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THE COHOMOLOGY ALGEBRAS OF FINITE DIMENSIONAL

HOPF ALGEBRAS

BY

CLARENCE WILKERSON1

Abstract. The cohomology algebra of a finite dimensional graded connected

cocommutative ^associative Hopf algebra over a field K is shown to be a finitely

generated A"-algebra. Counterexamples to the analogue of a result of Quillen (that

nonnilpotent cohomology classes should have nonzero restriction to some abelian

sub-Hopf algebra) are constructed, but an elementary proof of the validity of this

"detection principle" for the special case of finite sub-Hopf algebras of the mod 2

Steenrod algebra is given. As an application, an explicit formula for the Krull

dimension of the cohomology algebras of the finite skeletons of the mod 2 Steenrod

algebra is given.

If A is an augmented algebra over the field K, the cohomology algebra H*(A) is

defined as E\tA(K, K). If A is finite dimensional as a K-vector space, H*(A) may

still fail to be a finitely generated Ä-algebra, e.g., Löfwall [12]. However, if

A = K[G], the group algebra of a finite group, then H*{A) is finitely generated,

Evens [6] and Venkov [21]. Cocommutative Hopf algebras are one generalization of

group algebras, and connected graded cocommutative Hopf algebras are closely

analogous to finite /^-groups. It is the intent of this work to push this analogy as far

as possible. The first positive result is that finite generation holds in this context

also (all Hopf algebras mentioned in this work are biassociative and either

commutative or cocommutative).

Theorem A. If A* is a finite dimensional graded connected cocommutative K-Hopf

algebra, then H**(AJ = ExtA*(K, K) is a finitely generated K-algebra.

The strategy of the proof is essentially that developed by Adams [1] and

Liulevicius [10] for the computation of the cohomology of small sub-Hopf algebras

of the Steenrod algebras. One resolves A* as a sequence of iterated central

extensions of Hopf algebras. Each such extension has an associated spectral

sequence, and some hold on the differentials is provided by the transgression

theorem relating Steenrod operations on the "fiber" and "base". The only philo-

sophical difference between the present plan and that of [1], [10] is that precise

computational results are sacrificed for the sake of generality.
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Another analogue of a result of Evens [6] is a relative version of Theorem A that

includes as Corollary C the analogue of a result of Swan [20]:

Theorem B. If A# is a finite dimensional graded connected cocommutative K-Hopf

algebra and B± is a sub-Hopf algebra of A#, then H**(Bm) is a finitely generated

H**(At) module under the restriction map.

Corollary C. (i) If i: Bt-+ An is the inclusion of a sub-Hopf algebra with A m as

in Theorem B, then the restriction map Hs'(i): HS'(At) -> HS'(B„)/'nilpotents is

nonzero in infinitely many positive bidegrees.

(ii) If <I>: C„^>Am is onto, then 4> is an isomorphism if and only if H**(f&):

Hs'(At) —» HS'{C^)/ nilpotents is onto for all (s, t) with s + t sufficiently large.

Corollary D. The Krull dimension of H**(AJ is finite and greater than or equal

to the Krull dimension of H**(BJ,for B+ any sub-Hopf algebra of AM.

Finally, pursuing the analogy with ^-groups even further, we force it beyond its

capacity. Quillen [16] proved that for finite groups, an element of H*(G, ¥p) is

nilpotent if and only if its restriction to each /»-elementary subgroup of G is zero.

H. Miller speculated to the author that some approximation of this result might be

valid in the context of Hopf algebras. A connected cocommutative commutative

Hopf algebra Et over a perfect field of characteristic p is said to be elementary if

(F„ \ Ky = 0, and the Hopf algebra A ± is said to have the detection property if

each nonnilpotent cohomology class has a nonzero restriction to at least one

elementary sub-Hopf algebra of At. All the steps of the Quillen-Venkov proof [17]

of the detection property for finite groups are valid for the Hopf algebra setting,

except that the analogue of a key result of Serre [18] characterizing /^-elementary

groups cohomologically fails. Hence one obtains only a sufficient condition for the

detection property to hold.

Counterexample E. For each prime p, there exists a finite dimensional graded

connected cocommutative Hopf algebra Bm over ¥p and a nonnilpotent cohomol-

ogy class uB which restricts to zero on every abelian sub-Hopf algebra of B#. Up is

odd, B± may be taken to be a sub-Hopf algebra of the cyclic reduced powers in the

mod/7 Steenrod algebra.

In spite of these counterexamples to the universal validity of the detection

property, the sufficient condition derived from the Quillen-Venkov proof can be

directly verified in favorable cases:

Theorem F. Any finite sub-Hopf algebra of the mod 2 Steenrod algebra &(2) has

the detection property.

Theorem F was originally proved by W. H. Lin [9] from a somewhat different

point of view.

Corollary G. (i) If A* has the detection property, then the Krull dimension of

H**(At) is the maximal rank of the elementary sub-Hopf algebras of A+, where the

rank of F„ is dimK(Hl"(E±)).
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(ii) The Krull dimension of the cohomology algebra of any finite sub-Hopf algebra

of 6E(2) can be calculated explicitly. For example, if &n denotes the sub-Hopf algebra

of &(2) generated by Sq1, . . . , Sq2", the Krull dimension of its cohomology algebra is

e + r(2n + 5 — 3r)/2, where r is the greatest integer in (2n + 5)/6 and e = 0 unless

3 divides n, in which case it is 1.

Extensions of Quillen's results to H*(G, M) for M a G-module have been

recently obtained by J. Alperin and L. Evens. These new results appear to have

analogues for modules over Hopf algebras with the detection property, but a

discussion of this material is postponed to a sequel to the present work.

Even in cases where A m is not related to the mod p Steenrod algebras, there is a

topological motivation for the study of H**(Alf). If A' is a simply connected CW

complex such that the loop space UX has finite Z/pZ cohomology, then the

Eilenberg-Moore or Rothenberg-Steenrod spectral sequence converging to

H*(X, Z/pZ) has its F2-term isomorphic to ExtJ^* (Qjrz, Z)(Z//?Z, Z//?Z). By

Theorem A, this F2-term is a finitely generated algebra. However, it is not yet

known that the spectral sequence degenerates at any finite stage, so the question of

finite generation of H*(X, Z/pZ) is still an important open question.

Finally, H**(A*) is a function of only the algebra structure of Am. J. Moore has

asked if it is possible to abstract the properties of A „ forced by the Hopf algebra

structure, e.g., the existence of a central series, in a nontautological way, so that

Theorem A would be valid for this wider class of algebras. The present answer is

no; the entire line of proof rests on the existence of Steenrod operations and on the

transgression theorem. Corollary C(i) is essentially equivalent to Theorem A, and

no large class of examples for which Corollary C(i) is valid springs to mind.

I would like to thank the Mathematics Departments of Northwestern University,

the Institute Hautes Etudes Scientifique, University of Chicago, and University of

California at Irvine for their hospitality during this research. I would especially like

to thank S. Priddy, L. Evens, H. Miller, and W. Dwyer for many necessary tutorials

and discussions on this material.

1. The case char K = 0; The central series. The reader might well believe that the

restrictions placed on the algebra structure of A „ by the concommitant coalgebra

structure are so severe that Theorem A is trivially forced. This skepticism is

perhaps justified if char K = 0, but in general the hypothesis manifests itself in a

more subtle fashion.

Proposition 1.1. // A + is as in Theorem A and char K = 0, then A ± is isomorphic

to a tensor product of exterior algebras. Thus Theorem A is valid in this case.

Proof. Since char K = 0, the cocommutativity of A „ implies that A „ is primi-

tively generated, Milnor-Moore [15]. Since A± is finite dimensional, any nonzero

primitive is odd dimensional, and hence the commutator of any two primitives is

zero. Therefore A± is commutative, and the Borel Structure Theorem implies the

structure of A±. H**(At) is the polynomial algebra on n generators, for n the

AT-dimension of the indécomposables of Am. This is essentially the original argu-

ment of H. Hopf.
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In general, the only immediate consequence of the Hopf algebra hypothesis is

Proposition 1.2. If A* =£ K is as in Theorem A, there exists a nontrivial central

monogenic sub-Hopf algebra C„,.

Proof. The general case has the same proof as the special case given in

Liulevicius [10 p. 28]. Denote by A* the graded AMinear dual of AM. Let n be the

largest dimension in which the indecomposable quotient QA * is nonzero. Let /* be

the Hopf ideal of A* generated by the elements of degree strictly less than n.

Define B± as the linear dual of A*/1*. A diagram chase shows that B± is central in

A m. Take C± to be the monogenic Hopf algebra generated by a nonzero element of

Bm of lowest positive degree.

We will later need the result that in the category of connected cocommutative

Hopf algebras morphisms have unique kernels:

Proposition 1.3. If $: At —» Bt is a surjective morphism of graded connected

cocommutative K-Hopf algebras, there exists a unique sub-Hopf algebra N^ of A^

such that ker <I> = AtN+, the left ideal generated by the elements of positive dimen-

sion in N±. If C± is any sub-Hopf algebra of AM such that C„ n N^ = K, then <ï>

restricted to C, is one-to-one.

Proof. This is a restatement of Theorem 4.9 of Milnor-Moore [15]. A/„ is the

linear dual to A*/A*B*, and A± is isomorphic to N* ®K B+ as a left A/^-module.

If C„ n ker $ ¥= 0, any lowest dimensional nonzero element in the intersection is

primitive, and together with Nt would generate a strictly larger sub-Hopf algebra

contained in ker <E>. This contradicts A± « Nt <S>K Bt.

2. Steenrod operations and spectral sequences. Since A + is graded, the cohomol-

ogy algebra is bigraded by Hs''(Am) = Ext^'' (K, K), where s is the homological

degree and t is the internal grading. H**(A^) can in theory be computed from the

cobar construction on A*, Adams [1]: B*{A)f) is the free tensor algebra on the

A"-vector space of elements of positive degree of A*. The generators of B*(At) are

denoted by [z], for z in A*, and the differential on generators is specified as

d[z] = 2[z,'][z,"] where the reduced coproduct of z is 2z,' <8> z". d is extended to a

graded differential on B*(AM), where the grading is by total degree.

Steenrod operations appear in the guise of cup-/ products on the cohomology of

cocommutative Hopf algebras in Adams [1] and are defined explicitly in

Liulevicius [10] by applying Steenrod's construction to the cobar construction. The

spectral sequence associated to a central extension of cocommutative Hopf alge-

bras appears in Adams [1] and Liulevicius [10]. We need basically the existence and

formal properties of the Steenrod operations, the spectral sequence of a central

extension, and the transgression formula. All this material is in May [14] and we

follow that choice of notation and indexing. The only liberty taken is to extend the

operations to the case K of characteristic p, but not equal to the prime field; then

the operations are Z//?Z-linear, but not AMinear.
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Proposition 2.1. Let A± be a cocommutative Hopf algebra over K, char K > 2.

There exist operations ('S", ßty' for i > 0} with the following properties:

(i) 9* acting on HS'(AJ has bidegree ((2/ - t){p - 1), t(p - 1)) and /?<3" has

bidegree ((2/ - t)(p - 1) + 1, t(p - 1)).

(ii) <3*' = 0 if2i <tor2i>s + t;ß<!Pi=0 if2i < t or 2/ > s + t; §**„ = xp if

s + t = 2/.

(iii) The usual Carian formulae and Adern relations hold if 'S* is considered as an

independent homomorphism not necessarily the identity.

(iv) The operations are natural for maps of Hopf algebras.

For/7 = 2, the usual reindexing is required for the proper statement of Proposi-

tion 2.1. There is also a reindexing that is convenient for the operations on H*2*,

#' = ßp<+< on Hs-2', and similarly for y3#'. The Cartan formulae and Adem

relations are satisfied for the new operations also. One operation of particular

interest is the new ty0. On the cobar construction it is represented by the map

[z] —* [zp] on the generators.

Proposition 2.2. If A/„ is the monogenic Hopf algebra

(i) A[x2„_,] (A[x„_,] ifp = 2) or

(Ü) ?P[x2n\/{x")forp > 2, then H**{Mm) is

(a) Fp[z], where bidegree z is (1, 2n — 1), ((1, n)forp = 2),

(b) A[z] <8> Fp[u], where bidegree z = (1, 2ri) and bidegree u = (2, 2np)

and the nonzero Steenrod operations which are not compositions are

(a) 9"z = z", (Sq"z = z2),
X   nspn+l      ' V nom(b) (3'p" + 1u = u", ß9"z = ru, for r =£ 0.

Proof. The structure of the cohomology algebras is standard, e.g., Liulevicius

[10], while the operations are forced from the axioms, except for ß9". By analogy

to the topological case in H*(BZ/pZ, Z/pZ), one might think that there should be

a Bockstein connecting z to u, and ßtf" is the only possibility on dimensional

grounds. Less wistfully, the iteratedp-fold Massey product <(z, z, . . ., z) is shown

in May ([14], following Kraines [8]) to contain - ß^nz for any z in H1'2". A short

calculation with the cobar construction shows that in this particular case, the

obvious representative of <z, z, . . . , z) is the definition of u given in Liulevicius

[10], up to sign. The indeterminancy is zero, so the proposition is established.

Proposition 2.3 [1], [10], [13]. Let K^>Ct—>At—>B,,^>Kbea central exten-

sion of graded connected cocommutative Hopf algebras. There is a first quadrant

cohomology spectral sequence of algebras with E2-term H**(Bt) <8> //**(C„) and

abutting to H**(A#). The Steenrod operations defined via the Cartan formula on E2

commute with the differentials in the sense that dr0x = 9djX, for 9 a Steenrod

operation of homological degree r — j, and x in Ej. That is, Bx and BdjX are

dr_¡-cycles for i > 0, and the equation holds in Er. In particular, if x transgresses toy,

then Ox transgresses to By.

Actually, the spectral sequence is trigraded, but since the differentials preserve

the internal degree, we suppress this degree whenever possible. We have also a
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spectral sequence in the case that C+ is not central in A%, E\t%*(K, Ext£*(A~, AT))

abutting to H**{A t), as in Cartan-Eilenberg [5]. This is used in later sections, but is

not required for the proof of finite generation.

Example 2.4. The simplest nontrivial example of the use of Propositions 2.1, 2.2

and 2.3 is provided by the sub-Hopf algebra of the mod 2 Steenrod algebra

generated by Sq1 and Sq2. This algebra, denoted as ££,, has relations (Sq1)2 = 0,

(Sq2)2 = Sq'Sq2Sq', and the commutator of Sq1 and Sq2, Sq01, is nonzero. Sq01 is

central in &x. The F2-term of the spectral sequence is F2[A0, hx, hox], and d2hox =

h0hx, where the tridegrees are (1, 0, 1), (1, 0, 2), and (0, 1, 3) respectively. Sq°h0 =

hx, Sq°/j, = 0. The behavior of the rest of the spectral sequence is now determined

by the transgression theorem: F3 = F2[/i0, A,, (Aj^I/ÍAq/ij). d3 is determined on h2x

as Sq'/ipjA, = hx, and E4 is the module over F2[/i0, hx, (/ig,)]/'{h,yhx, h\) generated by

1 and h0h2x. By the transgression theorem, h^x survives to E5, where d5h^x =

Sq2Sq'A0A1 = 0 in E5. The extra indecomposable hch^ is a rfr-cycle for all r, so the

spectral sequence collapses after stage four. In general, the spectral sequences

considered need not collapse at the same point that all differentials on the "fiber"

vanish. The possibility of the creation at each stage of the spectral sequence of new

indécomposables on which higher differentials are nontrivial lends content to

Theorem A.

This example is well known and can be computed directly via resolutions, e.g.,

Liulevicius [11]. The above use of the transgression theorem for the computation

was shown to me by H. Miller.

3. The proof of Theorem A. For connected graded algebras over a field K, finite

generation as a A-algebra is equivalent to the Noetherian condition. The following

lemma, used basically in all Noetherian arguments involving spectral sequences,

was pointed out to me by L. Evens. It is the key to dealing with the creation of new

indécomposables in the spectral sequence in an implicit way.

Lemma 3.1. If the first quadrant spectral sequence {Er, dr} is a R+ module for some

Noetherian ring /?„, and E2 is a finitely generated R+ module, then Ex is a finitely

generated Rt module.

Proof. We have the sequence of Ä, submodules of E2, 0 c B2 c • • • C B„

C ■ ■ ■ C Bx c Zx c • • • c Z2, where Zr is the set of elements that survive to

stage r, and Br consists of those elements that bound by stage r. Since F2 is a

Noetherian Rt module, ZM is also a Noetherian Rt module, and therefore

Ex = ZM/ Bx is Noetherian and hence finitely generated.

Proposition 3.2. If M^ is a monogenic Hopf algebra of height at most p, where p

is char K, then for any central extension K —» Mn -^>A+^>Bt^>Kof cocommuta-

tive connected Hopf algebras with H**(BJ finitely generated as a K-algebra,

H**(A¿) is finitely generated as a K-algebra.

Proof. Mt is either A[jc2„_,] or K[x2n]/(xp) for p odd, or A[xn_,] for/7 = 2.

Thus the structure of H**(M#) is described by Proposition 2.2. The Steenrod

operations given there imply that the^'th powers of the polynomial generator of



FINITE DIMENSIONAL HOPF ALGEBRAS 143

H**(Mt) transgress to £r*°, the base. But H**(BJ = Ff'° is Noetherian by

assumption. If one defines the increasing sequence of ideals {/„} so that /„ is the

kernel of FJ0-» F*°, then IN = IN+X = . . . for all N > 0. The/7*th powers of the

polynomial generator of Fr**(A/„) therefore transgress to zero, for s > S » 0.

Define R+ to be the subring of £2 generated by Ef° and the/75th power of the

polynomial generator of H**(M¿). Then Ä, consists of infinite cycles, and F2 is a

finitely generated Rt module. By Lemma 3.1, EM is finitely generated as a Rt

module and hence as a AT-algebra. But H**(At) is complete with respect to the

exhaustive filtration giving rise to the spectral sequence, so the fact that its

associated graded algebra is Noetherian implies that H**(Am) is Noetherian, and

hence a finitely generated A"-algebra, Bourbaki [4, 3.2.9, Corollary 2 to Proposition

12].

Proof of Theorem A. We induce on dimK(A ,). Theorem A is trivially true for

dimK(A^) less than or equal top. If dimK(At) is greater than/7, An must contain a

nontrivial central monogenic sub-Hopf algebra of height at most p, so that

dirrLxfA^/ M¿) is less than dim.K{A¿). Applying the inductive hypothesis, Proposi-

tion 3.2 applies, so H**(At) is finitely generated. The proof of Theorem A given

above is analogous to the /7-group case given by Golod [7], but was derived from

the proof in Evens [6]. The Steenrod operations and the transgression theorem are

used as a poor man's substitute for a transfer argument of Evens.

Proof of Theorem B. We induce over dimK(A t). If dim^A t) < char K, the

result is clear. Now assume that the result is valid for all pairs (A'n, B'm) for which

dimK(A'J < dimK(A¿). By Proposition 1.1, there is a nontrivial central monogenic

sub-Hopf algebra C„ of A9 with height at most p. Hence we have a diagram of

central extensions.

K  -*   B, n C,  -   B,   ->  BJ/{B. n C.)   -   K (1)-

4        I'    \* i
K     _      c,      - A.   - A. lfCn        -*   K (2)

If Bt n C% = K, then by Proposition 1.3, 4» is one-to-one, and the result follows

from the inductive hypothesis, since image $* c image /*. If fi, n Ct = Ct, we

apply the main argument of the proof of Theorem A again. The F2-term of the

spectral sequence for extension (2) is a finitely generated R# module, for Rt the

subalgebra of infinite cycles generated by H**(A1t//Cm) and a sufficiently large

psth power of the polynomial generator of H**(CM). Applying the inductive

hypothesis, the F2-term of the spectral sequence of extension (1) is also a finitely

generated Ä#-module. By Lemma 3.1, the F2-term of spectral sequence (1) is a

finitely generated Rt module, and hence finitely generated over the associated

graded algebra to H**(At). By Bourbaki [4, 3.2.9, Proposition 12], H**(BJ is a

finitely generated H**(Am) module.

Before the proofs of Corollaries C and D we need to recall the definition of Krull

dimension and some basic facts about Krull dimension, e.g., Chapter 5 of

Matsumura [13]. If /?„, is a graded commutative ring, consider chains of homoge-

neous prime ideals % c $-x C ■ ■ ■ C $•„, where the inclusions are proper. If Rm is



144 CLARENCE WILKERSON

finitely generated over a field k, there exists a finite maximal length n, called the

Krull dimension or simply the dimension of /?„. If Rm = k[Xx, . . . , Xn], a graded

polynomial algebra, then dimension Rt = n. If VÜ denotes the ideal of nilpotent

elements, then Rm/VÖ has the same dimension as R,, for Rt f.g. over k. If

Rm —» R'+ is monic so that R'¡ is a f.g. Ä, module, dim R't = dim Rm [13, Theorem

20, p. 81]. If (p: /?„ —» R'^ is surjective, then dim R'm < dim Rm.

Thus the Krull dimension is a rough measure of the size of R+. In fact, if

dim Rm = n, the E. Noether Normalization Theorem implies that there exists a

polynomial subalgebra on n generators such that Ä„ is finitely generated as a

module over the subpolynomial algebra [13, p. 91, Corollary 13]. If i?, =

k[Xx, . . . , Xn]/%, then the radical of 3Í, Vä = %x n • • • n $r, where % are

prime homogeneous ideals. Then k[Xx, . . . , Xn]/fj is an integral domain, and

dim Rt = maxyfir • deg^ k[Xx, . . . , Xn]/fj). That is, geometrically the variety

corresponding to A, is a union of irreducible varieties of dimension < dim /?„,.

Finally one can consider the Poincaré series of R^, Pr(Rm) = 2"_0 dim^(Än)F".

If /?„ is a f.g. algebra, dim Ä, = order of pole of PjiR^,) at F = 1, Quillen [16].

This is not a particularly useful definition for the purposes of this paper but it does

have the advantage of brevity.

Proof of Corollary C. (i) Suppose that Hs'(i) is zero for all (s, t) with s + t

sufficiently large. Then the Krull dimension of image /* is zero, since image

/*/nilpotents is A. But if Bt is not A", then Bt contains a central monogenic

sub-Hopf algebra Cm. Clearly //**(C„) is not finitely generated as a module over

image /* = K, contradicting Theorem B, so it must not be the case that Hs'(i) is

zero mod nilpotents for all (s, t) with s + t sufficiently large. Part (ii) is proved in

the next section as Proposition 4.2.

Proof of Corollary D. Since H**(B+) is a finitely generated H**(AJ module,

H**(BJ is integral over H**(AJ, and dim H**(B„) = dim image /* <

dim H**(AJ.

4. Homologuai characterization of isomorphisms and elementary Hopf algebras.

A„ 5„ . . . continue to denote finite dimensional graded connected cocommuta-

tive Hopf algebras over K. We first have an easy analogue of a theorem of Stallings

[19].

Proposition 4.1. //<ï>: A+ -» B, such that //'*($) is an isomorphism and H2* is

a monomorphism, then $ is an isomorphism.

Proof. The proposition is valid for graded connected algebras, but the proof

here is valid only for the Hopf algebra case. Denote by A7, the Hopf algebra kernel

of $. Since //'■*($) is monic, 4> is onto, and we have an extension: A"-» N, -+ An

-> 5, -► A. Grading the spectral sequence [5] {H**(Bt; H**(Nt)) => H**(A„)} by

homological degree, we have d2: H°*(B,, Hl*(Nj)^> H2'*(B0) must be identi-

cally zero, since H2*($) is monic. Thus H°*(B,; H^NJ) survives to £"«,. But

Hl*(AJ = HX-*(B) 0 H°*(Bt; HU*(NJ), so 7/'-*($) onto implies that

H°*(Bt; Hh*(NJ) = 0. Since 5, is nilpotent, #'•*(#,) = 0, and Nm = K.
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Proposition 4.2. If $: At^>Bt is onto, then $ is an isomorphism if and only if

Hs'(<&) is onto Hs''(A m)/nilpotents for all (s, t) with s + t sufficiently large.

Proof. => Trivial.

<= Let Nm be the Hopf algebra kernel of <ï>. Then /*: Hs-'(At) -»

iTJ''(A.(I)/nilpotents is zero for all (s, t) with s + / » 0. By Corollary C(i), we must

have JV„ = K, since otherwise /* would be nontrivial. Hence 4> is an isomorphism.

Definition 4.3. The Hopf algebra F, is elementary <=> F, is commutative and

(Ety = 0. The coalgebra structure is unspecified but cocommutative.

At this point, we restrict to considering K a perfect field of characteristic p, since

we will use the Borel Structure Theorem.

Proposition 4.4. The coalgebra structure of an elementary Hopf algebra F„ over a

perfect field of characteristic p is uniquely determined by //''*(F,) as a 5* module.

Any 9° module structure in which "350 acts nilpotently, and with the proper degree, is

realizable.

Proof. Since F, is finitely generated, ^P° is a nilpotent transformation on

Hl'cven(EJ. Hleven(EJ is thus the direct sum of cyclic #° modules of the form

{«*,. 3°*av • ■ • - (%'_1*a>> where i^y^n, = 0}, for some {x^} E Hl^(EJ.

Each such cyclic module corresponds to a tensor product factor in (is,)* of the

form K[x2„]/(xP?), so the coalgebra structure can be read off from the "dP0 module

structure, and conversely.

Proposition 4.5. For any Am, there exists a 4>: A^—*E^ elementary, such that

H ''*(<&) is an isomorphism.

Proof. If there is such a map, it factors through the abelianization of A ,, and it

must be At(ab)/pth powers. An explicit construction is also possible: Choose a

graded vector space basis {/,, ...,/„} of Alg(/1,, M,), where A/„ = AK[x2n_x] or

K[x2n]/{xp).

Define

tff-l 9f,
<t>:A. -» Am ® • • • ®/J, -* ® M,(X).

Then //'•*(<!>) is an isomorphism by construction. Put the coalgebra structure on

® M*(/-) induced by the #°-module structure on Hl-evm(Am).

Proposition 4.6. The following conditions are equivalent:

(a) A , is elementary.

(b) H**(A,)/nilpotents is generated by Hhodd and ß^H1-"*" for all sufficiently

large dimensions.

(c) The degree 2 monomials in H1-0*1, Hieven and ß^H1'^" are linearly

independent.

Proof, a => b and c. c => a by Proposition 4.1 applied to 3»: A „ -» F,, b => a by

Proposition 4.2 applied to $: Am —> F„.

Proposition 4.5 is precisely the point at which the analogy with finite /7-groups

begins to falter. Serre [18] gives a third equivalent condition, deduced from (c) via
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Steenrod operations, "d": The/7-group G is elementary if and only if uG = TLv=)i0 ßv

in H1(G) is not nilpotent. Condition "d" is not valid for the cohomology of Hopf

algebras.

5. Detection of cohomology classes. The aim of this section is to trace through the

proof of Quillen's Theorem given in Quillen-Venkov [17], translating into the Hopf

algebra setting. The entire translation is successful, except for the reference to Serre

[18] mentioned at the end of §4. The outcome then is a sufficient condition for a

Hopf algebra to have the detection property with respect to its elementary sub-

Hopf algebras. In the important special case of sub-Hopf algebras of &(2), this

sufficient condition is easily verified, (see §6), and in general the condition points

out what properties a counterexample must have. A" is to be a finite field of char p.

Proposition 5.1. (1) // v G ker #° n i/1,2"L4*) there exists a Hopf algebra

morphism 4>K: At —* K[x2n\/(x%n) such that 3>*(z) = v, for z the generator of

H^iKW/ix")).
(2) Ifv G Hx-2"-\At), there exists ®v: A% -^ AK[x2n_x] such that $*(z) = v,for

z the generator of H U2"- \AK[x2n_,]).

In either ->ve. define B+(v) as the Hopf algebra kernel of$v, and iv as the inclusion

B,(v)-*A,.

Proof. (1) Hl*(AJ is naturally isomorphic to the primitives of A*, so regard v

as a primitive of A*, v generates a sub-Hopf algebra V^ of A*, and since

<3>°t) = vp = 0, Vt is a truncated at height p polynomial algebra. Hence its dual is

also a truncated at heightp polynomial algebra. í>„ is then dual to Vm —> A*. Case

(2) is similar.

Proposition 5.2. If v G ker #° n Hl'2n(A¿ or (Hi2n~\A^) respectively), and

u G H**(AJ such that i*u = 0, then uN G H**(A,)(ßP°v) or H**(AJ(v) respec-

tively, for some N > 0.

Proof. This is the exact analogue of the first lemma of Quillen-Venkov [17].

Consider the spectral sequence associated to

K^B,(v)XA,*lK[x2n]/(x»)^K.

Each Er is a module over H**(K[x2n]/(xp)) = AK[z] ® A"[w], where w = ß9°z.

Multiplication by w on F2, Ext^''(AT, Ext^t'2(A, A")) is a surjection for sx > 0 and

an injection for sx > 1, by the periodicity of the cohomology of M, = K[x]/(xp).

By induction one proves that

w: E*"*2'1 —» £s¡+2-s2',+2"p

is surjective for sx > 0 and injective for 5, > r — 1. Hence E^2'1

surjective for 5, > 0. Now

£S,+2^2,l + 2np js
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where FtH**(At) is the filtration induced on H**(Am) from the filtration on

B*{A^). By decreasing induction over sx,

w. p■ HS'+S2'(A J = Fs +2Hs'+S2+2',+2np(A\

If i*u = 0, u G FXHS'(G), so w" G wH**(At) where A/ > 2 and /A/ > 2np. The

case for p equals 2 or the quotient an exterior algebra is virtually the same.

Alternately, the long exact sequence of Theorem 3.2 of [3] applies.

Definition 5.3. (i) A+ has the detection property if for each u G H**(AJ such

that u restricts to zero on every elementary sub-Hopf algebra u is nilpotent.

(ii) The fundamental class of At is Y[vUß^°u, where the product is taken over

all nonzero v in i/1,odd(,4 J and all nonzero u in ker #° n H*• cveti(A „). Denote

this class by UA.

Lemma 5.4. If i: B^^>At is the inclusion of a proper sub-Hopf algebra, then

t  uA —   .

Proof. Since £„ ¥=A+, ker //'*(/) ¥= 0. Let x G ker /*. If x has odd internal

degree, it appears in the product uA, and i*uA is clearly zero. If x has even internal

degree, there exists r > 0 such that ('3>0)'x ¥= 0 is in ker /* n ker ^°. Then

ß5p°(5p°yx is in Ker /*; and is a term in the product, so i*uA = 0.

Proposition 5.5. If every sub-Hopf algebra of At of the form Bt(v),for v ¥= 0 in

ker X1 n Hl,*(A^), has the detection property, then A^ has the detection property if

and only if either A m is elementary or uA is nilpotent.

Proof. By Lemma 5.4, uA restricts to zero on any proper sub-Hopf algebra, so if

A , has the detection property and is not elementary, uA is nilpotent. Conversely, if

u restricts to zero on each elementary sub-Hopf algebra of A ,, this is also true for

its restrictions i*u, v G Hi*(A^) n ker <$°. Therefore, since there are a finite

number of such v, and i* is nilpotent for each v, we can assume i*uN = 0 for all

such v, for A » 0. By Proposition 5.2, uM G H**(A#)uA for M » 0. But since uA

is nilpotent, u is nilpotent.

Corollary 5.6. If every sub-Hopf algebra Bm of A^ is either elementary or has uB

nilpotent, then A , has the detection property.

Corollary 5.7. If A^ has the detection property, then Krull dimension H**(At) is

the maximum of the ranks of the elementary sub-Hopf algebras of Am.

Proof. Let {Et(j)} be the maximal elementary sub-Hopf algebras of An. If An

has the detection property, then the diagonal map H**(A,) -* 0y H**(Et(j)) is a

monomorphism modulo nilpotents. Hence the Krull dimension of H**(AJ is less

than that of the direct sum, which is the maximum of that of H**(Em(j)). The

Krull dimension of H**(EJJ)) is the rank of E^(j), since modulo nilpotents, the

cohomology of Et is a polynomial algebra on rank Et generators. Corollary D

gives maxj rank (F,(y)) as a lower bound for Krull dimension H**(A,). Hence this

is an equality.
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6. Counterexamples and finite sub-Hopf algebras of 62(2). We need the explicit

determination of the sub-Hopf algebras of the mod/7 Steenrod algebra &(p) given

by Adams-Margolis [2] and Anderson-Davis for p = 2 [3]. The characterization is

that the only finite sub-Hopf algebras are the obvious ones. More explicitly

Proposition 6.1. Each finite sub-Hopf algebra Bm of &(p) determines functions e:

{1, 2, . . . } -> {0, 1, 2, . . . } and k: {0,1, 2,... } -*{1, 2} such that

(1) e(r) > min(e(r - /) - /, e(i))for 0 < i < r,

(2) ifk(i + j) = 1, then either e(i) <j or k(J) = 1 for all i > \,j > 0,

(3) e{r) = 0 and k(r) = 1 for almost all r.

B^is isomorphic to the dual of the quotient of

&{p)*= {F,[|„ . . . , £,, ...]®A[t0,t„...],

4*n = 2 (Si, ® k K = 2 %L, ® T,. + T„ ® i}
by the ideal generated by {£f "", . . . , ff"*, . . . , t0*(0),_rtm, ...} (for p = 2,

set k(i) = 1). Conversely, any functions e and k satisfying (1), (2) and (3) determine

a finite sub-Hopf algebra of & (p), denoted by B^(e, k) in the following.

Lemma 6.2. Let BJ^e, k) be as described in Proposition 6.1. If £,, . . . , £,._, are

zero but £r ^ 0, in (Bt(e, k))*, and £, ...,£,_ j are primitive, then the reduced

coproduct \pí¡n = ip_r ® £r. // a// |, are primitive, e(i) < r/or a// /.

Proof. £,.,..., £2r_, are primitive since £,,..., £,._, are zero. By induction,

e(r + i) < r if / < n — 2r. Hence in the reduced coproduct

*£,   =  tf-r ®ir+  £.%- •Ul+*-t    +e""'  ® *,-!

and all the terms except the first are zero.

Counterexample 6.3. BJ^e, k) for/7 odd with the exponent sequences e(l) = 1,

e(2) = 2, e(3) = 1, and e(3 + i) = 0; k(i) = 1 does not have the detection property.

Hence the sub-Hopf algebra of &(p) generated by ty1, 9P, and ^Pp2 does not have

the detection property.

Proof. View Bt(e, k) as the central extension dual to

¥p -* Fp[^ fe}/ (* ^) - Frffei $* ¿3]/ (If. #2> #) ~» F,[{3)/ («.) -. tp.

Then the F2-term of the spectral sequence of the extension is

A[[Í,], [í2], [tï],[t3]]®Fp[ux,u2,u3,u4]

where /?#°[£,] = ux, 0#°[£2] = u2, ß$°[g] = u3 and /?#%] = w4. </2 is de-

termined by d2[£3] = [££][£,]. The ¿^-cycles are the module over A[[£,], [£2], [££]] ®

F^u, u2, u3, u4] generated by 1, [£2][£3], and [£,][|3], so F3 is this module with the

relations generated by [If ][£i]. The module generators other than 1 have bidegree

(1, 1) in the spectral sequence and hence are d^-cycles for all r. d3u, = d2ß^°[^3] =

y3#°[£f][£,] = u3- 0 + 0 • u, = 0 by the Cartan formula for ß<$°. That is, the

spectral sequence collapses at E3, since all higher differentials vanish for dimen-

sional reasons. Thus the element uB = {uxu3y~x is not nilpotent in H**(Bm(e, k)),

since it is not nilpotent in the associated graded algebra to H**(B+(e, k)), Eœ. This
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BJ^e, k) is a sub-Hopf algebra of the Hopf algebra generated by 1, "3", typ, and

typ corresponding to the exponent sequence (3, 2, 1, 0, . . . ), (1, 1, . . . ). Therefore

the Krull dimension of H**(Bt(3, 2, 1, 0, . . . ; 1, 1, . . . )) is greater than or equal

to the Krull dimension of H**(Bt(l, 2, 1, 0, ... ; 1, 1, . . . )), which is 4. The two

Hopf algebras have the same elementary sub-Hopf algebras,

5,(1, 1, 1, 0, ... ; 1, 1, ... )    and   5,(0, 2, 1, 0, ... ; 1, 1, ... ),

each of which has rank 3. Therefore, by the contrapositive to Corollary 5.7,

5„(3, 2, 1, 0, ... ; 1, 1, ... ) does not have the detection property.

Theorem 6.4. Any finite sub-Hopf algebra of 6E(2) has the detection property.

Proof. By Lemma 6.2, the first nontrivial coproduct in (5,(e))* is i^£„ = £„2lr ®

4, where |, and £n_r are primitive. I claim that by the application of Steenrod

operations, the relation [£,21 ,.][£.] = 0 in H2*(Bm) generates a relation of the form

(xy)N = 0 for x,y G Hl*(B¿ n ker Sq°. That is, ug = 0.

Case 1. e(r) = e(n - r) - r. Apply (Sq0)^0-' to obtain

n-r J[€r J   _ 0.

Case 2. e(r) - k = e{n - r) - r, for k > 0. Apply Sq2'~' . . . Sq^Sq0)*""^"'"1

to obtain lC"r'"'Mr"] = 0.
Case 3. e(r) = e(n - r) — r — k, for k > 0. This is similar to Case 2.

Thus, each finite sub-Hopf algebra Bt of é£(2) is either elementary or uB is

nilpotent. By Corollary 5.6, each finite sub-Hopf algebra of 6£(2) has the detection

property, by induction over its sub-Hopf algebras.

Counterexample 6.5. For p = 2, the Hopf algebra with dual

A[xx, x2, x3, x4, x5], degree x¡ = /, \px¡ = 0, / < 5, \l>x5 = xx ® x4 + x2 ® x3 does

not have the detection property.

Proof. In the spectral sequence of (x5)* —» An -h> At//(x5)*, the F3-term is Ex,

and F^ = F2[z,, z2, z3, z4, z\]/(zxz4 + z2z3) is an integral domain. Hence uA =

zxz2z3z4 is not nilpotent.

S. Priddy has observed that 6.5 is the universal enveloping algebra for its

restricted Lie algebra of primitives, and hence it is a counterexample to a detection

principle for connected graded Lie algebras, with respect to abelian sub-Lie

algebras.

Proposition 6.6. The Krull dimension of H**(&n), for 6£„ the sub-Hopf algebra of

6£(2) given by the exponent sequence (n + 1, n, n — 1, . . . , 1,0,...),« given by the

formula g„(r) = e + r(2n + 5 — 3r)/2, where r is the greatest integer in (2m + 5)/6

and e is 0 if n is not divisible by 3, and 1 // n is divisible by 3.

Proof. The work has been done; it remains only to count. The maximal

elementary sub-Hopf algebras have exponent sequences (0, 0, . . . , 0, r, r, . . . , r —

1, r — 2, . . ., 1, 0, . . . ) where r first occurs in the rth position, and r — 1 occurs in

the (n — r + 3)th position. We have only to add up the entries and maximize over

r to compute the Krull dimension. The continuous maximum occurs at (2/i + 5)/6,

and   the   discrete   maximum   at  either  the  greatest  integer  in   (2« + 5)/6  or

[I
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((2/j + 5)/6) + 1, since the function gn(r) is quadratic in r. Analysis of the cases

gives the definition of e.

Proposition 6.7. If B^ c Dt are finite sub-Hopf algebras of the mod 2 Steenrod

algebra with the same family of maximal elementary sub-Hopf algebras, then the

restriction map is monk mod nilpotents.

Proof. This was proved by W. H. Lin [9] as the main argument in his proof of

Theorem 6.4 for the special case that i?, is the intersection of fl, with the

(nonfinite) sub-Hopf algebra of 6E(2) with exponent sequence (1, 2, 3, 4, 5, . . . ). In

the logic of the present paper however, it is a corollary of 6.4.

In view of the counterexamples, the seeking of detection theorems for general

Hopf algebras seems futile. However, there remains the hope that for finite

sub-Hopf algebras of the mod p Steenrod algebra there exist suitable families of

sub-Hopf algebras which detect nonnilpotent cohomology elements.
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