY

JOHN E. BROTHERS

Abstract. Let / be a weak solution to the Euler-Lagrange equation of a convex

nonparametric variational integral in a bounded open subset D of R". Assume the

boundary B of D to be rectifiable. Let D be a compact connected Lie group of

diffeomorphisms of a neighborhood of D u B which leave D invariant and assume

the variational integral to be G-invariant. Conditions are formulated which imply

that if / is continuous on D u B and / o g\B = f\B for g e G then / ° g = f for

every g e G. If the integrand L is strictly convex then / can be shown to have a

local uniqueness property which implies invariance. In case L is not strictly convex

the graph Tf of / in R" x R is interpreted as the solution to an invariant parametric

variational problem, and invariance of Tf, hence of/, follows from previous results

of the author. For this purpose a characterization is obtained of those nonparamet-

ric integrands on R" which correspond to a convex positive even parametric

integrand on R" X R in the same way that the nonparametric area integrand

corresponds to the parametric area integrand.

1. Introduction. Let L: R" X R X (R")* -»Rbea positive nonparametric varia-

tional integrand of class 1 which is convex (but not necessarily strictly convex) with

respect to the third variable £ G (R")*. Let D be a bounded open subset of R" with

boundary B and /: D u B —» R be a continuous function such that f\ D is locally

Lipschitzian, and assme / to be a weak solution in D to the Euler-Lagrange

equation

div^L), = (D2L)f.

(Elements   of   the   domain   of   L   are   denoted   (x, z, Q,   and   (D2L)j(x) =

DzL(x, fix), dfix)), etc.)

If g is a diffeomorphism of D onto D then L is called a g-invariant integrand

provided

L(g(x), z, Dg(x)-X*(0)Jg(x) = L(x, z, £)    for (x, z, £) G D X R X (R")*,

where Jg(x) = |det Dg(x)\. This implies that / ° g is a weak solution in D to the

Euler-Lagrange equation and also that

f L.dV-1 L4 gdf
JD   * JD   *°*

whenever <p: D —» R is locally Lipschitzian. For example, if g is an isometry of R"

and L can be expressed as a function of z and |£| then L is g-invariant.
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Let G be a compact connected Lie group of diffeomorphisms of a neighborhood

U of D u B onto U which leave D invariant, and assume L to be a g-invariant

integrand for g G G. Our goal is to establish conditions on L and D under which it

will be true that if

/ » g\B = f\B   whenever g G G

then

f ° g = f   whenever g G G.

For example, if G is the group of rotations of R" then B will be the union of a finite

family of (ai — l)-dimensional spheres centered at the origin, and our theorem will

imply that if / is constant on each of these spheres then / can be expressed as a

function of |x|.

Inasmuch as G is generated by a neighborhood of the identity, invariance would

be implied by local uniqueness of / Such a result is obtained in §3 for the case

where L is strictly convex in £ and DiL is bounded.

In case L is not strictly convex in | our method is to interpret the graph 7} of/in

R" X R as a solution to an invariant parametric variational problem and infer

invariance of Tf, hence of /, from an extension of the main result of [B]. For this

purpose we are led in §4 to characterize those integrands L which correspond to a

convex positive even parametric integrand ¥L on R" X R in the same way that the

nonparametric area integrand corresponds to the parametric area integrand. We

then use Hubert's invariant integral as generalized in [Fl, 5.4.18] to show in §5 that

Tf is tyL minimizing with respect to suitable subsets of D u B X R.

Nonparametric integrands which arise from parametric integrands have been

considered for n — 2 by Finn and by Jenkins and Serrín as well as other investi-

gators. (See [GT, p. 377].) The corresponding Euler-Lagrange equations are termed

"of mean curvature type". Our conditions on L are quite different from those of

the above authors, which depend on the assumption n = 2, but are related to those

discussed in Chapter 15 of [GT]. Insofar as we know, ours is the first attempt at

formulating conditions on L which imply the existence of a parametric integrand

giving rise to L.

In §6 we establish conditions on a G-invariant integrand L which will imply that

^L has an invariance property similar to the one introduced in [B], thereby

allowing us to apply an extension of the main result of [B]. These conditions are

satisfied by a large class of integrands; for example, if G is a group of isometries of

R" then L will be of this type if it is of the form £(|£|) where Ê is a strictly

increasing function. The conditions placed on D in order to obtain the invariance

theorem are satisfied if either B is a submanifold of class 2 or B is the union of a

countable family of submanifolds of class 1 (of various dimensions) and D is

convex or, more generally, star-shaped.

This work was partially supported by a research grant from the National Science

Foundation.

2. Preliminaries. The purpose of this section is to fix basic notation and

terminology and to establish the general hypotheses which will be used in the
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paper. Notation and terminology which are not explained below may be found in

[Fl] or [B, §2]; see especially the glossary of notation on pp. 669-671 of [Fl].

2.1. Throughout the paper L, D, B and/will be as in the first paragraph of §1. In

addition B is assumed to be rectifiable in dimension n — 1 [Fl, 3.2.14],

The projection of R'XR onto R" will be denoted by p as will also the

corresponding maps of the exterior powers /\k(R" x R) which are induced by/>.

When convenient we will identify R" with the subspace R" X {0} of R" X R and

similarly identify A*(R") with A*(R" X {0}) C Ak(R" x R) We identify R" X

R with R"+1 and denote the standard basis vectors of R"+1 by ex, . . . , e„+x.

Whenever/„: D -» R define F/e: D -> R" + 1 by the formula T/o(x) = (x,/0(x)).

We denote by A the n-dimensional nonparametric area integrand defined by the

formula

A(t) = (1 + |||2),/2    for£G(RT.

Suppose H: U —» R where U is an open subset of R" X Rm and the elements of

R" X Rm are denoted (x, y). If H is differentiable at (x0, y0) G U with (Fréchet)

differential DH(x0,y0) G (R" X Rm)* then one defines the partial differential

DxH(x0,y0) G (R")* by the formula DxH(x0,y0) = DHy¡¡(x0), where 77, = H(-,y).

DyH(x0,y0) is defined similarly. We also denote DX,H = 977/3x', etc. Higher order

partial differentials such as D2H are defined analogously.

By/being a weak solution in D to the Euler-Lagrange equation we mean that

f ((DtL)f, ¿<f>> + (D2L)A>d£n = 0   whenever <j> G <5°(Z>).
JD J

We remark that this equation also holds if <#> is merely assumed to be a Lipschitz

function with compact support in D. To verify this one first smooths <b (see for

example [Fl, 4.1.2]) and then applies Lebesgue's bounded convergence theorem.

2.2. For use throughout the paper we assume / to be embedded in a field of

extremals as follows:

There exist p0 > 0 and a continuous function F: D u 7i X ( — p0, p0) -» R with

the following five properties:

(i) F(x, 0) = fix) for x G D U B.

(ii) F\D X (-p0, p0) is locally Lipschitzian as is also DpF\D X ( — p0, p0).

(iii) Fx = F(x, ■ ) is strictly increasing whenever x G D u B.

(iv) For every p G ( — p0, p), Fp = F(-, p) is a weak solution in D to the

Euler-Lagrange equation.

Now define 4>: D u B X ( - p0, p0) -+ Rn+ ' so that $(x, p) = (x, F(x, p)). 3> is a

homeomorphism and by invariance of domain 4>0 = 3>|T> X ( —p0, p0) maps 7) X

( —p0, p0) onto an open subset ß of Rn+ '.

By Rademacher's theorem [Fl, 3.1.6] F is differentiable at almost all (x, p) G 7)

X ( - p0, p0). Denoting (x, z) = 4>(x, p) we define

^(x, z) - (- (/3{L)fp(x), L^p(x) - <(Z>tL),.(x), dFp(*)>) e R" + 1.

Inasmuch as 4>0 is locally Lipschitzian, vL(x, z) is defined for almost all (x, z) G fl

and »<¿ is £" + 1 measurable.
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Finally, we assume that

(v) $0" ' is locally Lipschitzian.

Denote by <50 the smaller of the positive numbers

inf sup    F (x) - fix), inf sup    fix) - F_ (x).
xfEDuB   0<p<p0 xeDufi   0<p<p„

In case L does not depend on z we can let F(x, p) = fix) + p, hence p0 = 00.

More generally, if f(D u B) lies in an open interval I such that there exists a

function of class 2 H: I X ( — p0, p0) —»R with the following properties then it is

not difficult to show that the function defined by the formula F(x, p) = H(fix), p)

will satisfy (i), (ii), (iii):

(a) H(z, 0) = z for z G 7.

(b) DzH(z, p) > 0 and DpH(z, p) > 0 for (z, p) G / X (-Po, p0).

(c) L(x, 77p(z), 7/;(z)ö = L(x, z, £) for x G 7) U 5, p G (-p0, p0), z G /, £ G
(Rn)*.

For example, if A: is an even positive integer and L(x, z, £) = £(x, z*|£|) then (c)

will be satisfied if H'p > 0 and Hp(z)kH'p(z) = zk; consequently, the function H

defined by the formula H(z, p) = (zk + x + p)'/(*+i) will satisfy (a), (b), (c) provided

0 f£ I and p0 is chosen so small that

(-Po/(*+1),Po/(*+1))n7 = 0.

We remark in closing that it is shown in [M, § 1.6] that F exists provided L, B

and / are sufficiently smooth, D^L is positive definite and the second variation of

}D Ljdf is positive. However, this last condition already implies the uniqueness

property we are seeking.

2.3. In §§4, 5 and 6 we will consider the following conditions; let L be of class 2:

For each compact subset K of R" + 1 there exist constants CK and cK > 0 such

that whenever (x, z, ¿) G K X (R")*

(A) L(x, z, £) = L(x, z, -£),

(B) L(x, z, 0 > cKA(t),

(C)\D2L(x,z,0\ <CKA(Ç)~X,

(D) \D2L(x, z, m, V)\ < CKA(è)~2\î\ h| fort, G (R")*,

(E) D2L(x, z, m, 0 < CKA(Ç)-3\t\2,

(F) L(x, z, 0) > /0°° tD2 L(x, z, i|)(£, Qdt.

Note that in case L = A these conditions are satisfied with CK = 1 (and equality

in (F) for I ¥> 0).

2.4. In §§5 and 6 we will assume that L satisfies conditions 2.3(A)-(E) together

with the following: There exists a constant C such that whenever (x, z, £) G fl X

(RT
(E)n /)2¿(x, z, o(i, 0 < cA(ty3\è\2,

(F)a L(x, z, 0) > C.

Note that in case fl is bounded or L does not depend on z (in which case

p0 = 00), (E)n is implied by (E). Further, since D is bounded and L(x, z, ■) takes

on its absolute minimum at £ = 0 because of (A), in either of these cases (F)n can
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be realized by replacing L by L + C, which obviously does not affect/. Finally, we

observe that (E)n and (F)n together imply (F).

2.5. In §§5 and 6 we will assume that for each i = 1,2,... there exist open sets

/>,., Ut such that

OO

Closure Di c D,    D u B c %    Û, c Dt+l,    D = |J   />,,
y*i

and an isotopic deformation of class 1 h¡: J¡ X U¡ -* U¡ with the following proper-

ties: J¡ is an open interval, 0 G /,, /il0 is the identity, and for each 0 < r G J¡,

hit = h¡(t, •) is a diffeomorphism of class 1 of t/, for which

Kt\D¡ = 1A    and   M^ U 7/) c 7).

3. Uniqueness.

3.1. Lemma. Suppose vL(x, z) is defined, (x, z) = <ï>(x, p). Then

(i) (vL(x, Fp(x% (-dFp(x), 1)> = L(x, Fp(x), dFp(x)).

(ii) (vL(x, z), (-& 1)> < L(x, z, £) /or £ G (Rn)*; i/ L(x, z, •) is strictly convex

then equality can hold only for | = dFp(x).

Furthermore, ifr¡ G 6D°(fl) f/ie/t

(iii)/ü<^,rfr/>£/£',+ 1 =0.

Proof, (i) is obvious and (ii) is equivalent to the convexity hypothesis on L.

For the proof of (iii) we denote fl0 = D X ( - p0, p0), define

v(x, p) = (- (D(L)F(x)DpF(x, p), LFp(x))

whenever F is differentiable at (x, p), and with the aid of [Fl, 3.2.5] compute

Z>4>(x, p)v(x, p) = J$(x, p)vL ° $(x, p),

f<^, rfr/>i/£"+1 = f <p¿ o d,, éq o ̂ J^dtn+X

= f   <y, rf(îi »$))¿E"+1.
•fa.

For each e > 0 we next smooth F (see for example [Fl, 4.1.2]) to obtain

approximating functions Fe G ^(R""1"1) and define v' in the same way as v with F

replaced by F'. Now as e -* 0+, F' ^ F uniformly on spt t] ° $ and DFe(x, p) -»

DF(x, p) for almost all (x, p) G fl0; moreover, |7XFe| is bounded on spt 17 ° í> by a

Lipschitz constant for F|spt 17 ° d>. Consequently, Lebesgue's bounded convergence

theorem implies that

lim   f (p\ d(V » $)>í/£"+1 = f (v, d(V o <H)V£"+1.

On the other hand, in view of the fact that spt tj ° d> c fl0 we can for each e > 0

use Fubini's theorem and integration by parts twice to obtain
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f (Ve, d(l) o <¡>)}d\Zn+x  =-( (div V')l) ° 4>d£n+X
Ja0 Ja»

= f ((D(L)F.(x),dxP'p(x)} + (DzL)K(x)xp;(x)df + x(x, p)

where xpp = (DpF')p(-q ° í>)p. Finally, we let e—»0+  and again use Lebesgue's

theorem and Fubini's theorem to infer that

'«0

-Po

f (v,d(Vo^)ydf+x
•»fi.

= f ° f ((D(L)F (x), dxpp(x)} + (DzL)Fp(x)xPp(x)dt"xdtxp

where xpp = (DpF)p(i\ ° 4>)p. But xpp is Lipschitzian by 2.2 hence the inner integral

vanishes for almost all p.

3.2. Lemma. Assume that \D(L(x, z, £)| < C for each (x, z, £) G fl X (Rn)* andf0:

D u fi^Rii continuous with f0\D locally Lipschitzian and

|/0(x)-/(x)|<50   forx£\D.

Then

[ Ljdt" < (  Lfdt" +4Csup|/-/0|SC-1(/i)

and fDLyd£" < oo.

Proof. To obtain the second assertion from the first extend / to a continuous

function on R", select /0 G S0(R") such that |/0(x) - /(x)| < 80 for x G D, and

observe that fDLf dt" < oo.

The remainder of the proof was suggested by a technique employed in [H].

For x G R" denote by d(x) the distance from x to R" ~ D. Ô has Lipschitz

constant 1 hence ô is differentiable at x with Jd(x) = \D8(x)\ < 1 for almost all x.

Whenever e > 0 application of the coarea formula [Fl, 3.2.11] yields

£"{x: 0 < ô(x) < e) > T DC-'{x: ô(x) = t) dt.

Inasmuch as B is rectifiable,

lim e-'£"{x: 0 < ô(x) < e} = W^B) < oo
e->0+

by [Fl, 3.2.29] hence with the aid of [Fl, 3.2.22] we can select a decreasing

sequence of positive numbers e, converging to 0 such that for each / = 1,2,...

W~x{x:ô(x) = e,} < 2CK"-X(B)

and Bi = {x: ô(x) = e¡) is (%"~x, n - 1) rectifiable. Denote A; = (x: d(x) > £,.};

we have B, D boundary A,. Also denote Q¡ = E"LA,. G ^„(R"). Then M(3G;,) < oo

by [Fl, 4.5.11 and 2.10.6] and so ||aß,.|| < 0C_1L//,. by [Fl, 4.5.6]. Furthermore,

3ß, G^.^^byfFL^.ló].
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Next consider continuous functions /,, f2: fl L)i->R such that fx\ D and/2|7>

are locally Lipschitzian, define the affine homotopy A: R X D -> D xRby

h(t, x) = (x, tf2(x) + (l- t)fi(x)),

fix /, and (keeping [Fl, 4.1.14] in mind) use [Fl, 4.1.9] to compute

r/2#e,. - r/i#0 = 3A*([0, 1 ] x g,.) + A#([0, 1 ] x aß,). (1)

Using [Fl, 4.1.28 and 4.1.30] we estimate

MA#([0, 1] X 3ß,) < sup\f2 -/,|DC-'(//,)
B.

< 2sup |/2- /IOC- X(B).
B¡

Since/2 — fx is uniformly continuous, for / sufficiently large

|/2(x) - /,(x)| < 2sup|/2 — /,|    whenever x G Bt
B

and we conclude that

lim sup MA#([0, 1] X 3ß,) < 4sup|/2 - /JOC-X(B). (2)
/->oo B

Choose smoothing functions <¡>e, e > 0, for R" + 1 and, fixing i, infer the existence

for each e > 0 of T,e G ^(fl) such that

E"+1Lt,e = A#([0, 1] X &).*'.

Assume that for a — 1, 2, T^(x) G fl for x G D. Referring to [Fl, 1.5.2 and 4.1.7]

and applying 3.1 (hi) we have

d(E"+xLV*)(DxPL) = -E-+ILdn'riVJ

= (-0"     / (."l> dr)eyd£" + x = 0,

hence

3A#([0, 1 ] X Q)(Vxvl) = 0   for e > 0, (3)

where v[ = 4>£ * vL. Applying this in (1) and again referring to [Fl, 4.1.9] we obtain

r/2#Ô,(D,"Z) - r/i#ô,(D,^) < CMA#([0, 1 ] X 3ß,). (4)

Next observe that v[(x, z) —> vL(x, z) as e->0+ for almost all (x, z) G fl. We

apply the coarea formula [Fl, 3.2.11] to the functions Ha: D X R—»R, a = 1, 2,

defined by the formula Ha(x, z) = fa(x) + z to obtain Zj £\ R,j = 1,2,..., such

that

Zj -+ 0   as/ -+ oo    and

"l(*f /«(*) + %) r* vL(x> Ux) + Zj)    as e -> 0+

for almost all x G D.

Recalling [Fl, 4.1.14 and 1.5.2] we denote T0 = r/o#g,., fix x G A, such that

Df0(x) exists, and compute
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\DTfo(x)\ = Afo(x),

Afo(x)f0(x,f0(x)) = 7)x,r/o(x) A • • • ADx.Tfo(x)

n

= ex A • • • Aen + 2 (-ifDJ^e, A
¿-i

• • • A«, A* • • /\en f\e„+x, (5)

Af<¡(x)Dnf0(x,f0(x)) = (-l)n(-df0(x), 1).

Observing that

<^,Dnf0>=(-ir<f0,D1^>

and referring to [Fl, 4.1.30 and 3.2,20] we compute

r/o#ô,(D."Z) = / <"Z(*./o(*)). (-dfo(x), l)>d&"x. (6)
A,

Applying this with/0 replaced by fa + Zj we first let e —> 0+ and then let/ -> oo

and conclude with the aid of Lebesgue's bounded convergence theorem and (4)

that

[W(x,f2(x)),(-df2(x),i)ydfx

- / <PL(xJt(x)), (-dfx(x), l)ydt"x < CMA#([0, 1] X aß,). (7)

Finally, 3.1 implies that for each measurable set A with compact closure in D

with equality if fa = /. Applying this in (7) with/2 = /and/, = /0 we let i —y oo and

refer to (2) to obtain our conclusion.

3.3. Corollary. In addition to the hypotheses of 3.2 assume L(x, z, ■) to be

strictly convex for each (x, z) G fl. Iff0\B = f\B and

J Ljder = / Ljder

then /„ = /

Proof. Referring to (2), (7) and (8) in the proof of 3.2 we infer that

r r
I   L^£"<limsup   /   (vL(x,f0(x)),(-df0(x),l)yd£nx.

Assume there exists a compact subset K of D such that ñ"(K) > 0 and for x G K

df0(x) * dFp(x)   where/0(x) = Fp(x).

Then by 3.1(h)

0 < Ô = J LjdZ» - f W(x,f0(x)), (-df0(x), l)>¿£"x
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hence for each A, D K (8) implies that

j <vL(x,f0(x)), (-df0(x), 1)>¿£"x < f Lfdt" - S

and we therefore conclude that for almost all x G D

df0(x) = dFp(x)   where/0(x) = Fp(x).

The latter equality is equivalent to Tj (x) = <ï>(x, p), in view of which the former

implies that DTf(x)(e¡) = 7)4>(x, p)(e¡) for i = 1, . . . , n. This implies that

D(q o $-> o Tfo)(x) = 0

since 4>_1 is locally Lipschitzian, where q is the projection of R"+1 = R" X R on R.

It follows that/0 = Fp with p constant on each component of D. However, F(x, •)

is strictly increasing for x £\ B hence we conclude that p = 0.

3.4. Theorem. Let G and U be as in §1, and assume L to be G-invariant. Assume

also that L(x, z, ■) is strictly convex for each (x, z) G fl and that \D^L(x, z,£)\ < C

for each (x, z, ¿) G fl X (R")*.

If f ° g\B = B whenever g G G then f ° g = f for every g G G.

Proof. G acts continuously by means of composition on the vector space of

continuous real valued functions on D u B with the uniform norm. The topology

of G is the compact-open topology hence there is a neighborhood W of the identity

such that whenever g G W

\f ° g(x) - fix)\ < 80   for x G D u B.

Thus / ° g = / for g G W by 3.3 and also for arbitrary g because W generates G.

4. Parametric integrands.

4.1. Lemma. Assume conditions (A), (D), (F) in 2.3 hold.

(i) If K is a compact subset ofRn+x then

\DtL(x, z, |)| < 2Q   for (x, z, |) G K X (Rn)*.

(ii) \(vL(x, z), (-Í, 1)>| < L(x, z, Í) for (x, z,Ç)£\UX (R")*.

Proof. Fix (x, z) G R" + 1 and denote / = L(x, z, ■). (A) implies that 7>/(0) = 0.

Thus

ö/(|)(t,) = f D2l(tm, V)dt    for t, G (R")*•A)

and so (D) implies that |7)/(£)| < CK tan_1|£| if (x, z) G K.

To verify (ii) first note that it will suffice to show that for £0 G (R")*, \t( (£)| <

/(£) where

Now Tj (£) < /(|) because / is convex. (A) implies that r_f (f) = t£ ( — £) hence if we

can show that -T_fo(£) < t£o(£) it will follow that -tío(-|) < /(-£). But Taylor's
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= 1(0)- f' tD2l(tQ(^,è0)dt >0.
Jn

theorem and (F) imply that

HT-ío(« + Tío«)]  =  '(«o) + <¿>/«o)>  "¿O)

=   /(Oí  _    f     rO2,
'0

4.2. Remark. 4.1(h) is essential for the use of the parametric version of Hubert's

invariant integral in the proof of 5.3. Simple examples show that 2.3(A) alone does

not imply (ii).

4.3. Lemma. Define A: R"+ ' X (R")* X (R ~ {0}) -*Rby

A(x, z, g, e) = L(x, z, £/e)|e|.

Assume conditions 2.3(A)-(F) to hold. Then A can be continuously extended to

Rn+X X (R")* X R; moreover, the following are true:

(i) A(x, z, -, ■) is convex for (x, z) G Rn + 1.

(ii) A|A" X (R")* X R is Lipschitzian for each compact subset K of R"+x.

(hi) D(A is continuous onRn + x X [(R")* X R ~ {(0, 0)}].

(iv) The restriction of DeA to each component ofR"+x X (Rn)* X (R ~ {0}) can be

continuously extended to the closure of its domain minus Rn+X X {(0,0)}. These

extensions coincide at (x, z, £, 0), £ =£ 0, if and only if equality holds in 2.3(F).

Proof. Fix K as in (ii) and (x, z) G K, and denote /= L(x, z, •), X =

A(x, z, -, •). For e^Owe have D(X(£, e) = Dl(£/e) sign e, and we use Taylor's

theorem to obtain

DeX(l e) -[/(«/e) - <DI(S/e), |/e>] sign e

1(0) - [ 1A tD2l(ti)d, 0 dt
o

sign e. (I)

Thus by 4.1 and 2.3(E)

\D(\(i, e)\ < 2CK,        \DtX(i, «)| < KO) + CK. (2)

These bounds imply that A satisfies a Lipschitz condition on each of the sets

K X (R")* X (0, oo)    and    K X (R")* X (-oo, 0)

hence the restriction of A to each of these sets can be extended to a Lipschitz

function on the closure of its domain. Further, these functions must coincide on

K X (R")* X {0} because A is an even function of e by 2.3(A). Thus A can be

extended as asserted; note that (ii) also holds.

Again fixing (x, z) G K one next verifies that for e ¥= 0 the matrix of second

partial derivatives of X at (£, e) is

D2X(£,e) = |e|
e2D2l       -\e\B'

-\e\B     D2l(iO
(3)

where B is the 1 X « matrix whose ith entry is D 2/(£, e¡) and the derivatives of / are

evaluated at £/e. In particular, it follows from 2.3(C) and (D) that for each

i'=l,...,« all partial derivatives of D^X at (£, e) are bounded by C^/l^.

Consequently, for each R > 0, T^A satisfies a Lipschitz condition on each of the
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sets

K[(Rn)* XRn {(£«): lü >R,e<0}],

K X[(R")* XRn {(fee): |¿| >/?,e>0}],

hence can be continuously extended to their closures. However, these extensions

coincide on K X (R")* X {0} because D(A is an even function of e. (iii) now

follows easily.

To obtain the first part of (iv) use 2.3(D) and (E) in (3) and reason as above; to

verify the second use 2.3(A) and (1) to compute

lim   DtX(l e) -  um   DcX(l e)
e—>0+ e—»0

= 2 lim  DeX& e) = 2Í/(0) - f °° tD2l(tÇ)(i, t)dt). (4)
£-»0+ \ •'O '

Turning to (i) we note that for each £, D2l(£) is positive semidefinite because / is

convex. Further, for e^O the last row of (3) is a linear combination of the

remaining rows hence [C, p. 188] implies that D2X(Í, e) is positive semidefinite.

With the help of Taylor's theorem we conclude that the restriction of X to each of

the sets (R")* X [0, oo), (Rn)* X (- oo, 0] is convex. Furthermore, if £, £0 G (R")*

with £ ¥= 0 then by 2.3(F), (iii) and (4)

lim D\(t, E)(!o, 1) =  lim   DXt, e) + <D(\& 0), |0>
e~*0 e->0

<£lùn/>A(£,E)(|0,l).

Now any line in (R")* X R which intersects both of the sets (Rn)* X (0, oo) and

(R")* X (-oo, 0) can be written in the form y(t) = (r£0 + |„ t), t G R. Thus if

¿,=7^0 then (X ° y)' is nondecreasing hence X ° y is convex. On the other hand, if

|, = 0 then X ° y(t) = l(£0)\t\ hence again X ° y is convex. This, together with the

above discussion, implies that X is convex.

4.4. Definition. Whenever a G A„(R" + 1) with/»(a) ^ 0 we define ¿(a) G (R")*

= A'(R") by the formula

¿(a) = (Dnp(a))_1D„_^(«Lí/z)

and ^L(x, z, a) by the formula

*L(x, z, a) = L(x, z, £(a))\p(a)\    for (x, z) G Rn + 1.

Inasmuch as

■*L(x, z, a) = A(x, z, Dn_xp(aLdz), 0„p(a)),

we see from 4.2 that ^L has a continuous extension to R" + 1 X /\n(R"+1) if L

satisfies the conditions in 2.3, hence is a parametric integrand of degree n [Fl,

5.1.1].
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4.5. Theorem. If L satisfies conditions 2.3(A)-(F) then tyL is a convex positive

even parametric integrand with the following properties :

(a) *L(x, z, a0+ ß) = *L(x, z, a0 - ß) for (x, z) G Rn+1 and ß G A„(R"+I)

with ß ■ a0 = 0, where a0 = ex /\ ■ ■ ■ /\en.

(b) The restriction oftyL toRn+x X A„(R" + 1) n {a: a ■ a0 ^ 0} is of class 2.

Furthermore, ty L is an integrand of class 1 if and only if equality holds in 2.3(F) for

every (x, z, £) G Rn+1 X (R")* with £¥=0.

Conversely, ifty is a convex positive even parametric integrand of degree n on R" + 1

which satisfies (a) and (b) then there exists a convex positive nonparametric integrand

L of class 2 which satisfies 2.3(A)-(F) and is such that ty = ty L. Further, ellipticity of

ty [Fl, 5.1.2] implies that L is strictly convex.

Proof. That tyL is even and satisfies (a) and (b) follows from its definition and

2.3(A). Since

|«|2 = \p(a)\2 + \P(aLdz)\2    for« G A„(R"+1),

it follows from 2.3(B) that tyL is positive. Further, since for each (x, z) G R" + 1,

tyL(x, z, •) is the composition of A(x, z, -, •) with a linear function, convexity of

tyL(x, z, •) is implied by 4.2(i). Finally, if equality holds in 2.3(F) for every £ ¥= 0

we infer from 4.2 that A is continuously differentiable on R"+1 X [(Rn)* XR~

{(0, 0)}] hence conclude that tyL is an integrand of class 1.

Let ty be a parametric integrand of degree n on R"+1. With ty one associates a

nonparametric integrand L^ on R" defined as follows: To each £ G (R")* corre-

spond

a(£) = «0 + (-O-'D'i Aen+X G An(R" + ')

and define

L„,(x, z, 0 = *(x, z, ot(8)    for (x, z) G R"+1.

Ly is clearly of class 2 if ty satisfies (b), and L^ satisfies 2.3(A) if ty satisfies (a).

If ty is positive then homogeneity of ^(x, z, •) implies the existence for each

compact K c R" + ' of cK > 0 such that

^(x, z, a) > cK\a\    for (x, z) G K;

since |a(£)| = A(£) this implies (B). Additionally, if ty satisfies (b) then homogeneity

implies that for (x, z) G R"+ ' and a G A„(W+ ') with a ■ a0 j* 0,

7>a2*(x, z, a)(a, ß) = 0   whenever ß G A„(R"+1)-

This implies the existence of CK such that for (x, z) G K and ß, y G /\„(Rn + l)

|7Ja2*(x,z,a)(^,Y)|<-^ |0|2      ("-D2
I«l2

1/2

IyI2-
(«• y)

l«l2

1/2

Inasmuch as

D2L^(x, z, 0(v, o = D2ty(x, z, a(£))(Da(i]), Da($))    for ¿i¡,{£ (R")*,

we conclude that L^ satisfies 2.3(C), (D), (E). Finally, the reverse of the above

inequality also holds (with CK replaced by a suitable constant C'K > 0). Thus
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convexity of ty implies convexity of L^; moreover, ellipticity of ty implies that

C'K > 0 for each K (see [Fl, 5.1.2 and 5.1.3]) hence L^ is strictly convex.

Next we suppose ty to be even and verify that tyL = ty; in view of their

continuity and homogeneity it will suffice to show that both functions take the

same value on a G An(R"+1) with a • a0 = D„/>(a) = 1. However, this follows

from the definition of tyL (a) and the observation that

a o ¿(«) = a[Dn_xp(aldz)]

= «o + (-l)" + 1(aLfiz) Aen+X = a

because D1 ° Dn_, is the identity map of /\n_x(Rn).

Suppose ty is convex, positive and even, and satisfies (a) and (b). Then L = L^is

convex, positive, of class 2 and satisfies 2.3(A)-(E). In order to verify (F) observe

that since ty = tyL,

ty(x, z, ea0 + ß) = A(x, z, D„_lP(ßLdz), e)

for e > 0 and ß ■ a0 = 0; fixing 0 ^ | G (R")* and setting ß = a(|) — a0 we have

D„_ xP(ßldz) = (-iy + lDn.,p(p^ A en+lldz) = |
xn+l

and so

DeA(x, z, i e) = fe*(x, z, ea0 + ß).

Now (a) and the assumption that ty is even imply that

-r-ty(x, z, -ea0 + ß) = —z-ty(x, z, ea0 + ß),
de de

hence convexity of ty implies that

r) 3
0 <   lim —ty(x, z, ea0 + ß) -  lim —ty(x, z, ea0 + ß)

e-»o+ de e-»0" oe

a

= 2 lim —ty(x, z, ea0 + ß).
c^.0* de

Referring to equation (4) in the proof of 4.2 we conclude that L satisfies (F). In

addition we see that if *|R" + 1 X (A„(R"+1) ~ {0}) is of class 1 then

lim   7>eA(x, z, |, e) = 0;
e—»0+

that is, equality holds in (F) for £ ^ 0.

5. Minimizing currents.

5.1. Lemma. Let O be an open subset of R"+1 and C be a closed subset of the

closure of O such that for each i = 1,2,...  there exist open sets 0¡, V¡ with

Closure O, C O C Closure O c V¡,
OO

o, c oi+x,     onc=U o,: n c,

and an isotopic deformation of class 1

t,,.: /,. X Vt -H» Vt



104 j. e. brothers

with the following properties: 7, is an open interval, 0 G 7„ r\i0 is the identity, and for

each 0 < t G I¡, tj, , is a diffeomorphism of class 1 of V¡for which

r]ll\Oi = 10    and   t,,.,(C) C O.

Suppose T £\ %(Rn+x) with \\ T\\(Rn + x ~ O) = 0 an¿ oïiwme T|öD*(G) G

^*°(0) ?0 be absolutely (respectively homologically) ty minimizing with respect to O

where ty is a convex nonnegative parametric integrand of degree k on Rn+1. If

spt T C. C then T is absolutely (homologically) ty minimizing with respect to C.

Proof. Assuming T\6¡)k(0) to be absolutely minimizing we first consider the

case where spt T c O. Denote

fi = inff (       ty: X G %k(C) n ^(Rn+1)
{■'T+X

and assume ¡i < fT ty. Choose X and i such that

(1 + I//) f       ty < f ty,       spt T c Or
•>T+X Jt

Referring to [Fl, 5.1.1 and 5.1.7] we see that

JVi.,*(T+X) JT+X

is a continuous function of ; G /,; choose t > 0 so that

f ty<(l + l/i)[      ty.
■n¡,,*(T+x) jt+x

But 7]il#(T + X) = T + T)il#X hence

f ty <  f ty < f ty.
JT JV,,,#(T+X) JT

Turning to the general case we note that T¡ = 710¡ is ty minimizing with respect

to C for each / = 1, 2, . . . , hence if X G %k(C) n ^(Rn+1) then

f  ty <  f       ty < f      ty + f       ty
'r, jt¡+x Jt+x       ■'t-tí

by [Fl, 5.1.1]. Thus since M(T — T¡)^>0 as i -> oo, the lower semicontinuity of ¡ty

[F2, 2.3] implies that fT ty < JT+X ty.

5.2. Lemma. Assume 2.4 to hold; define tyL as in 4.3. Let f0: D —* R be locally

Lipschitzian with |/0(x) - /(x)| < 50 for x G D. Denote T = Tfo#(En\0Ùn(D)) G

^(ß).
(i) Whenever vL(x, z) exists

(a, D,^(x, z)> < tyL(x, z, a)   fora G An(R"+1)-

(ii) IffQ = f then whenever dfix) exists

(f, Dxt>Ly(x,fix)) = *L(x,/(x), f(x,f(x))).
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(iii) Whenever dfQ(x) exists

tyL(x,f0(x), f(x,f0(x)))Afo(x) = Lu(x).

0V) Íd Lhd^n = fr ^l-

Proof. Suppose p(a) ¥= 0 and vL(x, z) exists. Denoting a0 = et /\ • ■ • /\en and

X = p*(dxx A - • • Adx") we write a = aa0 + ß A e„+i and, referring to [Fl,

1.5.2], compute

<o, D,^(x, z)> = (- l)\vL(x, z), aJ(X A «&)>

= <>L(x, z), a</z -((M eB+1)Lár)Jx>

= <,-L(x, z), ¿z - ¿(a)>D„/>(«). (1)

Thus by 4.1(h)

|<«, D,^(x, z)>| < L(x, z, £(a))|D„^(a)| = tyL(x, z, a);

(i) now follows from continuity of tyL.

Next assume df0(x) exists. From (5) in the proof of 3.2 it follows that

Afo(x)f(x,f0(x)) = «0 + (-l)n+](a0Lp*df0(x)) A en+l

hence

Dnp(f(x,f0(x))) = Afo(x)-1    and (2)

¿(f(x,/0(x))) = Afo(x)p[(f(x,fn(x))ldz)Ax\

= (e, A • • • A^Lri/oix))-^1 A • • • Adx"

= Dn_xDxdf0(x) = df0(x), (3)

which imply (iii).

To obtain (iv) use the area formula [F2, 3.2.3] to compute

[ *l= f *L(x,f0(x), f(x,fn(x)))Afo(x)dt"x
JT JD

and apply (iii).

Finally, to verify (ii) set a = T(x) in (1) and apply (3), 3.1(i), (2) and (iii).

5.3. Theorem. Assume 2.4 and 2.5 to hold; define tyL as in 4.3.

(i) There exists a unique T, G 9ln(R" + 1) such that

Tf\q)n(D X R) = r/#(E"|ßD"(7)))    and

\\Tf\\(Rn+x ~ D X R) = 0.

(ii) Fix Px G (0, p0) and denote

C, = {(x, F(x, p)): (x, p) G D u 7? X [-p„ Pl]}.

If C is a closed subset of C, vv/'/A spt 7} c C /Aen 7^ is absolutely tyL minimizing with

respect to C.

Proof. Denote T = r/#(E"|öD"(7))). Note that by 4.4 tyL is a convex positive

even integrand. With the aid of 5.2 and 3.2 we infer that frtyL<cc hence
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M(T) < oo. Using this one employs standard arguments to complete the proof of

(i).

In order to verify (ii) we first adapt the method used in the proof of [Fl, 5.4.18]

to show that T is absolutely tyL minimizing with respect to fl. Consider X G 5ln(fl)

such that dX = 0. Then there exists S £\ %+i(U) such that 35 = X. Indeed,

X = 3//#([0, ljXÏ) where H is the homotopy defined by the formula

H(t, x, z) = (x, tz + (I - t)f(x))    for (/, x, z) G R X fl

because H0#X is an «-dimensional cycle with compact support in Tf(D), which is

homeomorphic to D.

Choose smoothing functions <j>', e > 0, for R" + 1 (see, for example, [Fl, 4.1.2]).

Represent S = En + 1Li) where r¡: Rn+1 ^R is £"+1 integrable, and denote T/e =

Tj * <f>e. Choose A, and ß, i = 1,2, ... , as in the proof of 3.2, fix f, choose the

numbers z,, z2, . . . as in the proof of 3.2 with / = /„ denote veL = vL * <pe, and

apply equation (6) in the proof of 3.2 with/0 replaced by/ + Zj to obtain

iy^ß/OVi) = / <vL(x,fix) + z,), (-df(x), 1)>¿£"x.
■'A,

Applying Lebesgue's bounded convergence theorem, 3.1(i) and 5.2(iv) we conclude

that

hm  hm   hm T/+ # ß.(D,^) = { *L. (1)
i—>oo j—»oo e—»0 ' J t

On the other hand,  referring to (3) in the proof of 3.2 with S replacing

A#([0, 1] X ß) we see that

X(D,k¿)=0    fore>0. (2)

Fixing i,j, e we denote

y = r/#ß, + x,

Y, = T/r, ,.\it Y = Trj ~ T(o,zj)# Y — y/+zj#Qi + T(o,zj)#X,

y = Y * d>e,

and infer using 5.2(i) and [F2, 2.5] that

Yj(DxvD = YJ(HxvL) < f %

hence

lim sup Yj(J>xvl) < f  tyL.
e-»0+ JYj

Further, the first proposition of [Fl, 5.1.1] implies that

/"*!.- /"*&%>** - f *l(x, ' + Zj, Y(x, z))d\\Y\\(x, z)
JYj JY J

whence we conclude that

/• *l- (3)
Y        L W,-^00r    e^o+      *    ' "     Jy    L
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Finally we observe that since M(r — Tf#Q¡) —» 0 as i: -> oo,

hm j tyL=j       tyL;
i-»oo •/r,#0, + X JT+X

i/#

referring to (1), (2), (3) we conclude that fT tyL < fT+x tyL. Consequently, T is

absolutely tyL minimizing with respect to fl.

To complete the proof we apply 5.1 to 7^ with 0 = fl, Vt■ = U¡ X R,

Oi = D, X R n {(x, z): F_ (x) < z < F(x)},       tt = p0i/ (i + I),

r\¡(t, x, z) = (h¡(t, x), z)

(see 2.5). In order to verify that tj,,(C) c fl it will suffice to show that for

x G D u B

(x„ Fp¡(x)) G fl    and    (x„ F_p<(x)) G fl,       x, = A,,(x).

For this purpose we fix p2 G (p,, p0) and denote by 5 the smaller of the positive

numbers infDuB(Fp2 - Fp), inîDuB(F_pi - F_p). Since Fp> and F_p¡ are uni-

formly continuous, for each / there exists /, > 0 such that

\Fp¡(x) - Fp,(x,)| < Ô,        \F_pi(x) - F_pi(x,)| < S

whenever x G D u B and |/| < t¡; for such t there clearly exist p+, p~ G [ — p2, p2]

for which

Fp,(x) - FAX>)>       F-p>(x) = Fp-(xt)-

6. Invariance of solutions.

6.1. Let G and U be as in §1, and assume L to be G-invariant.

For each x G U denote

%* = (R")* n {£: Tx(G(x)) c ker |},

the annihilator of Tx(G(x)). Note that

%**) = Dg(Xyx*%*     for g G G.

We assume that whenever x lies on a principal orbit [B, 2.2] and z G R there exists a

linear map II(*xz): (R")* -► %* such that the restriction of Tlfx z) to Tx* is the

identity and

L(x, z, nfx, t)(ö) < ¿(x, z, |)     for | G (R")*,

with strict inequality for £ £ C\Q*. We also assume that n(*x z)(|) is continuous as a

function of (x, z, £) and is G-invariant in the sense that

Dg(x)* o n(*g(x)i z) = LT^ z) o Dg(x)*       for g G G.

A large class of G-invariant integrands satisfying the above conditions can be

obtained in the following way: Let u be a G-invariant Riemannian metric on U.

(Such a metric can be obtained by averaging the standard inner product of R" with

respect to the action of G.) Extending ¡i to covectors in the usual way so that the

dual of an orthonormal basis is orthonormal we denote the corresponding norms

on (R")* by ||||L(x). Suppose L can be expressed in the form L(x,z,£) =

£(x, z, llíll^)), where £: R" X R X R-»R is of class 1 and £(x, z, •) is strictly
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increasing for each (x, z) G U X R. Then the map Tl*x z) can be taken to be

orthogonal projection onto CVX* ; the invariance property is implied by those of ju(x)

and %*. Finally, we note that for such L, G-invariance reduces to

L(g(x), z, £)Jg(x) = L(x, z, |)    for (x, z, £) G U X R X (R")*.

The action of G on U induces an action of G on U X R in the obvious way:

g(x, z) = (g(x), z)    for g G G, (x, z) G U X R.

The orbit G(x, z) = G(x) X {z}, and principal orbits in  U X R correspond to

those in U. Each two principal orbits are diffeomorphic; denote their dimension by

m. Whenever x lies on a principal orbit we choose 0 ¥= a G /\m Tx(G(x)) and,

regarding a G Am(R"+1)> denote

% = {«A/3:/*G A„_m(Rn+1)}.

% is clearly independent of the choice of a and is a linear subspace of An(R" + 1)

of dimension n + 1 — m.

6.2. Lemma. Assume 2.4 to hold; define ty, as in 4.3.

(i) ^ M invariant under the action of G.

(ii) Let (x, z) G Í/ X R ft'e on a principal orbit. Then there exists a linear map

TL(xz): A„(R"+1) '-* % sucn tnat tne restriction ofTL(xz) to % is the identity and

tyL(x, z, Tl(x¡z)(a)) < tyL(x, z, a)   fora G A„(R"+1)

m>í7A strict inequality for a & Tx with p(a) =£ 0. Further, U^xz)(a) is continuous as a

function of (x, z, a) and is invariant in the sense that

IW) » A„ Dg(x, z) = A„ Dg(x, z) o n(x,z)   for g G G.

Proof. Consider g G G and a G A„(R"+1) with p(a) ¥= 0, and fix (x, z) G U.

Inasmuch as

(detr)v-1*(D„_l/3)=Dn_1An_1Y(/5)    for/? G AB_,(R") (0

and A„ Y(/Ka)) = (det y)z'(a) whenever y is an isomorphism of R", we have

£{/\nDg(x,z)(a)) = Dg(x)-x^(a).

Consequently, the g-invariance of L implies that

*/.(*(*. z)> A, Dg(x, z)(a)) = tyL(x, z, a),

and equality for arbitrary a follows from continuity of tyL. This proves (i).

Next assume x to lie on a principal orbit and denote

X = A„(Rn + 1) n {a: D„_xp(aldz) G %*};

"(x is clearly a linear subspace of /\„(Rn+i). Suppose £ G 'Y*. Since

<D1fcD,u> =(-i)"-1<o,o   former,

we infer that

R"n {d:(D'C)Ao = 0} =ker£,

which implies that

d'TO = A„-,(R") n {«„A ß':ß' e A,-^Jr)}
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where 0 =£ a0 G /\mTx(G(x)). Consequently, D„_, p(aldz) G %* only if

p(aldz) = «o A ß'    for some ß' G An-x-m(K"l

whence we infer that a = a0 A ß where ß G A„-m(R" + 1) arK* oo is regarded as a

member of Am(R"+1)- From this we conclude that ^ c X' equality follows

from the observation that dim Tx > n + 1 — m = dim %.

We now define the projection Il(x 7) by the formula

IW«) = (-îr + 'tD'lT^D^./KaLrfz)] A en + x+p(a)    for a G An(R"+1).

This function is clearly linear and continuous; the invariance property follows from

that of n(*xr) together with (1) and the dual identity

A„   , y(D'|) = (det y)D'y -■*(£)    for£ G (Rn)*.

Since

a = (-l)n+xp(aLdz) Aen+X + p(a),

the definition implies that II(xz)(a) = a in case a G CVX. To verify that n(xz)(a) G

CV, for each a observe that

D„_,/>(n(X)Z)(«)L¿z) = D„_1D1H<*,l)D1I_1^(aL<fe)

= IT<*x,z)Dn_1/,(«L£7z)G%*;

this also implies that if p(a) ^ 0 then

i ° n(x,z)(«) = n(*,z) o £(«).

Finally, suppose a G A„(R"+1) ~ % with/»(a) ^ 0. Then £(a) £ %*, hence

*L(x, z, n(X)Z)a) = L(x, z, £ ° n(xz)a)|/;(a)|

= L(x, z, IT« >r) o £(a))|/>(a)|

< L(x, z, £(a))|/>(a)| = *L(x, z, a).

6.3. Theorem. Assume the hypotheses of 2.4, 2.5 and 6.1 /o hold. Further, assume

that D U B is a Lipschitz neighborhood retract, that B is the union of a countable

family of submanifolds of class 1, and that there exists a continuous function f0:

flUÍ^R íwcA that

\fix) - f0(x)\ < S0/5   forxŒDu B    and

fo° g = fo   i°rg e Gr-

iff ° g\B = f\B whenever g G G then

f ° g = f   for every g G G.

Proof. Smooth/, to obtain/, G &°(U) such that

l/o(*) - /i(*)l < fio/5    for x G D u B,

and denote by/IG the average of/, defined by the formula

/igW = / f\ ° g(x) dug,
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where /x is the Haar measure on G with p(G) = 1. Then fXG G &°(U) and is

G-invariant, and

l/icto - f(x)\ < 2«o/5    forxGT).

Denote

K = {(x, z): x G D u 7i, \z - fXG(x)\ < 2S0/5}.

It is not difficult to verify that K satisfies the requirements placed on the set C in

5.3, hence we infer from 5.3 that T} is absolutely tyL minimizing with respect to K.

This implies that 7} is homologically tyL minimizing in K with respect to U X R in

the sense of [B, 2.4]. K clearly satisfies the requirements of [B, 2.1]; we would like

to apply [B, 4.4] (with M = U X R and L = 0) to conclude that 7} is G-invariant.

However, although tyL is convex, positive and even by 4.4 we are unable to verify

that tyL is G-invariant in the sense of [B, 2.5]. Indeed, for this to be true one would

need strict inequality in 6.2(h) for every a Q\ %, and there is no reason to believe

that this is true. On the other hand, in proving [B, 4.4] we used strict inequality

only in the proof of Lemma 3.6, and there only as it applies to a = T/(x, z).

However, because of 5.3(i) we see that p(TA[x, z)) ¥^ 0 for ||7^|| almost all (x, z),

hence conclude that [B, 3.6] and consequently [B, 4.4] can be applied to Tf once

hypotheses (ii) and (iii) of [B, 4.3] are verified, (ii) is implied by 5.3(i); we obtain the

current T' as follows:

Choose a G-invariant Riemannian metric ii on U (see 6.1) and denote by ô (x)

the distance from x G U to U — D. Using ó"M in place of 6 we proceed as in the

proof of 3.2 to obtain an increasing sequence of open sets A,, A2, . . . whose union

is D such that for each <', closure A, c D and

ß G I„(R")    where ß = E"LA,.

Each ß, is G-invariant because 8 ° g = 8 for g G G. We also define the homo-

topy A as in the proof of 3.2 with/2 = /and/, equal to the averagefG off.

Denoting S¡ = A#([0, 1] X ß) and using [Fl, 4.1.30] and Fubini's theorem we

obtain

M(S, - S,)<  Ci       Jh(t, x)dtnxdtxt    forj > i;
J0  •'Ay—A,-

however, Jh(t, x) = ¡fix) — fc(x)\ hence

M(Sj - 5,) < sup |/ - /G|£"(A,. ~ A,).
D

Therefore there exists S G % + x(U X R) such that M(S - S¡)->0 as i:-> oo.

Inasmuch as fG\B = f\B, 5.3(i) and equations (1) and (2) in the proof of 3.2 imply

that

T/c#ß,. -> Tu = Tf - dS G F„(U X R)    as / ^ oo.

Tf is invariant because each Tf #ß, is invariant, and with the exception of the

requirement that M( Tf)<oo the remaining conditions of [B, 4.3(iii)] follow for Tf

in a similar way. In case L(x, z, |) does not depend on z we can use 5.2, Jensen's

inequality [Fl, 2.4.19] and 3.2 to verify that



INVARIANT NONPARAMETRIC VARIATIONAL PROBLEMS 111

íT/a^=íDL^tn<íDL^n<CC'

which implies that M(7}) < oo; however, in general we are unable to verify this

and must proceed as follows:

Denote by A' the homotopy defined as in the proof of 3.2 with /, = fG and

fi = f\c- Clearly Tfw = r/ic#(E"L7)) E %(U X R); as before there exists S' G

%+i(U x R) such that

M(S' - A'#([0, 1 ] X ß)) -» 0   as / -» oo.

We infer with aid of (1) and (2) in the proof of 3.2 that

A'#([0, 1 ] X 3ß) -, 7}|c - 7}c - 35' G F„(U X R)   as i -> oo

hence M(Tf   - 7^ — 35') < oo; therefore,

T = 35' + TSa G ¥„(U X R)    and    M(T') < oo.

(T is in fact rectifiable by [Fl, 4.2.16].) Each A'#([0, 1] X ß) is clearly invariant

hence so are 5' and T. In case £ G %G(U X R) with spt £ c (U X R)0 (see [B, 2.1

and 2.2]) one verifies directly that 7} A Í = 0 and uses [B, 3.3] to infer that

35' A I = 0; thus T A Í = 0. Finally, 7" - 7} = 3(5' - 5) and we conclude that

J" satisfies the requirements of [B, 4.3(iii)].
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