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A REPRESENTATION-THEORETIC CRITERION FOR LOCAL

SOLVABILITY OF LEFT INVARIANT DIFFERENTIAL

OPERATORS ON NILPOTENT LIE GROUPS

BY

LAWRENCE CORWIN

Abstract. Let L be a left invariant differential operator on the nilpotent Lie group

N. It is shown that if tr(L) is invertible for all irreducible representations it in

general position (and if the inverses satisfy some mild technical conditions), then L

is locally solvable. This result genera'izes a theorem of L. Rothschild.

1. Let N be a connected, simply connected nilpotent Lie group, with Lie algebra

91, and let L be an element of the enveloping algebra t/(9t) of 91. We may regard

¿asa left invariant operator on N acting by convolution; that is, we consider L as

a distribution whose support is the identity, and let <p —> <£ * L be the operator

associated with L. Similarly, <¡> —> L * <j> is the right invariant operator associated

with L. (This is not the standard convention; see §4 for a discussion.) If m is any

unitary representation of N, then we may define ir(L); for L G 91, ir(L)v =

(d/dt)(tr(exp <L)t>)|,=0. In general, tr(L) is an unbounded operator. One advantage

of the definitions given above is that, on appropriate domains,

m(<p * L) = <ïï(<P)tt(L),        it(L * <b) = tt(L)tt(<P).

In [10], Rothschild gave a representation-theoretic condition that implied local

solvability for certain left invariant operators L on the (2n + l)-dimensional

Heisenberg group, Hn. L was required to be homogeneous with respect to certain

dilations on the group; her main theorem said that L was locally solvable if tt(L)

had a bounded right inverse (an operator B„ with ir(L)B„ = /) for all infinite-di-

mensional representations tr of Hn. (The theorem refers to left inverses, but the

proof makes it clear that right inverses are required.) Rockland had conjectured

such a result in [9].

In this note, we generalize this theorem to arbitrary (connected, simply con-

nected) nilpotent Lie groups. In this generality, we need to make two further

hypotheses, one about the smoothness of the inverse as the representations vary

and one giving bounds on the norms of the inverses. Both hypotheses are trivially

satisfied by the operators in [10].

In the next section, we give some results about Plancherel measure and about

central measures in i/(9l); they are used in the proof of the main theorem, given in

§3. §4 is devoted to assorted remarks.
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2. The results given here are not new; most are proved in [4], [6], or [7], though

perhaps not quite in the same form.

N acts on 91 by the adjoint map, and on 91* by the coadjoint map, Ad*. The

irreducible unitary representations of N are known, from [4], to be in 1-1 corre-

spondence with the Ad*-orbits on 91*. Parametrizing all these orbits can be a

complicated matter, but there is a relatively simple parametrization of "almost all"

the orbits, and this will suffice for our purposes.

Let Xx, . . ., Xn be a "strong Malcev basis" for 91 (i.e., a basis such that

9L = span^i, . . . , Xj) is an ideal of 91, Vy < n). We may assume that Lebesgue

measure has been so normalized that {2J_, OjX/. 0 < a, < 1, 1 < j < n} has

volume 1. (When we deal with subspaces spanned by subsets of the X,, we

normalize Lebesgue measure similarly.) Let /,,...,/„ be the dual basis on 91*.

Theorem 1. There are complementary subsets 5, T of (1, . . ., «}, plus a Zariski-

open dense subset T of V2 = span{^: j G T), such that if Vx = span{^: j G S],

then

(1) for almost every Ad*(N)-orbit 0 c 91*, 0 n V2 has only one element (if this

is I, we let 0 = 0,);

(2) {/: 30, 5mcA that {/} = 0, n V2) D T;

(3) for all l G CV, there is a polynomial P,: F, -» V2 with 0, = graph P¡;

(4) the map I —> P, is rational in I.

("Almost every orbit" means "enough orbits for the Plancherel measure;" in fact, the

set of orbits 0,, / G T, fills a nonempty Zariski-open subset of 91.)

Proof. This result is essentially that on p. 55 of [6].

From the theorem, 'V parametrizes a subset of N which carries Plancherel

measure. A representation in this subset will be said to be in general position; we

shall consider only such orbits unless we specify otherwise. (Note: the definition of

general position can depend on the basis Xx, . . . , Xn.) We generally regard

Plancherel measure as defined on T (or Vf). We specify Lebesgue measure on V to

be normalized such that {2"_, a}lf. 0 < aj < 1, 1 < j < n) has volume 1, and

normalize Lebesgue measure on Vv V2 similarly.

The element / defines an antisymmetric bilinear form B¡ on 91 by

/r

B,(X, Y) = l([X, Y]).

The radical of this form, iii,, is a subalgebra of 91, and

% = 7X0,)"1,

the annihilator of the tangent space to 0, at /. (We have regarded 0, as a

submanifold of 91* and identify the tangent and cotangent spaces to 91* at / with

91*, 91 respectively.) Let 91, = span{Xy.j G 5), 9^ = span{X/.j G T); let P be

the projection of 9L onto 91^ which annihilates 91,.

Lemma 1. For l G "{, P\^ is a 1-1 map of ÇÎI, onto 91^, and 91, is a cross-section

for % \ 91.
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Proof. Since dim % = codim 7X0,) = codim V¡ = dim <%2, the first claim fol-

lows once we show that ker P\^ is trivial. If X G % n ker P = % n (X2, then X

annihilates V2 and 7)(0,). Property (3) of Theorem 1 shows that V, and 7}(0,) are

transverse, and dimension counting shows that 91* = V2 + T,(6,). Thus X = 0.

The second half is essentially the dual of the first.

Lemma 2. The Ad*(N)-invariant measures on 0, are multiples of the measure

obtained by lifting Lebesgue measure on Vx to 0, = graph P.

Proof. This is proved on p. 54 of [6].

Let Pf(/) = Pfaffian of 5,1^. Pf(/) is a polynomial function of /; if / G % then,

since B¡ is nonsingular in 51,191,, Pf(/) ¥= 0 (see Lemma 1).

Now let <p G S (N), the space of Schwartz class functions on N. Then <J> ° exp G

S (91), and we may define <i>* on 91* by

<?V) - f v# • exp)(A-)exp(277<7'(x)) dx.

According to Theorem 7.3 of [4], the operator 7r,(<J>) (where w, is the irreducible

representation corresponding to 0,) is a trace class operator, and there is a

"canonical measure" ju., defined on 0, such that for all / G T and all <p G S (N),

Trw,(<¡>) = f <p-(/') d(i,(l').
J6,

The measure ju, is Ad(7V)-invariant. If we let v¡ be the pullback to 0, of the

normalized Lebesgue measure dxl on Vx, then ¡i, is a multiple of v, (see Lemma 2).

Theorem 2. u, = |Pf(/)|"V,.

Proof. The Lebesgue measures on 9L, and Vx have been chosen to be dual (for

the Fourier transform).

Suppose that the elements of 5 are (in ascending order)/,, . . . ,/„. Let

F(axXx + ■ ■ ■ +akXk) = exp akXjk ■ ■ ■ exp axXJ¡       (a„ . . . , ak G R),

so that F: 91, —» ./V; let Nt = F(9l,). TV, is not necessarily a group, but it is a

cross-section for N/<$l(l), and therefore the map G: 91,-» 91*, defined by

G(x) = Ad*F(x)(l), maps G diffeomorphically onto 0,; moreover, it takes dxX, the

Haar measure on 91,, to a multiple of ¡i,. We write ¡i, = C,6\(i/,Ar). In fact, C, is

defined by the property that C,dxX is self-dual when we identify 91, with its dual

via Bx. (These facts are proved in Lemma 5.1 of [1].)

If P' is the projection of 91* to Vx with kernel V2, then P' ° G: 91* -> Vx, and

d(P' o G) =   2   «à*4.
tes

where cJk = (Ad*Xj)(l)(Xk) = l([Xk, XJX). P' ° G takes dxX to a multiple of dxl,

Lebesgue measure on Vx, and the above calculation shows that it takes the unit

cube in 91, to a region with volume |Det(cfc)| = Pfil)2. That is,

(/>' o G\{d,x) = Pf(T2<V>   or   GJid,X) = Vf(iy2v,.
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But C, = |Pf(/)|; see the remark on p. 270 of [7]. Thus

^=C,G%(^) = |Pf(/)|-V„

as claimed.

Corollary. Let d2l be the choice of Lebesgue measure on V2 described earlier;

then the Plancherel measure on V-, is \Pf(l)\d!,l.

Proof. The Plancherel measure v is defined by

<p(e) = /   Tr(m(<p))dv(<p),        V<¡> G S(N).

But

<b(e) = <¡> o exp(0) = (    f   <>-(/, + l)dx(lx)d2(l)
■>v2 -V,

= \     \    <t>'(P,(h) + l)dx(lx)d2(l)
Jy    Jy V    '      '

ipfYni

= f  |Pf(/)|Tr 7T,(<Í>)¿2(/),

and the result follows.

Note. If <i> G S (N), then the Fourier inversion formula,

<í,(x)=/|Pf(/)|Tr(^(x-1K(«í,)K(/)

and the Plancherel formula,

||<>||Í = f   |Pf(/)| ||w,(*)||&(/)

(where ||ff,(<p)||2 is the Hilbert-Schmidt norm) both hold. Moreover, Hw,«»)!! de-

creases more rapidly at oo than any nonzero rational function in /.

We conclude this section with some remarks about the center of %(9L).

Theorem 4.8.12 of [2] states that 2(%(9l)) = S (91)" = Ad(AO-invariant ele-

ments of S (91); thus we may regard elements of Z(%(91)) as Ad*-invariant

polynomials on 91*. For / G 91*, let w, be the irreducible representation corre-

sponding to /. If A G 2(%(9L)), m,(A) = AQ.mil). (See [3], [4], or [5].)

Lemma 3. There is an element A G 2(%(9L)) such that m,(A) = Pf(/), VI G T.

Proof. Pf(/) is a homogeneous polynomial (of degree k, say) on 91*, invariant

under Ad* (see Partie 2, §2.5 of [6]). Thus A0 G Z(<3l(9l)): A0(l) = Pf(/). Let

A = (2mi)'kAn.
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3. We are now ready for the main result of this paper.

Theorem 3. Let L G %(9L) be such that

(a) for every l G T, m¡(L) has a bounded left inverse, B,;

(b) one can choose the B, so that they vary measurably with I;

(c) there are constants C and k such that for all IêT,

115,11 < C(|Pf(/)|* + |Pf(/)|-*).

Then L is locally solvable.

Proof. (This proof follows those in [9] and [10], with a few modifications.) Let A

be the operator given by Lemma 3. Then A k is locally solvable (see [8]), and it

therefore certainly suffices to show that the equation

u* L = Ak *<p (I)

has a solution in C°°(N) whenever <b G CC°°(N). We reason heuristically as follows:

if u G tx(N), then 7r,(«)w,(L) = m,(A k)m/(<p), and we should thus try to find u such

that

*■,(*) = ml(Ak)ml(<f>)B/ = Pf(/)V, (<*>)//,.

As in [10], we define u indirectly. For ty G CC°°(N), define

<*, «> = f   Pf(/^IPftOlTri//,*^)*^*)) d2l.

We now estimate |<^, u>|. Define A' = c(7 + A2k); then, from (c), \\B,\\ <

c|Pf(/)r*(l + Pf(/))2*, m,(A') = c(l + Pf(/))2*/. Hence, letting <b~(x) =<*>(.*-').

|<*,«>| < f \Pt(l)\*+*\TT(Br*l(4>r*l(*))\d2l

< [ \Pf(l)\k+ 'p,!! ^(m^Ym^ty^W
y2

T
2y

< f   |Pf(/)| ITr^')"/<»,(*)) I ¿2/
Jv2

= f   |Pf(/)| \Tt(«¿A' * <f)m,(ty))\d2l

<f^  \Pf(l)\ \\m,(A' * <t>~)\\2\\m,(ty)\\2d2l

< U   |Pf(/)| n»^' * <f)\\2d2l\ 'U   |Pf(/)| lk(*)||2¿2/)

= IM' * *"ll211*11?

where we have used the Cauchy-Schwarz inequality in two different ways (plus the

Plancherel formula). Thus u gives a continuous map on &(N), and so m G t2(N).

To prove that u is smooth, we need only show that all distribution derivatives of

u are in £2-that is, that ty ^>(D * xp, m) is bounded in the ||  ||2 norm for all
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D G %(9l). (Then we can apply Sobolev's lemma.) This is easy; we apply the

same argument as above, first noting that

= f (H(/))*|Pf(/)|Tr(*;*,(*- * D)m,(xp))d2l.
J'Y

Finally, we check that m is a weak solution of (1), or that <m, ty * L*> =

(A * * <p, xpy (L* = formal adjoint of L). Since m¡(xp * L*) = m,(xp)m,(L)*, we have

(u, xp*L*y= J  Pf(/)*|Pf(/)| TT(BrvlW„lMirl(L*))d2(l)

= f  |Pf(/)|Tr(w,(^)V,(<í,)*w,(^)w,(L*)//,*)í72(/)
/cv

= /^ |Pf(/)|Tr(^,(</>)*^*)V,(,íO)¿2(/)

= f  \T>f(l)\Tr(m,(Ak * <t>)*m,(xp))d2(l)
Jar

= (a  * <p, xpy

by the Plancherel theorem (note that m(A) is central and selfadjoint). This proves

the theorem.

4. The following remarks may be helpful.

1. Define L —> L' to be the antiautomorphism of ^(91) which is defined by

L' = -L, G 9t. Then <p^x¡> * L is the operator usually written as (/>-» L'<b (see,

e.g., §2 of [9]). Let iT*X*) = ¥<x'x) =<f(x); then

<b * V = T(L * T<j>),        L' * <b = T(T<b * L).

(These formulas are easy to check for L G 91 and, by induction, for monomials in

9f(9t).)
2. Let ml be the representation dual to m¡ (i.e., m¡ is the contragredient, defined on

the linear dual to %,; note that %, is its own conjugate linear dual). Then m¡ = m_¡

(as one can see by considering trace characters, for instance), so that m¡ G CV=>

m¡ G T; also,

<(<#>) = m,(T<l>)',

where 5' is the (linear) adjoint of 5. Thus

77,(L>,(</>) = w,(L' * </>) = m,(T(T<p * L))

= (m¡(T<¡>*L))' = (m¡(T<t,)m¡(L)y

= (m^YmKL))' = {m¡(L))'m,(<p),

or m,(L') = (m,'(L))', and hypothesis (1) of the theorem is equivalent to the right

invertibility of all m,(L'), l G T.

3. It is now easy to fit the main result of [10] into Theorem 3. That result says

that if N = Hn and L is homogeneous, then <J> —» <b * V is locally solvable if m,(L)
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is right invertible for all / G % or, equivalently, if m,(L') is left invertible. Here,

V2 at R and Pf(/) is a power of /; the homogeneity assumption means that

mxl(L) = aV,(L) (for some í > 0) when X > 0. Thus hypotheses (b) and (c) of

Theorem 3 automatically hold.

4. Of course, there is a similar result for <p —> L * <f>, involving right inverses.

5. One can weaken the hypotheses of Theorem 4 slightly. For instance, suppose

that m,(L)~x = B, exists for every / G °T except /0, and that the B, also satisfy

\\b,\\ < c|pf(/) - pf(/0)npf(/r* + pf(o*i.

Then L is locally solvable; one simply solves u * L = Ak * (A — Pf(l0))k * <p as in

the proof of Theorem 3. There are similar theorems in case \\B¡\\ is bounded by

some other rational function on V.

6. The hypothesis of measurability in Theorem 3 is probably unnecessary, in that

one can probably always pick left inverses to the m,(A) which do vary measurably. I

have not tried to prove this, however.

7. Some hypothesis of a growth condition on ||5,|| is necessary, as the following

example shows. Let 91 be the Lie algebra spanned by W, X, Y, and Z, with

[ W, X] = Y,[W, Y] = Z, and all other brackets 0 (unless given by antisymmetry).

Let N = exp 91. The representations of N in general position are those which are

nontrivial on Z (representations killing Z are effectively representations of the

Heisenberg group), and those in general position are given on 91 by

,„^       d ,„.      -   A        at2\
aa,A w) = -Jt.        aa,Ax) = 2mi\c + ~y 1,

<V( Y) = Imiat,       oa¡c(Z) = 2mial,

where a, c G R and a^O. Let ac = aac with a = 3/V; we shall examine

oc(W + iX). W + iX is not locally solvable, since [W, X] is independent of W

and X; see Theorem 6.1.1 of [111.  However.

ac(W + iX)<p --¿f- (2mc + 3t2)<j>.

For simplicity, let 2mc = a, and define

(AJ)(t) = - (* fis) exp(t3 -s3 + at-as) ds.
J t

Then <£ = AJ solves d/dt - (3t2 + àyp = /. Moreover, Aa is a Hubert-Schmidt

operator on &(R), because

/OO y, OO

I     exp -2(/3 - s3 + at - as) ds dt
-80    't

= [     f    e\p(-2u - 6ut2 - 6u2t - 2u)

/OO        ^.00
/     exp(-2a«)exp(-6Mi2 - 6u2t - 2u3) du dt

-oo •'O

= /    /     exP(-2«M --y)exp|(-6«)(f + ^)\ dtdu

= C(-kÍ/2°Xp(-2aU-2-u3)du<0°-
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However, from the equation,
Je oo

fit + u) exp(-3w/2 - 3u2t - M3)exp(-aM) du.
o

Let /be the characteristic function of [0, 2]. Then the integrand is nonnegative, and

is positive if 0 < / < 1 and 1 < u < 2. It is clear that on this interval, (AJ)(t) >

Ce~a for some C > 0; thus ||^a|| > C'e'a for some C > 0. Hence \\AJ is not

polynomially bounded as a —> -oo.

8. The proof of Theorem 3 actually shows that the operator L is semiglobally

solvable.

9.1 am indebted to Professor L. P. Rothschild for several valuable conversations.
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