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HOMOTOPY GROUPS OF THE SPACE OF

SELF-HOMOTOPY-EQUrVALENCES

BY

DARRYL McCULLOUGH

Abstract. Let M be a connected sum of r closed aspherical manifolds of

dimension n > 3, and let EM denote the space of self-homotopy-equivalences of

M, with basepoint the identity map of M. Using obstruction theory, we calculate

irq(EM) for 1 < q < n - 3 and show that ir„_2(EM) is not finitely-generated. As

an application, for the case n = 3 and r > 3 we show that infinitely many

generators of ir,(£A/3, idM) can be realized by isotopies, to conclude that

w,(Homeo(M3), idM) is not finitely-generated.

0. Introduction. Let EX be the i/-space of homotopy equivalences from X to X,

with the identity map of X as basepoint. It contains the basepoint-preserving

self-homotopy-equivalences E0X, the group of homeomorphisms Homeo(A'), and,

when A' is a smooth manifold, the group of diffeomorphisms Diff(A'). The inclu-

sions of these subspaces are //-space homomorphisms. From knowledge of EX,

one hopes to obtain information about these subspaces.

The groups ttqÍEqX) and tt0(EX) have been studied for various classes of spaces.

It was shown by Sullivan [S] and, independently, Wilkerson [W] that when A' is a

simply-connected finite complex, tr0(EX) is finitely-presented. In contrast, Frank

and Kahn [F-K] showed that for/7 > 2, tr^E^S* V Sp V S2'-1)) is not finitely-

generated. There are examples of finite aspherical 4-complexes AT4 with 7r0(E0(K*))

not finitely-generated [M3].

Little is known about the homotopy groups m^EX) for / > 1 except for two

important cases. For X an aspherical complex, Gottlieb [G] proved that ttx(EX) »

center(77,(A')) while *¡(EX) = 0 for / > 2. It follows that «,•(£„*) = 0 for y > 1.

The other case is that of the «-sphere S", for which w?(F5") = [S9; Maps(5", S")]

S[S'A5";5"]SV?(n
In this paper, I adapt the obstruction theory of Fédérer [F] to obtain some

calculations of the homotopy groups of EM, where M is any connected sum of

r > 2 (closed) aspherical (combinatorial) manifolds of dimension n > 3. Specifi-

cally:

(1) For 1 < q < n - 4, -nqEM s © rr\ t„+?(5'""1), hence is finite.
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(2) For n > 4, trn^3EM is a quotient of ©¿~J v2n-3(S"~l), and is finite.

(3) tTn_2EM is infinitely-generated as an abelian group.

For the case n = 3 and /• > 3, I show that infinitely many of the generators of

itx{EM) can be realized as isotopies (which can be taken to be diffeotopies) of M.

Therefore:

(4) For n = 3 and r > 3, w,(Homeo(A/), idw) and 7r,(Diff(M), idM) are in-

finitely-generated.

The construction of these isotopies is very explicit. The results (1), (2), and (3)

appeared in my dissertation, submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy at the University of Michigan. I wish to thank

my advisor Professor Frank Raymond for his patient encouragement and helpful

suggestions. I also wish to thank the referee for suggesting several significant

improvements to the manuscript of this paper.

Here is a description of the program I will use to make these calculations. Let Y

be a CW complex and let Yk denote its fc-skeleton. If A and B are subcomplexes

with B c A c Y, let ( Y ; A, B) be the space of continuous maps from A to Y

which restrict to the inclusion map on B. The inclusion map of A is the basepoint

of ( Y; A, B). Let Y[AB] c ( Y; A, B) be the subspace of maps which extend to all of

Y. Because A has the Homotopy Extension Property in Y, YlA,B] consists of path

components of ( Y ; A, B). There are three fibrations in which the projection maps

are restriction:

yl^2)^,. yC'0!-,. Ylr2j3],    YlY<r2]^> YlY'r']^> Yir2'Y'],

These fit into the following diagram in which the row and columns are fibrations:

o,(yl>-2.0])     _»      y\Y,Y*\      _>      y[r,0]

4, 4,

Sl(Y[Y'-0])     r*      YlY-Y']

i I
y-i^.y'l       =      yiy2-y']

It is easy to produce from this diagram a long exact sequence:

...-/^^^^(y'^O-V.-'v.----
where

Jg = cokcr(^x(YlY2'Y'l)^Trq+x(YlY2M)),

/:, = coker(9: ^Xr'^'O-^(y'y2])),

and Dq is induced by 3: vq+l(Yir2j3*) -> nq(YlY-Y\

In §1, under certain assumptions on Y, we will identify Jq and K as cohomology

modules of Y and discuss the boundary homomorphism Dq. In §2, we list the

properties of connected sums of aspherical manifolds which allow explicit calcula-

tions of the modules to be made. The results called (1), (2) and (3) above are

obtained in §3, and the isotopies of 3-manifolds are constructed in the final section.
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1. Obstruction theory preliminaries. We will denote by /* the ^-dimensional cube

[0, \]q, by J" the closure of the complement of I" X {0} in 8/?+1.

I.A. The boundary homomorphism for fibrations of spaces of mappings. Suppose

that C c B c A are subcomplexes of the CW complex Y. For the fibration

Y[a,b] _„ YiA.c] _^ y[B,c] the boundary homomorphism 3: wq +,( Y[B-C]) -> nq(Y[A-B])

can be described as follows [F, pp. 346-347]. Let <w> G Tg+x(YlB,C]); then w is

defined on the subset B X /* X / c Y X Iq+1. Extend w to A X Jq u B X Iq+1

using the projection map to A. By the Homotopy Extension Property applied to the

pair (A X Iq X (1), A X dlq X {1} u B X Iq X {1}), we obtain an extension to

all of A X Iq+X. If u denotes the restriction of this extension to A X lq X {0}, then

<"> = 3<w>.

LB. Calculation of Jq = coker(^+1(T1>'2'y'1) -» -rrq+x{Y^2-<%. All cochains and

cohomology will be with local coefficients. We will denote by proj^ the projection

map from Y X Iq+X to Y, or its restriction to any subspace of Y X Iq+i. Let

* G Y° be the basepoint of Y.

Lemma l.B.l. If<nq+x(Y[Y2-'\) -» 7r?+1(y[r2,01) is surjective, then

Jq^H\Y;-nq+2Y).

Proof. Let (/> G w +1(ylir ,0'); then/|y2xa/,+. = proj^,. By assumption we may

choose/so that/| rox/,+ . = projy. Consider the difference cochain dq+2(pTojy,f) G

Cq+2(Y2 X Iq+\ Y2 X dlq+l; irq+2Y) « C\Y; nq+2Y). We have Sdq+2(pTojy,f)

= cg + 3ÍPT°}y) ~ Cq+Áf) = 0 since both proj and / admit extensions to Y2 X

Iq+1. Thus we may define rf,</> = {dq+2(pTO)y, f)} G H\Y; irq+2Y). Changing/

by a homotopy on y° X /*+1 alters dq+2(proj ,f) by a coboundary so dx is well

defined, and it is easy to see that dx is a homomorphism which vanishes on

image(77-(?+1(y[r Y ])). If £?,</> = 0, then/| YiXI,+ < is homotopic to proj^, so </> G

image(w9+,(y[>'2,>''1)); thus dx: Jq^> H\Y; trq+2Y) is injective. Given {c} G

H\Y; irq+2Y), define/: Yl x Iq+l -> Y so th&tf\yox/,+, = proj^, and </|oX/.*.>

= c(a) for each a G Y1 - Y°. Since 8c = 0,/extends to Y2 X Iq+\ and </,</> =

{c}. Therefore J, is surjective.    □

l.C. Calculation of Kq = coker(3: -nq+x(Y[Y2-Y^) — w?(y<y'y2>)).

Lemma l.C.l. If HP(Y; Trp + qY) = HP~\Y; iTp+qY) = Ofor 3 < p < n - \, then

Kq^H"(Y;vn+qY).

Proof. Define dn: Kq^> H"{ Y; -nn+q Y) as follows. Let </> represent an element

of Kq. If n = 3, let </„</> = {dn + q(x>ro]y,f)}. Suppose n > 3. Then Sdq+3(projy,f)

= c,+4projy) - c?+4(/) = 0 and {dq + 3(projy,f)} G H\Y; -nq+3Y) = 0. Hence

there is a homotopy F: f^fx (rel y1 X /*) with f\\Y>xi* = ProV Let g: Y2 X

Iq+X —>• Y be F|y2x(/,x/). Then g represents an element of irq+i(Ylr Y ') such that

dq + 3(pTojy, 3<g» = dq+3(pro)y,f). Moreover </,> = </> - 3<g> so </,> repre-

sents the same element of Kq as </> did. Inductively, for 4 < k < n - 1, assume

/ilr'-'x/* = Proj,. We have {dk+q(projy,fx)} G Hk(Y, irk + qY) = 0. Therefore/, is

homotopic to a map, again called/,, such that/,| y*x/» = proj^,. This completes the

induction. Let¿„</> = K + i(proj,,/,)} G H"(Y; ^n+qY).
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We must show this assignment is well defined. Suppose </{> is another homo-

topy class with f'x\Yn^ix/, = proj^ and f[^f (reí Y1 X Iq). Then /, ~/~/,'

(rel y1 X Iq) and we must show /, »/¡ (reí Y"'2 X I"). For n = 3, this is

automatic, so assume n > 3. Let G: Y X Iq X I -» Y be a homotopy from /,

to /,'. Inductively, for 2 < k < n — 2, suppose G|r*-ix/,+ i = proj^. Then

{<*<,+i)+*(P">j,, G)} G H\Y; n{q+X)+kY) = 0 so G is homotopic (rel y X dlq+l)

to a new homotopy, also called G, with G|y*x/,+ i = proj^. This completes the

induction; thus/, a/¡ (rel y""2 X /«) so </„</,> = ¿„</i>.

Clearly, </„ is a surjective homomorphism. It remains to show */„ is injective.

Suppose dn(f} = 0. By the preceding argument, we can find </,) with/,|r»-ix/,

= proj,, </„</,> = 0, and/^/, (rel Yl x I"). Let #:/=*/, =*prcg, (rel y' X /«).

Letting g = //|y.2X/,+i, we have </> = 3<g>, so </) represents the zero element

ofÄ,.    D

I.D. An important example. The following example illustrates the techniques we

use for computing homotopy groups of mapping spaces, and it is pertinent to the

manifolds we will be considering. Let X = S"~l X I. We regard it as a cell

complex with six cells: two 0-cells * X {0} and * X {1}, one 1-cell a = * X I

connecting the 0-cells, two (« - l)-cells S"~l X {0} and S""1 X {1}, and one

«-cell t. Letting C = 3^, B = a u 3A", and A = X, the fibration of § 1 .A becomes

XlX,oudX] _^ ^[X,3X] _^ j^laudX.dX]

It is not difficult to observe that xiaudx'dx] = Ar[<,,3°1 =s SIX and, because the

attaching map of t is null-homo topic, that xlx'auax] s* Ü"X. Therefore the homo-

topy exact sequence for the fibration becomes

It is a lengthy exercise (written out in [M2]) to check that, up to sign, Dq(u) equals

the Whitehead product [z, u] where z is a generator of irn_x(X) sa Z.

For the calculations of §§3 and 4, we should describe the isomorphisms dx:

^+Ax[ou*x,SX]) m ^¿x) and dn: v^*"»***) - nn+q(X) more explicitly. Let/:

(a u dX) X Iq+1 -> X represent an element of wq+x(Xlaudx'3xt); then the restric-

tion of / to 3* X Iq+l u (a u 3*) X 3/,+ 1 equals the projection map to X. We

define </,</> to be the value of the difference cochain dq+2(f, proj^) on the

(q + 2)-cell a X Iq+l. The definition of dn is similar.

2. Connected sums of aspherical manifolds. The letter M will always denote a

connected sum MX#M2# ■ ■ ■ #Mr of r > 2 closed aspherical manifolds of

dimension n > 3. We note that mxM = ttxMx * itxM2 * • • • « irxMr is torsion-

free, since each 7r,A/, is (being the fundamental group of a finite-dimensional

aspherical complex).

2.A. The homotopy groups of M. We will state some results and notation to be

used later. Except where otherwise noted, detailed proofs may be found in [Ml].

The following theorem extends Bloomberg's [B] description of the universal

cover of a connected sum.



SPACE OF SELF-HOMOTOPY-EQUIVALENCES 155

Theorem 2.A.1 The universal cover M of M is homotopy-equivalent to a \-point

union V<-t VgEriw Sg °f (n ~ ^-spheres. Furthermore, the action of irxM on M

corresponds to the left permutation action of irxM on the indices. That is, g, G itxM

sends Sg' homeomorphically to Sg¡g.

We will use e to denote the identity element of a group it.

Definition. A Z-module A = A, is called a w-basis for a Zw-module N if

l.N*®gS.Ag

2. g: Ae^>Ag is the action of w on Ae c N.

It follows that g: Ah->Agh for all g, h G w, and that any element of A can be

written uniquely (up to order of summands) as 2¡=, g¡a¡, where g¡ G w, a¡ G /Je.

Let A1 be a connected simplicial complex with universal cover X. Let v = irxX and

denote by HJ(X; N) the /th cohomology of A" with local coefficients in N (and

finite cochains). The following lemma is standard for the case N = Zir, Ae = Z • e.

Lemma 2.A.2. (a) H}(X; N) = HJ(X; A),

(b) //,(*; A) s H,(X; A).

The proof parallels the proof of the standard case (for details, see the appendix

of [M2]). Using Theorem 2.A.1 and Lemma 2.A.2(a) together with Poincaré

Duality in M, one obtains

Lemma 2.A.3. Let q be a dimension in which irqM has a irxM-basis Aq. Then

{a)H\M;KqM)^ ®'r\*qM.

(b) H\M; <nqM) = Ofor 2 < j < n - \.

(c) H"{M; -nqM) m Aq.

We will first describe Aq for 2 < q < 2n — 4. Order the elements of it arbitrarily

as gx, g2.For k > 1 let Tk = V*-, V£j S£ C V,e„ V¡Z\ Sg = T. Then
for all m > 2, ir„(M, *) at wOT(F) = ind lini!. trm{Tk). According to Hilton [H2],

*¿Tk) « © *., ©;:,' w,(Sp and thus *,(D « 0 ge„ &,Z[ *,($/)• SincegxS¿ =

S¿A, it is clear that Aq = © J~{ ^(SJ) is a w-basis for w?r » irq(M).

In dimensions 2« — 3<<7<3/i—6 the first Whitehead products appear. As

above, we have ttn_xM = © 'I,1 ©geir t„-\(Sg), and we may choose generators z'g

of v„_l(Sg) so that gxz'g = z'g g. For each (a, ß) E. tt X tt and 1 < i,j < r — I, let

Z'J$ De a generator of w2n_3(S'^¿), where S^f/s is a copy of the (2« — 3)-sphere

mapped to T in such a way that the induced homomorphism sends z'Jß to the

Whitehead product \zla, zJß]. We will always exclude the case of both / =j and

a = ß. In all the remaining cases, according to Hilton [H2], the image of *m{S¿¿¡) is

a direct summand of mmT for all m, and it will be regarded as a subgroup.

Moreover, using direct limits again, there is a direct sum decomposition when

2« — 3 < q < 3n — 6:

»,(D - 0   0 *,&) e ©    © ,,(3&)
g£7T      1=1 1 <!</      I"" 1

e     © ©      »f(s#).
(a,/3)ewXw    1 <Jt</<r- 1
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Since \z'a, zJß] = (— 1)"   \zjß, z^] there are commutative diagrams for all m:

*m(S&)   -*      *m{M)

(-1)""'|       /"

The action of 77 on ir2„_3(A/) satisfies g ■ zj;£ = zg'™gß. Now let T be a subset of m

having the following properties:

Leer.
2. For every g G ir with g ¥= e, exactly one of g and g ~ ' is contained in I\

Since w is torsion-free, the second condition makes sense. In [Ml] the following

was proved.

Lemma 2.A.4. For 2 < q < 3n — 6, mqM has a tt-basis Aq given in the following

table:

range of q r = 2 r> 2

2 < q < n — 2 0

n — I < q < 2n — 4 *ÁSt) 0 *,(#)
1=1

2n — 3 < q < 3n — 6
«er

©  *■($«') 0 ©     ©   * (5$
1=1 ger  /-1

©    © ©        Vs«)
ge-n^M    Ki<j<r-\

We will also need the following observation, immediate from Theorem 2.A. 1 and

the fact that irxM is infinite.

Lemma 2.A.5. Let q > 2. For every nonzero x in "nqM, there is a g in mxM such

that gx t^ x.

2.B. The relation between E0M and EM. Mk will denote the ¿-skeleton of M. The

evaluation map ev: /—>/(*) gives a surjection from EM to M which is a fibration

with fiber E0M.

Theorem 2.B.I. The exact homotopy sequence for the fibration EQM —* EM ^f M

decomposes into short exact sequences for every q > 1 :

0 -» irq + XM -> -nqE0M -* -nqEM -* 0.

Remark. This holds for q = 0 also, since i7,M is centerless.

Proof of the theorem. This will be a consequence of

Lemma 2.B.2. Suppose g: M1 X Iq —> M and g\M'xdIi = projw. Then g is homo-

topic (rel A/1 X 3/9) to a map g, with g\\MoXI, = projw.

Deferring the proof of the lemma for a moment, we consider an element

</> G irqEM. Then /: M X Iq —> M with /|Wx8/, = proj^. Applying the lemma
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to f\M'x/i> we can homotop f\MiXJ* and hence / (rel M X dlq) so that /|.x/« =

prqjV Thus ev#</> = </(* X /')> = 0 G -nqM.    D

Proof of Lemma 2.B.2. For q = I, </(* X /)> is central in ir,(M, *), which has

trivial center, and the result follows easily. Assume q > 2. Consider d =

dq(projM,g) G Cq{M X Iq; irq(M)). We have 8dq = c,+ 1(projM) - cq+x(g) = 0

since both extend to the (q + l)-skeleton. We will show that Sdq = 0 only if

dq([* X I"}) = 0.

We may assume that the paths used to define the local coefficient system are the

unique paths in some maximal tree in the 1-skeleton of M. Let a be a 1-simplex in

the tree with 3a = t - *. Then 0 = 8dq[o X Iq] = dq[r X Iq] - dq[* X /«]; hence

dq[f x Iq] = dq[* X I9]. By induction on the distance of t from * in the maximal

tree, we have dq[r X I9] = dq[* X I9] for every 0-simplex r of M.

Now suppose a is any 1-simplex not in the maximal tree, representing an element

g„ G -nxM. Then 0 = 8dq[a X I9] = gadq[o(\) X I9] - dq[a(0) X I9] so dq[* X I9]

= g„dq[* X /*]. Therefore gdq[* X I9] = dq[* X /"] for every g G ir,A/. By

Lemma 2.A.5, this implies dq[* X I9] = dq[r X I9] = 0 for every t G M°. There-

fore the image of t X /' is a null-homotopic ^-sphere based at t, so we can

homotop/(rel M X dl9) so that/|Mox/, = proj^, which was to be proved.    □

2.C. A cell structure for M. We describe a cell structure for M that will facilitate

our calculations. For 1 < / < r let M[ = A/,-open ball, and let S, = 3A//. For

1 </</■- 1 let Xi: = 5"_l X / be a collar neighborhood of S¡ in M¡, so that

S¡ = S"'1 X {0}. Give each X¡ a cell structure as in §1.D. Let a„ 1 < / < r - 1, be

the 1 -cell in Xt, and assume that a, n S¡ is the basepoint of M[. Give the rest of M[

any triangulation, for 1 < i < r — 1, and give M'r any triangulation. Form the

1-point union of the M[ for 1 < i < r — 1, and glue S, to its boundary V'-J ^, to

form M.

The convenience of this construction stems from the following observation.

From the proof of Theorem 2.A.1, the inclusion V¿^í S¡ —* M sends

iî"„_,(V^=i 'S/) isomorphically to An_x = © ¡£{ ir„_x{S'e), a w-basis for mn_xM. If

■nqM has a ir-basis, then an element of Hn_x(M; "nqM) a* Hn_x(M; Aq) (by Lemma

2.A.2) can be represented as 2't~\ 2*.,-*¿gJLS¡J, - 2^}(2JLta^X5#'j -
2-:! JeJÍ,'], where x,. G ir^M.

3. Calculations of ir?(FAf). All cohomology will be with local coefficients.

3.A. An exact sequence for tt (EM).

Theorem 3.A.I. For 1 < q < 2n — 5 there is an exact sequence

. . .^H\M; ir9+2M)^//"(M; -nn + qM) ^-nq(EM)

^H\M; <nq+xM) 5 //"(M; ir„+,_,M) -♦...-.

Proof. Using the diagram of fibrations discussed in the introduction with

y = M, and noting that for q > 1, irq(MlM,0]) = trq(EM), we obtain an exact

sequence for each q > 1 :

£>, ¿V,
/,-»Ä,-nr,(£M)-»Vi  -*  Vi"
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In this sequence,

Jq = coker(^+,(A/^2^'>) -» «q+i{M^)),

Kq = coker(3: i7,+ ,(A/["2 *'>) -» nq(M^-Ml%

and Dq is induced by 3: wq+x(MlM2'0i) ̂ > trq(MlM'M\ The theorem is immediate

from the following two lemmas.

Lemma 3.A.2. For q>Q,Jq= H\M; mq+1M).

Proof. By Lemma 2.B.2, w,+ 1(M[Ai2*1)-» i79+l(M[A,2*)) is surjective. Therefore

Lemma l.B.l applies.    □

Lemma 3.A.3. For 0 < q < 2m - 5, Kq » H"(M; irn+qM).

Proof. By Lemma 2.A.4, trp+qM has a ir-basis for 2 < p + q < 3n — 6. There-

fore when 3 < p < n - 1, the condition 0 < q < 2w — 5 guarantees that irp+q(M)

has a 17-basis. By Lemma 2.A.3, H"(M; np+qM) = HP~\M; irp+qM) = 0, so

Lemma l.C.l applies.    □

Corollary 3.A.4. For 1 < ç < n — 4, mqEM at ^4„+9, /levicé* is finite.

Proof. For these dimensions, ^49+2 = 0 = Aq+X by Lemma 2.A.4. Therefore

H\M; mq+2M) = 0 = //'(M; -rrq+xM), so i7?(£M) « //"(Ai; irn+qM) ~ An+q,

using Lemma 2.A.3.

3.B. Calculation of Dq. To compute Dq, we first define a homomorphism k:

H\M; Ttq+2M) -> Trq+x(MlM2'0Y) such that dx ° k = identity, where dx is the homo-

morphism of Lemma l.B.l. Recall the cell structure for M described in §2.C. Given

a generator x,[S'] G Hn_x{M; vq+2M) s H\M; itq+2M), let/: ((A/ - int(*,)) u

o¡) X I9+' —> M be a map such that

/|(«-int(^))x/'+l = ProJM. andi^+^proj^.^fo,. X /9+1] = x¡ G irq+2{M, *).

Define A:(x,.[S']) = </Uax/,+ ,>.

Since /)? is induced by 3: ■nq+x(M[M2^) -* irq(M[M'M\ we have Dq = dn ° d ° k,

where </„: ir?(A/IWA/21)-> //"(M; -nn+qM) is defined in Lemma l.C.l. The calcu-

lation of 3</|W2x/»+>> is exactly analogous to the calculation of Dq in the example

of §1.D. The generator z there of trn_x(X) corresponds to the element z'e of

ir„_,(A/, *) (defined in §2.A). The group trq+2X is replaced by ir9+2(A/, *) and

tTq(X[x-au3x]) is replaced by irq(MlM-M\ Therefore 3A:(x,[S']) is representable by a

map / which equals projM on (M — (small ball in X¡)) X lq and such that

«Wproj^MM X Iq,M X 3/*]) = [z;, x,\ Hence Dq(Xi[S']) = ¿n</> =

{[z¿, x,]} where the curly brackets indicate an equivalence class in H"(M; Tn+qM)

= ■*„+<,(**)/ttx(M) = An+q. We have shown

Proposition 3.B.I. Dq(2'-\ x¡[s']) = X£j {[*.', *i» G ^ln+9.

We will now determine ker />„_3 and coker F>„_3 using the results and notation

of §2.A. For q = n — 3, we have [z'e, zJy] = z¿fy, so
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r-\

Dn-vHn-i(M;irn.xM)^ ©  mn_xM-*A2n_3
/=i

= ( © «m-M)) © ( ©   ©r »-.-Ä))

©(       © ©    »a-atöi))

given on generators by Dn_3(0, . . . , (z^)„ . . ., 0) = {z¿fy} (where ( ), indicates that

z}y appears in the /th slot) in all cases except both y = e and / = /*. We will describe

the inverse image of each of these summands in order to determine the kernel and

cokernel of D„_3. Let B'_3 = ker(Z)„_3|^ _m = [zj,_]: ir„_,(Sj)^ ir2n_3(S;)),

which is 0 if « is odd and has index < 2 if n is even. Let C„'_3 =

coker(Z)n_3|w (S/}), which is well known to be finite. Observe that

©Í-." ©,er <b-¿$g) is in the image of F>„_3 since Dn_3(0, ..., (zy% • • • , 0) =

{z¿-'y}, and the inverse image of {z'e''y} consists of (0, . . ., (zy)¡, . . . , 0) and

(0, . . . , (— l)"_1(z^_,)„ . . ., 0). Therefore the kernel contains ©y6r (Z)y, where

(Z)Y sZis generated by (0, ... , (z^ - (- l)""^.,),., . . ., 0). Explicitly, we have

oB-3(a.... w - (-ir-'<-,), • • •, o) = {[4 <]} - {(- \r\zt, z;_,]}

= {[«]) - {[*l-»4\) = {[«]} - {y-'[z;,z;]} =o.
Finally, ©yew ©i<,<,</--i "2«-3Í ■$»,') is m tne image of D„_3 and the kernel of

the inverse image of {z^y} is generated by

(o,...,(z>),,...,(-(-ir-'z;-1)>,-.-,o).

Explicitly, we have

Dn_3(0,...,zil,...,-{-\y-yzy_x,...,0)

Collecting this information, we state

Lemma 3.B.2. coker(F>„_3) s © rt~\ C'n_3 and

ker(/)n_3) a ( ©   2?„'_3) © ( ©     ©' z) 0 ( © © z).
\/ = l /        \yeT   /=1      /        \yE7r   !</</<r-1      '

Corollary 3.B.3. For n > 4, trn_3EM is finite.

Proof. In this case, the exact sequence of Theorem 3.A.1 yields mn_3EM »

coker(F>„_3) a © rr\ Q-3-   D

Corollary 3.B.4. -nn_2EM is infinitely-generated as an abelian group.

Proof. In Theorem 3.A.1  we have a surjection irn_2(FM) —»ker(Z)„_3) and

ker(F>„_3) is infinitely-generated by Lemma 3.B.2.    fj

Corollary 3.B.5. Lei Af3 ¿>e a connected sum of aspherical 3-manifolds. Then

ir,(EM3) is infinitely-generated.
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Proof. Take n = 3 in Corollary 3.B.4.    □

4. Homeomorphisms of nonirreducible 3-manifolds. Let HX denote the path

component of id^ in the group Homeo(A'); then HX c EX. Throughout this

section, we will assume M = Mx# ■ • ■ #Mr is a connected sum of r > 3

aspherical 3-manifolds.

From Theorem 3.A.1 we have a homomorphism

D0:H\M;tt2M)^H3(M;tt3M)

and a surjective homomorphism j: ttx(EM) —> kernel(Z)0). Let /: i7,(//A/, idM) —»

17,(FM, idw) denote the homomorphism induced by inclusion. The remainder of

this section will be devoted to the proof of

Theorem 4.1. The image of j ° i contains an infinitely-generated direct summand of

kernel (D0). Hence ttx(HM) is not finitely-generated.

4. A. Isotopies of S2 X I. Let X = S2 X /.We regard 52 as the unit sphere in R3.

Since SO(3) preserves 52 we have SO(3) c HS2 (it is actually a deformation

retract [K]). Let SO(2) c SO(3) be the subgroup of rotations that leave the points

(0, 0, 1) and (0, 0, -1) fixed. Let t: (/, 0, 1) -h> (50(2), id, id) be the path such that

t(/) is rotation through an angle of 217/; then t represents a generator of 77,(50(2))

a Z (and hence represents a generator of 17,(50(3)) = Z/2Z). We will now use the

results and notation of §l.D. We define a level-preserving homeomorphism /:

X —> X by fix, s) = (t(s)(x), s). Assuming that the l-cell a equals (0, 0, l) X /, we

see that/ represents an element of i70(A'[Ar'3*u''1) at tr3(X) » Z. It is known that the

difference class d3(f, id^) is a generator of this group (see [HI, p. 85]). In the exact

sequence of §1.D,

ir2XlZ^\3X -» ^(A-t^l) -> 0

the homomorphism [z,-] is well known to have image 2Z c Z; hence ir0(Xlx,dX*) is

isomorphic to Z/2Z and / represents a generator of this quotient group. Now if 6:

(I X I, 3/ X /) -> (50(3), id) is a nullhomotopy with 0(s, 0) = t\s), 9(s, 1) = id,

then F: X X I —> X defined by Ft(x, s) = F((x, s), t) = (0(s, /)(•*), ■*) is an isotopy

from/2 to id^. Under the identification TTx(X[°udx'!)Xt) as tr2(X), the restriction

F\au3x represents a generator since 3<F|„) = <F0) = </2>. We choose the gener-

ator z of i72(X) such that dx((F\a))([o X I]) = z. Note that F_1 is an isotopy from

(/-')2 to id^, with ¿,«F-1|<f»([a X /]) = -z.

4.B. The 3-manifold Z. Let Xx and X2 be two copies of 52 X /, and let

B = D2 X I. Let Z denote the 3-manifold-with-boundary obtained by identifying

Dx = D2 X {0} with a disc in 52 X {1} c 3*, and D2 = D2 X {1} with a disc in

52 X {1} c dX2, by orientation-reversing homeomorphisms. We assume these

discs do not contain the 0-cells a, n S2 X {1} c dXx and o2n52X{l}c dX2.

We will use 5, to denote 52 X {0} c dXx and 52 for 52 X {0} c 3*2. Let 53

denote the remaining boundary component of Z, so that the oriented boundary of

Z is 3Z = 5, (J 52 u ( — 53). We choose a nice collar neighborhood X3 of 53 so

that a, n X3 = a, has the form (a, n 53) X / = (0, 0, 1) X / and o2(~) X3 = a2
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has the form (a2 n 53) X / = (0, 0, -1) X /. We will define two isotopies of Z.

The isotopy G is defined by

F,(x, s)    if z = (x, s) G X3,

z if z G X3,
Gt(z) = G(z, t) =

and the isotopy H is defined by

H,(z) = H(z, t) =

F,(x, s) if z = (x, s) G Xx,

Ft-\x,s)     if z = (x, j) G X2,

z if (z, r) G B X I.

We make the important observation that G0 is isotopic to H0 by an isotopy which is

fixed on a, u o2 u 3Z. This observation appears in the thesis of Hendriks [HI, p.

103].

We will now construct a nontrivial element of Trx(Ziz,dZ^). Let a = a, u a2 c Z.

From the fibration z[Zou8z] ^ Z[Z3Z]-* Z[ou8z3zl we obtain a commutative

diagram

77,(Z'Z'3Z])        -+     17,(Zt"U3Z'3Z]) A 770ZlZ'"U3Z1 -,        170(ZfZ'3ZJ)

_/ \ ^ii = d3l » /•

//■(Z, 3Z;i72Z)   -Í   //3(Z, 3Z; i73Z)

Now Z ä 5, V 52, so using the results of Hilton [H2] we may write i72(Z) » i72(5,)

© "2(^2) and ^(Z) = i73(5,) © i73(52) © i73(5, j) where 5U is a 3-sphere. Let

z,, z2 be generators of i72(5,) and i72(52), respectively, such that the homotopy

class represented by the oriented sphere 53 equals z, + z2 G i72(Z). Then the

Whitehead product z, 2 = [z,, z2] corresponds to a generator of i73(5,2) c ^(Z).

Let z,„ 1 < / < 2, be the generators of 7r3(5,) so that [z„ z¡] = 2z,,. We have

//'(Z, 3Z; i72Z) =ZffiZffiZffiZ where the summands are generated by the

cocycles did, 1 < i,j < 2, such that di{ai X I] = zy and d¡j{ak X I] = 0 if k ^ /.

We also have H3(Z, 3Z; i73Z) a i73(Z) s Z © Z © Z generated by the cocycles

c,,, c22, and c, 2, where c, ,([Z, 3Z]) = z,, and so on. Let c2 , = c, 2. As in §3.B, it

follows that the homomorphism D0 is given by D0(d¡j) = c,^ if i =¿=j while D0(du)

= 2c,,. Therefore the kernel of D0 is generated by dX2 — </2,i- From the discussion

of F: AT X / —> X, we have i/,<//|0> = */,_, - i/22. To find dx(G\a}, we see from

the definition of G that dx(G\a}([ox X I]) = z, + z2; hence ¿,<G|„> = </,_, + rf,2

+ ad2 , + )8i/22 for some a, ^ G Z. Since G0 is isotopic to H0 with a held fixed, we

have D0(dx((G\a})) = /^(é/,«//!,,))) = 2c,, - 2c22. From our formula for D0 we

also have

D0(dx«G\a})) = D0(dhX + du2 + adxx + j8áy)

= 2c,, + c,2 + ac2, + 2ßc22;

hence a = ß = -1 and i/i«G|0»([a2 X /]) = -z, - z2. The identity map of Z is

isotopic to G0 ° //0~ ' by an isotopy which is fixed on a u 3Z. Define an isotopy /:

Z X I -, Z so that for 0 < / < \, J is such an isotopy, while J(z, t) =

(G2(_, « H2l]_x)(z, t) for \ < / < 1. Then7 is a loop in Homeo(Z) and regarding/
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as a loop in Z1Z-3Z] we have dx(J\a) = rf,<G|0> - ¿,<//|„> = dX2 - d2x. That is,

j(J > is a generator of kernel^n).1

4.C. Isotopies of M. To construct isotopies of M, we will use the cell-complex

structure of M defined in §2.C. Since V<-| X¡ CM is simply-connected and

contains the basepoint * of M, a path in M with endpoints in \A~ J .Y, represents a

well-defined element of i7,(A/, *). We may represent any element <a> G

i7,(M3) * • • • * 17,(71/,.) c w,(M) by a nicely-imbedded arc am M that runs from

Xx to X2 intersecting them only in its boundary. We can imbed Z in M so that

1. Xx c Z is mapped homeomorphically to X, c A/, carrying the basepoint

ax D 53 to *.

2. D2 X I c Z is mapped to a tubular neighborhood of a that intersects

Xx u X2mD2 X dl.

3. X2 c Z is mapped homeomorphically into .Y2 — *. (This will reverse the local

orientation, when a is orientation-reversing.)

Such an imbedding induces an injection 772(Z, a, n 53) —> ir2(M, *) given on

generators by z, -, z] and z2 -» z2.

The isotopy Ja of A/ is of course defined to be J on Z c M and the identity

outside Z. Now «^«-/Ja,*» = ¿a is the element of Hl(M; m2M) such that

4.<L°k X /]) = 0 if 3 < A: < r - 1, da([ax X I]) = z2, and da([a2 X I]) = -zj-,. The

last formula differs by the action of a-1 from the corresponding calculation for

</|„> G i7,(Z'0'8"1), since in M we use a path in X2 to base the homotopy class that

is the value of the difference cohomology class dx(Ja proj^) on [a2 X I], rather

than a path in Z that follows along a back to Xx. Under the isomorphism

H\M; m2M) a © £j i72(A/), dx((Ja\M^) corresponds to (z2, -z^-,0_0).

Regarding the/a as loops in EM, we haveX-O = (za' — zc¡'>0> • • • , 0); hence the

elements j(Jay, a G i73(A/) * • • • * irr(M), generate an infinitely-generated

summand of kernel (D0), using Lemma 3.B.2. This concludes the proof of Theorem

4.1.    □

Question. Can the generators of kernel(D0) of the form (zy - zy-i, 0, . . . , 0), or

of the form (z2, — zy-\, 0, . . . , 0) where y involves elements of i7,A/, * -nxM2, be

realized as the images j(Jy ) of loops Jy in H Ml
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