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HOMOTOPY GROUPS OF THE SPACE OF
SELF-HOMOTOPY-EQUIVALENCES
BY
DARRYL MCCULLOUGH

ABSTRACT. Let M be a connected sum of r closed aspherical manifolds of
dimension n > 3, and let EM denote the space of self-homotopy-equivalences of
M, with basepoint the identity map of M. Using obstruction theory, we calculate
7, (EM) for 1 < g < n — 3 and show that #,_,(EM) is not finitely-generated. As
an application, for the case n =3 and r > 3 we show that infinitely many
generators of m,(EM?, id,) can be realized by isotopies, to conclude that
7,(Homeo(M 3), id,,) is not finitely-generated.

0. Introduction. Let EX be the H-space of homotopy equivalences from X to X,
with the identity map of X as basepoint. It contains the basepoint-preserving
self-homotopy-equivalences EyX, the group of homeomorphisms Homeo(X'), and,
when X is a smooth manifold, the group of diffeomorphisms Diff(X). The inclu-
sions of these subspaces are H-space homomorphisms. From knowledge of EX,
one hopes to obtain information about these subspaces.

The groups 7y(E,X ) and 7mo( EX) have been studied for various classes of spaces.
It was shown by Sullivan [S] and, independently, Wilkerson [W] that when X is a
simply-connected finite complex, mo( EX) is finitely-presented. In contrast, Frank
and Kahn [F-K] showed that for p > 2, m(Eo(S'\/ §? \V/ S¥71)) is not finitely-
generated. There are examples of finite aspherical 4-complexes K* with m( Eo(K*))
not finitely-generated [M3].

Little is known about the homotopy groups m,(EX) for i > 1 except for two
important cases. For X an aspherical complex, Gottlieb [G] proved that 7 (EX) =
center(w,(X)) while m(EX) = 0 for i > 2. It follows that m(ExX) =0 forj > 1.
The other case is that of the n-sphere S”, for which 7 (ES") = [S?; Maps(S”, $")]
=[SY A " S") =m,, (5".

In this paper, I adapt the obstruction theory of Federer [F] to obtain some
calculations of the homotopy groups of EM, where M is any connected sum of
r > 2 (closed) aspherical (combinatorial) manifolds of dimension n > 3. Specifi-
cally:

()Forl1<qg<n-4,7EM=@ -l 77,,+q(S""), hence is finite.

Received by the editors April 17, 1979 and, in revised form, January 3, 1980.
The results in this paper were presented January 7, 1979 at the Geometric Topology Conference at the

University of California at Berkeley.

AMS (MOS) subject classifications (1970). Primary 55D10, 57A65, 57F99, 58D05; Secondary 55B2S5,
55G35, 55G37.

Key words and phrases. Self-homotopy-equivalence, homeomorphism group, obstruction theory,
aspherical manifold, 3-manifold, isotopy.

© 1981 American Mathematical Society
0002-9947/81/0000-0110/$04.25

151



152 DARRYL McCULLOUGH

(2) Forn > 4, m,_,EM is a quotient of @;Z] 7,,_;(S"™"), and is finite.

(3) m,_,EM is infinitely-generated as an abelian group.

For the case n = 3 and r > 3, I show that infinitely many of the generators of
7,(EM) can be realized as isotopies (which can be taken to be diffeotopies) of M.
Therefore:

(4) For n =3 and r > 3, #n,(Homeo(M), id,,) and = (Diff(M), id,,) are in-
finitely-generated.

The construction of these isotopies is very explicit. The results (1), (2), and (3)
appeared in my dissertation, submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the University of Michigan. I wish to thank
my advisor Professor Frank Raymond for his patient encouragement and helpful
suggestions. I also wish to thank the referee for suggesting several significant
improvements to the manuscript of this paper.

Here is a description of the program I will use to make these calculations. Let Y
be a CW complex and let Y* denote its k-skeleton. If A and B are subcomplexes
with BC A C Y, let (Y; A, B) be the space of continuous maps from 4 to Y
which restrict to the inclusion map on B. The inclusion map of 4 is the basepoint
of (Y; A, B). Let Y21  (Y; A, B) be the subspace of maps which extend to all of
Y. Because 4 has the Homotopy Extension Property in Y, Y8 consists of path
components of (Y; A, B). There are three fibrations in which the projection maps
are restriction:

YRy, yr@_, ylyial yvyi_ yiny'_, ylvi v
Yy, ytriel_, ylr'o)
These fit into the following diagram in which the row and columns are fibrations:

QYo o ytrrl L, yIro

\ \
Qylr'ey o ylrrh
\ l
Y[ Y%r' - Y[ Y3yl

It is easy to produce from this diagram a long exact sequence:

D, D,_,
A e ﬂq(YlY.Q’]) >J,_ > K_—>...
where
J, = coker{mp (Y170 (117,
K, = coker(d: m , (Y1) 5 7 (YIV-YY)),

and D, is induced by 9: 7, (YV*?) - T (YY),

In §1, under certain assumptions on Y, we will identify Jq and K, as cohomology
modules of Y and discuss the boundary homomorphism D,. In §2, we list the
properties of connected sums of aspherical manifolds which allow explicit calcula-
tions of the modules to be made. The results called (1), (2) and (3) above are
obtained in §3, and the isotopies of 3-manifolds are constructed in the final section.
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1. Obstruction theory preliminaries. We will denote by /7 the g-dimensional cube
[0, 1], by J ¢ the closure of the complement of /¢ X {0} in 979*".

1.A. The boundary homomorphism for fibrations of spaces of mappings. Suppose
that C ¢ B C A are subcomplexes of the CW complex Y. For the fibration
Y4B,y yI8CI the boundary homomorphism 3: ,, (Y 5Y) — o (Y145
can be described as follows [F, pp. 346-347]. Let {w) € m_, ,(Y®Y); then w is
defined on the subset B X I9 X I c Y X I9*! Extend wto 4 X J7 U B X I9*!
using the projection map to 4. By the Homotopy Extension Property applied to the
pair (4 X 19 X {1}, 4 X 3I? X {1} U B X I? X {1}), we obtain an extension to
all of A X I9*'. If u denotes the restriction of this extension to 4 X I? X {0}, then
{uy = w).

1.B. Calculation of J, = coker(m, , (YY" — 7, (Y!Y#h)._ All cochains and
cohomology will be with local coefficients. We will denote by proj, the projection
map from Y X I9*! to Y, or its restriction to any subspace of Y X I9*! Let
+ € Y be the basepoint of Y.

LemMmA 1.B.1. If 7 (Y[Yz"l) > (Y[yz’g]) is surjective, then
q+1 q+1
J,=H WY; =, +2Y)

PROOF. Let (f) € 7, ( Yy N then f| y2y a0t = proj,. By assumption we may
choose f so that f|yo, je+1+ = proj,. Consider the difference cochain d, , ,(proj,, f) €
CHHY? X I, Y? x 31" m,,,Y) = C'(Y; m,,,Y). We have 8d,,,(proj,, /)
= ¢,43(Proj,) — ¢,43(f) = 0 since both proj, and f admit extensions to Y2 X
17*2. Thus we may define d,{f> = {d,,,(proj,, f)} € H'(Y; =, ,Y). Changing f
by a homotopy on Y° x I9*! alters d,.,(proj,, f) by a coboundary so d, is well
defined, and it is easy to see that 4, is a homomorphism which vanishes on
image(, , l(Y“’z Y'). If d,{f> = 0, then f| y1, ;o1 is homotopic to proj,, so {f) €
image(, , (YR thus d: J,»> H'(Y; 7,,,Y) is injective. Given {c) €
H\(Y; m,,,Y), define f: Y' X 1"*' — Y so thatflyox,.u = proj, and {f],x e
= ¢(0) for eachg € Y' — YO Since 8c = 0, fextends to Y2 X I9*!, and 4,(f) =
{c}. Therefore d, is surjective. []

1.C. Calculation of K, = coker(d: =, \( Y r'ny g (YT ).

Lemma 1.C.1. If H¥(Y; 7,,,Y) = H?"N(Y;7,,,Y) =0for3< p <n — 1, then
K, =H"(Y; m,,,Y).

Proo¥. Define d,: K, - H"(Y; m,, ,Y) as follows. Let {f) represent an element
of K. If n =3, let d, <f> {d,.+,(proj,, /)}. Suppose n > 3. Then &d, . ;(proj,, f)
= q+4(projy) ¢,+a(f) =0 and (d,,4(proj,, N} € H*Y; m,,,Y) =0. Hence
there is a homotopy F: f~ f, (rel Y x 19) with f)|ysy ;e = proj,. Let g: ¥2 X
I9%' Y be F|y2, goxcsy Then g represents an element of . (Y!"*¥") such that

d,.45(proj,, (g)) = d, ,5(proj,, f). Moreover {f,> = {f> — &g so {f,> repre-
sents the same element of K, as {(f) did. Inductively, for 4 < k < n — 1, assume
Sil ye-15c 1o = proj,. We have {4, , (proj,, f,)} € HX(Y, Ty +4Y) = 0. Therefore f, is
homotopic to a map, again called f, such that f}| y«, ;o = proj,. This completes the
induction. Let 4,{f) = {d,, (proj,, fi)} € H"(Y; =, Y).
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We must show this assignment is well defined. Suppose {f|) is another homo-
topy class with fi|ys-1,,;o = proj, and f]=f (rel Y! X I9. Then f,~f=~f
(rel Y'! X I9) and we must show f, =~ f; (rel Y"~2 X I9). For n =3, this is
automatic, so assume n > 3. Let G: Y X I? X I - Y be a homotopy from f;
to fi. Inductively, for 2 < k < n — 2, suppose G|ys-1, v+ = proj,. Then
{dig+1y+£(Proj,, G)} € HX(Y; myy 1), Y) = 0 50 G is homotopic (rel Y X 3I7*")
to a new homotopy, also called G, with G|y« e+ = proj,. This completes the
induction; thus f, = f; (rel Y"~2 X I9)s0 d,{f,> = d,{f}).

Clearly, d, is a surjective homomorphism. It remains to show d, is injective.
Suppose d,{f> = 0. By the preceding argument, we can find {f,> with f| a1 e
= proj,, 4,{f;> = 0, and f = f (rel Y' X I9). Let H: f~ f, = proj,, (rel Y! x I9).
Letting g = H |y 4+1, we have (f> = d(g), so {f) represents the zero element
of K. [0

1.D. An important example. The following example illustrates the techniques we
use for computing homotopy groups of mapping spaces, and it is pertinent to the
manifolds we will be considering. Let X = $"~! X I. We regard it as a cell
complex with six cells: two O-cells « X {0} and *+ X {1}, one l-cell 6 =+ X I
connecting the O-cells, two (n — 1)-cells S"~! X {0} and S"~! X {1}, and one
n-cell 7. Letting C = dX, B = o U 9X, and 4 = X, the fibration of §1.A becomes

XXoudx] _ ylx3X] _ yloudx,ax]

It is not difficult to observe that X°U33X] = xledl ~ QX and, because the
attaching map of 7 is null-homotopic, that X X*V31 ~ Q"X Therefore the homo-
topy exact sequence for the fibration becomes

D, D,_,
Jn 7Tq+2(X)—>1rn+q(X)—)Wq(X[X’aX])—) Tgpt(X) = Tppg (X)) >

It is a lengthy exercise (written out in [M2]) to check that, up to sign, D («) equals
the Whitehead product [z, u] where 2z is a generator of 7,_ (X) = Z.

For the calculations of §§3 and 4, we should describe the isomorphisms d;:
Ty (X VXX = 7 (X) and d,: (XU = 4, (X) more explicitly. Let f:
(6 U 3X) X I9*" - X represent an element of ., ,(X'"V%%*W; then the restric-
tion of f to 9X X I?9*' U (6 U 3X) X dI9*! equals the projection map to X. We
define d,{f) to be the value of the difference cochain d,,,(f, projy) on the
(¢ + 2)-cell 6 X 19*". The definition of d,, is similar.

2. Connected sums of aspherical manifolds. The letter M will always denote a
connected sum M, #¥M,# --- #M, of r > 2 closed aspherical manifolds of
dimension n > 3. We note that #\M = 7 M, * 7, M, *+ - - - +« 7 M, is torsion-
free, since each 7 M; is (being the fundamental group of a finite-dimensional
aspherical complex).

2.A. The homotopy groups of M. We will state some results and notation to be
used later. Except where otherwise noted, detailed proofs may be found in [M1].

The following theorem extends Bloomberg’s [B] description of the universal
cover of a connected sum.
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THEOREM 2.A.1 The umoersal cover M of M is homotopy-equivalent to a l-pomt
union V.-n ngﬂ, M S ! of (n — 1)-spheres. Furthermore, the action of m,M on M
corresponds to the left permutation action of m,M on the indices. That is, g, € m\M
sends S, homeomorphically to S; .

We will use e to denote the identity element of a group =.

DEFINITION. A Z module 4 = A, is called a 7-basis for a Zm-module N if

1 N= @ gew

2.8 4, —>A is theactxon of ron A, C N.
It follows that g A,,—>A for all g, h € 7, and that any element of N can be
written uniquely (up to order of summands) as X}_, g;q;, where g; € 7, q; € A,.
Let X be a connected simplicial complex with universal cover X. Letw = 7, X and
denote by H,‘(X ; N) the ith cohomology of X with local coefficients in N (and
finite cochains). The following lemma is standard for the case N = Z#, 4, = Z - e.

LemMA 2.A.2. (a) Hj(X; N) = Hi(X; 4),
(b) H(X; N) = H(X; A).

The proof parallels the proof of the standard case (for details, see the appendix
of [M2]). Using Theorem 2.A.1 and Lemma 2.A.2(a) together with Poincaré
Duality in M, one obtains

LEMMA 2.A.3. Let q be a dimension in which 7, M has a m;M-basis A,. Then
@ H'(M; m,M) = @ [} 7,M.

(b) H/(M; m,M) =0 for 2 <j <n-1
(©) H'(M; 7,M) = A4

We will first describe 4, for 2 < ¢ < 2n — 4. Order the elements of # arbitrarily
as g,,8.... For k > 1 let T, = AV S' C Vien ,':,' S, = T. Then
for all m > 2 T.(M, %) =a, (T) = md hmk m(Tk) According to Hxlton [H2],
7(T) = D, @,_, (S, )and thus 7(T) = @ ,, D/Z| 7,(S,). Since g,S; =
S’ g itis clear that 4, la (S, ) is a 7-basis for 7, T =, (M)

ln dimensions 2n — 3 < ¢q < 3n — 6 the first Whltehead products appear. As
above, we have 7, \M = @ [_ ,_1 D,cr T ,(Sgi), and we may choose generators zgi
of k2 —1(S;) so that g,z = z, .. For each (a, ,B) EaXmand 1 <i,j <r—1,let

3 be a generator of m,,_ 3( B) where S‘ is a copy of the (2n — 3)-sphere
mapped to T in such a way that the mduced homomorphism sends z"’ to the
Whitehead product [z, zﬂ] We will always exclude the case of both i = _1 and
a = . In all the remaining cases, according to Hilton [H2], the image of =,,(S, ) is
a direct summand of =, T for all m, and it will be regarded as a subgroup
Moreover, using direct limits again, there is a direct sum decomposition when
2n —3<qg<3n-6:

T(T)= @ GBW(S)ea @ @w( es)

g8Em i=1 1<i<j I=1

57] @ @ Wq( uB

(wB)EnXT 1<k<i<r—1
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Since [z, z4] = (= 1)"" 'z}, z.] there are commutative diagrams for all m:
T Sils) = (M)
nlyo
T Sh)
The action of 7 on 7,,_,(M) satisfies g - zaf;;' = z;™ g Now let T be a subset of =
having the following properties:
l.egT.
2. For every g € 7 with g # e, exactly one of g and g ™! is contained in T.

Since 7 is torsion-free, the second condition makes sense. In [M1] the following
was proved.

LEMMA 2.A4. For 2 < q < 3n — 6, m,M has a w-basis A, given in the following
table:

range of g r=2 r>2
2<g<n-2 0 0
r—1
n—1<qg<2n-4 7,(S,) D 7(S.)

i=]

r—1 r—1
2n-3<qg<3n—6|7(S)® D 7S.,)| ® 7,(5H)D D D 7,(S5r)
’ g€T i=1 g€l I=1
® D b m(SY

geEMmM 1<i<j<r—1

We will also need the following observation, immediate from Theorem 2.A.1 and
the fact that #, M is infinite.

LEMMA 2.A.5. Let q > 2. For every nonzero x in m,M, there is a g in m|M such
that gx # x.

2.B. The relation between E,M and EM. M* will denote the k-skeleton of M. The
evaluation map ev: f— f(*) gives a surjection from EM to M which is a fibration
with fiber E M.

THEOREM 2.B.1. The exact homotopy sequence for the fibration E]M — EM — M
decomposes into short exact sequences for every q > 1:

0>m, M- 7 EM— 7, EM —0.

REMARK. This holds for g = 0 also, since 7, M is centerless.

PROOF OF THE THEOREM. This will be a consequence of

LEMMA 2.B.2. Suppose g: M' X 19 > M and g|,,155;« = PT0j 5. Then g is homo-
topic (rel M' X 319) to a map g, with g,|y0x 14 = PTOj -

Deferring the proof of the lemma for a moment, we consider an element
{f> € mEM. Then f: M X I? - M with f|,, 5« = proj,,. Applying the lemma
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t0 f| 1570 We can homotop f| 1, ;. and hence f (rel M X 3I9) so that f|,, ;e =
proj. Thusev, (f> = (f(* X I9)y =0€ 7, M. O

ProOF OoF LEMMA 2.B.2. For ¢ = 1, {f(* X I)) is central in 7;(M, *), which has
trivial center, and the result follows easily. Assume ¢ > 2. Consider dq =
d,(proj ., 8 € CY(M X 1% w(M)). We have dd, = c,, (projy) — ¢,;.1(8) =0
since both extend to the (g + l)-skeleton. We will show that 64, = 0 only if
d(x X 1) = 0

We may assume that the paths used to define the local coefficient system are the
unique paths in some maximal tree in the 1-skeleton of M. Let o be a 1-simplex in
the tree with 90 = 7 — ». Then 0 = 8d,[0 X I9] = d [t X I9] — d [+ X I7]; hence
d,[r X I9] = d;[+ X I7]. By induction on the distance of 7 from * in the maximal
tree, we have d [t X 9] = d [+ X I7] for every O-simplex 7 of M.

Now suppose o is any 1-simplex not in the maximal tree, representing an element
8, € m M. Then 0 = d,[o X 1] = g,d [o(1) X I?] — d,[a(0) X I?] s0 d [+ X I7]
= g,d,[+ X 1?]. Therefore gd [+ X I] = d [+ X I?] for every g € m;M. By
Lemma 2.A.5, this implies d [+ X 19] = d,[r X I?] = O for every r € M°. There-
fore the image of 7 X I? is a null-homotopic g-sphere based at 7, so we can
homotop f (rel M X 319) so that f| 0. ;¢ = Proj,,, which was to be proved. []

2.C. A cell structure for M. We describe a cell structure for M that will facilitate
our calculations. For 1 <i < r let M/ = M;-open ball, and let S; = 9M,. For
1<i<r—11letX;=S"""X1 be a collar neighborhood of S, in M/, so that
S, = §"~! x {0}. Give each X, a cell structure as in §1.D. Leto, 1 <i <r — 1, be
the 1-cell in X;, and assume that 6; N S; is the basepoint of M. Give the rest of M/
any triangulation, for 1 <i <r — 1, and give M, any triangulation. Form the
1-point union of the M/ for 1 < i <r — 1, and glue S, to its boundary \//_! S, to
form M.

The convenience of this construction stems from the following observation.
From the proof of Theorem 2.A.1, the inclusion \/:_,I S; > M sends

7,_(\/Z| S;) isomorphically to 4,_, = @z} = n_l(S,‘), a w-basis for m,_ M. If
7, M has a 7-basis, then an element of H, l(M T, M) = ,(1\? A,) (by Lemma
2A2) can be represented as Z[_| SV, (gy[S N = 2,_,(2,_, a;8,)[S;] =

=52} x[S/], where x; € T,M.

3. Calculations of 7,(EM). All cohomology will be with local coefficients.
3.A. An exact sequence for m (EM).

THEOREM 3.A.1. For 1 € g < 2n — 5 there is an exact sequence

. > H\(M; = +2M)—>H"(M TyyoM) > 7, (EM)

—)H'(M; _,_,M) - H (M; Tt g ,M)—>

ProoF. Using the diagram of fibrations discussed in the introduction with
Y = M, and noting that for g > 1, m(M™?)) = 7 (EM), we obtain an exact
sequence for each ¢ > 1:

D,

D, q-1
J,—>K,>7(EM)—>J,_, > K,_,
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In this sequence,
Jg = COker("qH(M[MI’MI]) - '”q+1(M[Mzm)),
K, = coker(i): I, +I(M“"z""']) > (MW’M’I))’

and D, is induced by 3: =, (M™ R YN (MMM ). The theorem is immediate
from the following two lemmas

LEMMA 3.A.2. For ¢ > 0,J, = H'(M; 7 ,,M).

PrROOF. By Lemma 2.B.2, gyt (MM Ty (MM “#)) is surjective. Therefore
Lemma 1.B.1 applies. []

LEMMA 3A3. For 0 < ¢ < 2n — 5, K, = H'(M; m,, ,M).

PrOOF. By Lemma 2.A.4, w,, M has a #-basis for 2 < p + ¢ < 3n — 6. There-

P+q
fore when 3 < p < n — 1, the condition 0 < ¢ < 2n — 5 guarantees that =, p+q(M)
has a 7-basis. By Lemma 2.A3, H(M; m,, M) = H?~'(M; =,, M) =0, so

Lemma 1.C.1 applies. [
COROLLARY 3.A4. For 1 < g <n —4, T, EM =4, , hence is finite.

ProoOF. For these dimensions, A,,, =0=A4,,, by Lemma 2.A.4. Therefore
H'(M; TeeM) =0= H'(M; = +1M), so 7w (EM)=H"(M; =, M) =A
using Lemma 2.A.3.

3.B. Calculation of D,. To compute D, we first define a homomorphism k:
H'M; m,,,M) >, +l(M (M2l such that dl o k = identity, where d, is the homo-
morphism of Lemma 1.B.1. Recall the cell structure for M described in §2.C. Given
a generator x,[S’] € H,_(M; m,,,M) = H\(M; m_,,M), let f: (M — int(X)) U
6) X I9*! 5 M be a map such that

n+q’°

Slm - imyxyyx 1941 = PrOj 5y and d, o o(proj oy, /[ 0, X I9%'] = x; € 7, (M, #).

Define k(x[S']) = {flp2xso+1)-

Since D, is induced by 3: =, (MM ’Zl)—-)‘ﬂ (MMM we have D, = d, ° 3 ° k,
where d,: m, (MMM _, H"(M 7,4,M) is defined in Lemma lCl The calcu-
lation of 9< f | m2x 19+1) is exactly analogous to the calculation of D, in the example
of §1.D. The generator z there of =,_,(X) corresponds to the element z, of

7@,_ (M, ») (defined in §2.A). The group 7, 2X is replaced by = (M, *) and
7, (X X:oU8X)) s replaced by 7 (MMM ). Therefore k(x[S] is representable by a
map f which equals proj, on (M — (small ball in X)) X I? and such that

d,y @104y M X 1%, M X 3I7) = [z}, x]. Hence D(x[S') = d(f> =
{[ ', x;]} where the curly brackets indicate an equivalence class in H"(M; =, M)

,,+q(M)/7r,(M) = ¢ We have shown

ProrosiTION 3.B.1. D, (2 Ax[SD =21 {lz, x]y €4,

We will now determine ker D,_, and coker D,_, using the results and notation
of §2.A. For ¢ = n — 3, we have [z, zJ] = 2}/ so

ey’
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r—1
Dn—3: Hn-I(M; '”n—lM) = i?l Wn—IM_)AZn—Z%

=(€_I;: ,,,,_,(s;))ea(ea @ mon-s(S ,))

i=] yE

9( @ Ton— 3( e,y))

1<igj<r—1 'yE1r M

given on generators by D, _;(0, . .., (zj),., 0= {z"’} (where (), indicates that
zJ appears in the ith slot) in all cases except both y = e and i = j. We will describe
the inverse image of each of these summands in order to determine the kernel and
cokernel of D,_,. Let B, = ker(D,_sl, (sn=I[2=] m,_(8))—> mp_5(S)),
which is 0 if n is odd and has index <2 if n is even. Let C,_, =
coker(D,_;|, (s»)» which is well known to be finite. Observe that

;:,' D, er 72, _5(S.)7) is in the image of D,_j since D, 30, ...,(z,);...,0) =
{z. } and the inverse image of {z } consists of (0 RN (zy"),., ...,0) and

©,...,(—D)" l(zy_,),, ..., 0. Therefore the kernel contains @yer (Z),, where
(Z), = Z is generated by (0 sz — (=D P ' —_Vi « - - » 0). Explicitly, we have

D0, (7 = (=) zy0), ---’0)={[ze’zy]}—{(-1)”"'[2 2]}
= {[ze,zy]} ~{[z-v 21} = {[ 2]} -{ T[]} =0

Finally, @, ., D, ; <jcr—1 Tan—3(Se, /) is in the image of D,_, and the kernel of
the inverse image of { z"’} is generated by

O (@) s (- (=12 ), 0).

Explicitly, we have
D, 50,....2z0 ..., = (=D"""z]_,,...,0)

= {[z 8]} {02l 2 ])

={l2 4]}~ {[z-v 2} = {[5 4]} - (v [ 4]) =0
Collecting this information, we state

LemMA 3.B.2. coker(D,_,) = @2} Ci_, and
ker(D, 3).(ea B,;'_,)GB(EB EBZ)EB(EB ® z)
i=1 y€T i=1 YET 1<Ki<j<r—1

COROLLARY 3.B.3. For n > 4, w,_,EM is finite.

PROOF. In this case, the exact sequence of Theorem 3.A.1 yields #,_ EM =
coker(D,_3) = @21 Ci_s. O

COROLLARY 3.B4. w,_,EM is infinitely-generated as an abelian group.

ProOOF. In Theorem 3.A.1 we have a surjection m,_,(EM)— ker(D,_,) and
ker(D, _,) is infinitely-generated by Lemma 3.B.2. []

COROLLARY 3.B.5. Let M?> be a connected sum of aspherical 3-manifolds. Then
7 (EM?) is infinitely-generated.
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ProOF. Take n = 3 in Corollary 3.B4. [

4. Homeomorphisms of nonirreducible 3-manifolds. Let HX denote the path
component of idy, in the group Homeo(X); then HX C EX. Throughout this
section, we will assume M = M, # - - - #M, is a connected sum of r > 3
aspherical 3-manifolds.

From Theorem 3.A.1 we have a homomorphism

Dy: H\(M; my;M) - H3(M; m,M)
and a surjective homomorphism j: 7, (EM) — kernel(D,). Let i: =, (HM, id,,) —»
7 (EM, id,,) denote the homomorphism induced by inclusion. The remainder of
this section will be devoted to the proof of

THEOREM 4.1. The image of j ° i contains an infinitely-generated direct summand of
kernel (D). Hence w (HM) is not finitely-generated.

4.A. Isotopies of S* X I. Let X = §2 X I. We regard S? as the unit sphere in R>.
Since SO(3) preserves S2 we have SO(3) ¢ HS? (it is actually a deformation
retract [K]). Let SO(2) ¢ SO(3) be the subgroup of rotations that leave the points
(0, 0, 1) and (0, 0, -1) fixed. Let 7: ({, 0, 1) - (SO(2), id, id) be the path such that
7(¢) is rotation through an angle of 2#¢; then  represents a generator of «,(SO(2))
= Z (and hence represents a generator of 7,(SO(3)) = Z/2Z). We will now use the
results and notation of §1.D. We define a level-preserving homeomorphism f:
X — X by f(x, s) = (7(s)(x), 5). Assuming that the 1-cell ¢ equals (0, 0, 1) X I, we
see that f represents an element of wy(X¥?¥V°l) = 7,(X) = Z. It is known that the
difference class d;(f, idy) is a generator of this group (see [H1, p. 85]). In the exact
sequence of §1.D,

sz[z’—;] 1, X — mo( X1¥2XT) 50

the homomorphism [z, —] is well known to have image 2Z C Z; hence m(X ¥?¥]) is
isomorphic to Z/2Z and f represents a generator of this quotient group. Now if §:
(I X I, 3 x I)— (S0O(3), id) is a nullhomotopy with 8(s, 0) = 7%(s), (s, 1) = id,
then F: X X I — X defined by F,(x, s) = F((x, s), t) = (0(s, t)(x), s) is an isotopy
from f2 to id,. Under the identification (X [°V%%:3Xh = & (X), the restriction
F|,,ax Tepresents a generator since 3(F|,» = (Fo> = {f*>. We choose the gener-
ator z of m,(X) such that d,((F|,>)[o X I]) = z. Note that F ! is an isotopy from
(f 'Y to idy, with dy((F ~'|,))o X I]) = —=.

4B. The 3-manifold Z. Let X, and X, be two copies of S? X I, and let
B = D% x I. Let Z denote the 3-manifold-with-boundary obtained by identifying
D, = D? x {0} with a disc in §2 x {1} c 39X, and D, = D2 X {1} with a disc in
S§2 X {1} C 3X,, by orientation-reversing homeomorphisms. We assume these
discs do not contain the O-cells 6, N S X {1} C 3X, and o, N S? X {1} C 3X,.
We will use S, to denote S? X {0} c 39X, and S, for S X {0} C 3X,. Let S,
denote the remaining boundary component of Z, so that the oriented boundary of
Z is 3Z = S, U S, U (—S;). We choose a nice collar neighborhood X; of S, so
that o, N X; = o, has the form (6, N S;) X I =(0,0,1) X I and 0, N X; = 0,
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has the form (o, N S3) X I = (0,0, —1) X I. We will define two isotopies of Z.
The isotopy G is defined by

G(z) = G(z, 1) = { Fx,s) ifz=(x,5) € X,

ifz & X,,
and the isotopy H is defined by
F(x,s) ifz=(x,5) €X,,
H(z) = H(z,t) ={ F\(x,s5) ifz=(x,5) EX,,
z if (z,1) € B X I

We make the important observation that G, is isotopic to H, by an isotopy which is
fixed on o, U 0, U dZ. This observation appears in the thesis of Hendriks [H1, p.
103].

We will now construct a nontrivial element of 7,(Z!%%)). Let 6 = 0, U 0, C Z.
From the fibration ZZ°VY32]_, 7I[292]_, 710U3Z3Z] we obtain a commutative
diagram

,ﬂl(z[z,az ]) - 7TI(Z[OU 9Z,0Z ]) _a) 7roz[Z,oUGZ] — WO(Z[z,az ])

JN dy| = dy] = 7
D,
HY(Z,3Z; mZ) — HXZ, 3Z; m,Z)

Now Z =~ §, \/ §,, so using the results of Hilton [H2] we may write m,(Z) = m,(S,)
@ 7,(S,) and 75(Z) = 7my(S)) © 7y(S,) ® 7(S,,) where S, is a 3-sphere. Let
z,, 2z, be generators of m,(S,) and 7,(S,), respectively, such that the homotopy
class represented by the oriented sphere S; equals z; + z, € m)(Z). Then the
Whitehead product z,, = [z,, z,] corresponds to a generator of 75(S,,) C 73(Z).
Let z;;, 1 <i <2, be the generators of 7,(S,) so that [z, z] = 2z,;,. We have
HYZ,0Z; m,Z) =Z ®Z ® Z ® Z where the summands are generated by the
cocycles d;;, 1 <i,j <2, such that g, fo; X I] = z; and d;[e, X I] =0 if k #i.
We also have H*(Z, 0Z; m,Z) =m,(Z) = Z ® Z ® Z generated by the cocycles
€115 €22 and ¢, ,, where ¢, ((Z, 0Z]) = z,, and so on. Let ¢, , = ¢ ,. As in §3.B, it
follows that the homomorphism D, is given by Dy(d,;) = c;; if i #j while Dy(d;,)
= 2¢;,. Therefore the kernel of D, is generated by d,, — d, ;. From the discussion
of F: X X I - X, we have d\(H|,) = d,, — d,,. To find d,{G|,), we see from
the definition of G that 4,{G|,>([o, X I]) = z, + z,; hence d\{G|,> = d,, + d,,
+ ad,, + Bd,, for some a, B € Z. Since G, is isotopic to H,, with ¢ held fixed, we
have Dy(d,({G|,»)) = Dy(d\({H|,))) = 2¢,; — 2¢,,. From our formula for D, we
also have
Dy(di({G|,>)) = Do(d,, + d\, + ady, + Bdy))
=2c,, + ¢ 5+ acy; + 2fcy,;

hence a« = B = -1 and 4,({G|,>)([06, X I]) = -z, — z,. The identity map of Z is
isotopic to G, ° H, ' by an isotopy which is fixed on ¢ U 9Z. Define an isotopy J:
Z XI1—->2Z so that for 0 <t < %, J is such an isotopy, while J(z,?) =
(Gy—y © Hy ' )z, t) for 2 <t < 1. Then J is a loop in Homeo(Z) and regarding J
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as a loop in Z'%%?] we have d,<{J|,> = d{G|,> — d\{H|,> = d,, — d,,. That is,
J<J ) is a generator of kernel(D,).!

4.C. Isotopies of M. To construct isotopies of M, we will use the cell-complex
structure of M defined in §2.C. Since \/]_ 11 X, C M is simply-connected and
contains the basepoint * of M, a path in M with endpoints in \/}_ l‘ X, represents a
well-defined element of =,(M, *). We may represent any element <{a) €
a (M) * - - - *ax(M,) C m(M) by a nicely-imbedded arc « in M that runs from
X, to X, intersecting them only in its boundary. We can imbed Z in M so that

1. X, ¢ Z is mapped homeomorphically to X, C M, carrying the basepoint
o, N S;to =+

2. D2 X I C Z is mapped to a tubular neighborhood of a that intersects
X, U X,inD? x al.

3. X, C Z is mapped homeomorphically into X, — . (This will reverse the local
orientation, when a is orientation-reversing.)

Such an imbedding induces an injection 7,(Z, 6, N S;) - m,(M, *) given on
generators by z, — z! and z, — z2.

The isotopy J, of M is of course defined to be J on Z C M and the identity
outside Z. Now d,({J,|»2>) = d, is the element of H'(M; m,M) such that
d (o, X I)=0if3 <k <r—1,d (o, X I)) = z2, and d,([0, X I]) = —z.-.. The
last formula differs by the action of a~! from the corresponding calculation for
J|,> € m(Z!%M, since in M we use a path in X, to base the homotopy class that
is the value of the difference cohomology class d,(J, proj,,) on [0, X I], rather
than a path in Z that follows along a back to X,. Under the isomorphism
H\(M; m,M)= @ 7! my(M), d,({J,|p2>) corresponds to (z2, —z!-,,0,...,0).
Regarding the J, as loops in EM, we have j{J,> = (z2, —z}-,,0, . . ., 0); hence the
elements j{J,>, a € m3(M) * - - - =« (M), generate an infinitely-generated
summand of kernel (D), using Lemma 3.B.2. This concludes the proof of Theorem
41. O

Question. Can the generators of kernel(Dy) of the form (z; ~ zy-1,0, ..., 0), or
of the form (z2, —z)-, 0, ..., 0) where y involves elements of 7, M, * 7,M,, be
realized as the images j<{J, ) of loops J, in HM?
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