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UNIQUENESS OF PRODUCT AND COPRODUCT  DECOMPOSITIONS

IN RATIONAL HOMOTOPY THEORY

BY

ROY DOUGLAS AND LEX RENNER

Abstract. Let A" be a nilpotent rational homotopy type such that (1) S(X), the

image of the Hurewicz map has finite total rank, and (2) the basepoint map of M, a

minimal algebra for X, is an element of the Zariski closure of Aut(A/) in End(M)

(i.e. X has "positive weight"). Then (A) any retract of X satisfies the two properties

above, (B) any two irreducible product decompositions of X are equivalent, and

(C) any two irreducible coproduct decompositions of X are equivalent.

Introduction. This paper is primarily concerned with the uniqueness of irreduc-

ible factors in decompositions of rational homotopy types as products and as

coproducts (one-point unions). Uniqueness is demonstrated with respect to both

products and coproducts, for simply-connected, positive weight, rational homotopy

types for which the spherical cohomology is finite dimensional.

There are no known examples of rational homotopy types which fail to satisfy

either unique factorization property. Indeed, we conjecture that no such examples

exist. This contrasts sharply with the situation in certain more structured geometric

contexts; specifically, the noncancellation examples due to Hilton and Roitberg

(see [10]) illustrate the failure of unique factorization with respect to products

among differentiable manifolds, topological spaces and integral homotopy types. A

similar situation exists for coproducts. Hilton and others have constructed exam-

ples of integral homotopy types which exhibit noncancellation with respect to the

formation of pointed coproducts.

For product decompositions of simply-connected rational homotopy types hav-

ing positive weights, previous results [3] confirmed unique factorization in the

"finitary" case ("finitary" means that either the homotopy or the cohomology are

required to be finite dimensional). The "finitary" restriction is removed in this

paper, and replaced by the much weaker hypothesis that the Hurewicz homomor-

phisms are eventually trivial (i.e., have a finite image for all sufficiently high

degrees). Moreover, the results reported here represent a significant generalization

of the topological results obtained in [1], where (product) unique factorization is

proved for formal, simply-connected, rational homotopy types having rational

cohomology finitely generated as an algebra.
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166 ROY DOUGLAS AND LEX RENNER

Recall that a simply-connected, rational homotopy type may be viewed as a

"minimal model" M; here, Ai is a differential graded algebra, whose underlying

algebra is a simply-connected, free, graded-commutative ß-algebra, and whose

differential is a degree 1, graded derivation with decomposable image. For details

regarding minimal models [8], [9] or [17] should be consulted.

End(A/), the set of differential graded algebra endomorphisms of M, is an

algebraic variety (defined over Q) and it is equipped with a Zariski topology.

Aut(A/), the set of in vertible endomorphisms, is an open subset of End(A/). The

minimal model M is said to have positive weight, if the trivial (basepoint) endomor-

phism is in the Zariski closure of Aut(M) in End(A/).

Many familiar spaces satisfy the positive weight condition. For example, all

//-spaces and co-//-spaces, many homogeneous spaces, all formal spaces, and all

nonsingular complex varieties [13] have positive weight.

The unique factorization problem may be posed more generally by considering

nilpotent rational homotopy types. In this case, for products, the same methods

yield an affirmative solution. However, any nilpotent rational homotopy type

which is not simply-connected must be irreducible with respect to coproduct. Thus,

the unique factorization of nilpotent rational homotopy types with respect to

coproducts trivially reduces to the simply connected case.

1. Products, coproducts and splitting idempotents. In this preliminary section an

easily verifiable categorical criterion is discussed. Definition (1.1)—(1.4) below is

motivated by the question: Under what conditions are product and coproduct

splittings determined by idempotents?

Let A be a category with C and P objects of A.

Recall that a product structure on P is a collection of morphisms {ira: P —* Pa\a

G J} such that

HomA(*, P) -,    u   HomA(X, Pa)

is a bijection for all objects X of A.

Dually, a coproduct structure on C is a collection of morphisms {ia: Ca -* C\a G

/ } such that

HomA(C, X) -,   u HomA(Ca, X)
(<i) «e/

is a bijection for all objects X of A.

Definition. A category A is called I-split, if it satisfies

(1.1) A has a zero object.

(1.2) A has finite products and finite coproducts.

(1.3) If / G HomA(A, A) satisfies/ ° / = /then there is a factorization

A -H» A

P \i ? i

B

such that/7 ° / = \B.
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(1.4) For each object A of A there is a finite cardinal mL4 ) such that if

A s n,e/ A¡ (or A at Uml A¡), then card(/) < n(A).

For the remainder of this section A will always denote an /-split category.

Note. The factorization of (1.3) above is unique up to canonical equivalence in A

because

B^>A =J A

is an equalizer and

A =$ A -, B
.       p

is a coequalizer.

For any object A of A let EA = HomA(/l, A) and GA = AutAL4).

Because of (1.3) above a product structure (resp., coproduct structure) on P,

P -» u Pa (resp., II Pa -, P) is equivalent to a collection {ea} Q Ep such that

(1.5) ea ° ea = ea for each a.

(1.6) e   » e„ = 0 if a ^ ß.

(1.7) P -» LI Fa (resp., II Fa —> F) is an isomorphism where ea = ia ° pa is the
(Pa) ('»)

factorization of (1.3).

Product structures (resp., coproduct structures) will be called Yl-splittings (resp.,

U-splittings). A Il-splitting (or H-splitting) will be called irreducible if each factor Pa

is nontrivial and has no nontrivial Il-splitting (resp., H-splitting).

Two splittings are equivalent if they have isomorphic factors.

Observe that GA X EA —> EA, (g,f)r-* gfg~x is a group action for each object A

of A. If the Il-splitting P -, IT Pa (resp., H-splitting LIP^P) is given by {ea} as
(/>«) ('«) ,

in (1.5)—(1.7), then the Il-splitting (resp., H-splitting) obtained from {geag   } is

equivalent to the one obtained from {ea} for any g G GA.

1.8. Lemma. Let {ea} <Z EA be a H-splitting (resp., H- splitting) of A and let f G EA

satisfy f = f ° f and f ° ea = ea ° f for all a. Then {ga} Ç EB is a Tl-splitting (resp.,

U-splitting) of B, where

A -, A

<7 \ Pj

B

(from (1.3)) and ga = q ° ea °j.

Proof. {ga} <z EB is a collection of commuting idempotents. Let ga — va ° fta

where

g
B 4 B

ft.  \ /> Va aIld M«   °  "a  =   U-

a
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Also let sa= pa°j ° va:  Ba>-^Aa, ra = ju.a ° q ° ia: Aa^> Ba. Observe that

ra ° sa = \B . Thus we have

11(0 "('«)

U5a       -,       UAa       -,       UBa

(Oi Wa) !("«)

B -h> A -h» B
j i

(K)i Up«) 4(fe)

UBa       -,       I[Aa       -,       IlBa
n(ia) n(r„)

where (H(rJ) o (U(sa)) = lua_, ri= la, and (11(0) o fliOJ) = 1BV

Thus the result follows in either case because a retract of an isomorphism is an

isomorphism.    Q.E.D.

1.9. Proposition. Let A be an object of A. Suppose (e,, . . . , en) and {fx, . . . ,fm)

are irreducible W-splittings (resp., II-splittings) of A. If ea ° fß — fß ° eafor all a and

ß, then m = n and the splittings of A are equivalent.

The proof of Proposition 1.9 is a straightforward application of Lemma 1.8 and

is left to the reader. (A model for the proof may be found in the proof of Theorem

2 in [2].)

We say that two splittings (either LI or H) {ea} and {fß} of A are compatible if

there exists g G GA such that ea ° g ° fß ° g~l = g ° fß ° g~l ° ea for each a and ß.

1.10. Corollary. Let A be an object of A. // all irreducible W-splittings (resp.,

H-splittings) of A are compatible, then they are all equivalent. In fact, any two such

splittings are conjugate.

Corollary 1.10 follows directly from Proposition 1.9.

Remark. Assume that A is skeletally small. Let A' be the set of isomorphism

classes of objects of A. Then the conclusion of Corollary 1.10 is equivalent to the

assertion that A' is a free commutative semigroup under II (resp., H). (Here,

"skeletally small" means that the class of isomorphism classes of objects in the

category form a set.)

2. Splittings of minimal algebras. In this section and the next we prove our main

results. Most of the discussion is focussed on proving the following two assertions.

(A) The category ^P of minimal algebras with positive weights is /-split (Defini-

tion (1.1)-(1.4)).

(B) Every object M of 9 satisfies the assumptions of Corollary 1.10.

Before proceeding to the details we outline the structure of the proof of (B).

Observe that Aut(M) Ç End(Af) is an open imbedding of an affine <2-group in

an affine variety (cf. Remark 3.1, below).

If M is an object of 9 and M —> II Ma is an isomorphism, then (up to homotopy)

{ea} Q T Ç Aut(Af ) (Zariski closure) where
ea

M -, M

Pa    ^ ?   '«
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as in (1.7) and F is a (2"sPnt torus. (This is part of the reason for our categorical

strategy of § 1.) Thus any splitting adheres to a maximal ö-split torus.

Maximal Ç-spht tori are conjugate. Thus any two irreducible splittings are

compatible; in fact, they are conjugate.

2.1. Notation and definitions. A differential graded algebra (d.g.a.) is a pair (A, dA)

where A — © n>oA" is a nonnegatively graded, associative algebra over Q with

identity, such that a • b = (-\yqb • a for a G Ap and b Œ Aq, and dA is a degree 1

derivation such that dA = 0.

A morphism of d.g.a.'s is a graded algebra map which commutes with the

differentials.

A d.g.a. A is called connected if A0 ^ Q and simply-connected if in addition
Al=0.

Note that if A is connected then A has a unique augmentation eA : A —» Q.

For the purposes of this paper we make the following definition.

A minimal algebra is a d.g.a. M such that M is simply-connected, M" is

finite-dimensional for all n, M is free as a graded commutative algebra, and

dM(M) Ç M+ ■ M+ (the image of dM is decomposable).

A minimal algebra M has positive weights if there is a direct sum decomposition

M- ®a,n>0aMn such that M"= © a>0 aM", dM(aM") C „M"+1, aM ■ ßM

G a+ßM and 0M = M°. Such a direct sum decomposition is called a positive

weight splitting.

In general a given minimal algebra may possess many distinct positive weight

splittings, or none at all.

2.2. Remark. A very satisfying topological interpretation of this condition is

given in [4]. One striking feature is the following: Let Jbea finitary simply-con-

nected C.W. complex and let Mx be its minimal algebra. Then Mx has positive

weights if and only if there is a prime p and a map X^,: X ^> X such that X^:

Mx —» Mx is an isomorphism and

\. ® 1 : irm(X) ® Z/pZ -, <irt(X) 8> Z//>Z

is the zero morphism. Furthermore, this is independent of the prime/?.

2.3. The category 9. Let M be a minimal algebra and let Z(M) = {x G A/|í¿t =

0}, A/+ = © k>0 Mk and g(M) = M + /(M+ ■ M+).

There is a linear map

Z+(A/)-+A/ + -w Ö(M)

which is inclusion followed by projection (the "Hurewicz map"). Let S(M) =

Image(i7 ° j).

The category ^ has as its objects the minimal algebras Af such that M has

positive weights (2.1), and dimß S(M) < oo. The morphisms of 9 are the d.g.a.

homotopy classes of d.g.a. maps.

Note that d.g.a. homotopies can be defined and computed with either a path or a

cylinder object. This is, if /, g: A/—» N are d.g.a. maps then/ is homotopic to g
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(/=¿ g) if either

N 0/

FS I (eo,ex)

M       -,        N X N

commutes for some d.g.a. map F, or

M

(VA,)  î \ G

M ® M      -+      N
(/>«)

commutes for some d.g.a. map G.

An explicit development of both these notions and their interrelationship can be

found in Chapters 5 and 11 of [9].

In order to prove that the category "? is /-split (so that we are able to apply

Corollary 1.10) we shall have to exploit the good behaviour of homotopies under

the passage to inverse limits (a property peculiar to the rational homotopy cate-

gories).

2.4. Lemma. Let f, g: M —» A be d.g.a. maps, where M is minimal and both M and

N are finite type. Then / ~ g i/ and only if /„ cs gn for all n, where /„ = f\ Mn and Mn

is the subalgebra generated by elements of degree < n.

Proof. In [6] the functors A : S -» DGA and F: DGA X DGA -* S are defined

where S is the category of simplicial sets.

A is the simplicial de Rham functor and F is the simplicial function space

construction for DGA. Further [6, p. 251 the adjunction

$: HomDGA(A/, A(W) ® A)-»Homs(W, F(M, A))
■I

is proved under mild assumptions ( W finite or M finite type). The following facts

are then deduced:

(i) If /': M -> M' is a cofibration, then F(M', N) —» F(M, N) is a Kan fibration

[6, p. 26].
(ii) If M is minimal then [A/, A] s i70F(M, A) where [ , ] denotes d.g.a.

homotopy classes [6, p. 32].

An induction argument (similar to Lemma 2.7 of [16]) shows that for M' finitely

generated minimal, irr(F(A/', N),f) is a g-nilpotent group for r > 1 (A finite type).

We can write for M finite type minimal Q C Mx Q M2 C ■ ■ ■ Ç ind limn Mn =

M.

By (i) above we obtain a tower of Kan fibrations F(M, N) = proj lim„ F(Mn, N)

_>...._» F(M„, N) -» • • • -> *.

If further we let /„ G F(Mn, N) be the basepoint we have the following exact

sequence of sets (see [7, p. 254])

* -* proj limi i7,(F(A/n, A)) -, i70(F(M, A)) -, proj lim„ i70(F(A/„, N)) -» * .

But proj lim¿ -nx(F(Mn, A)) « * because the inverse tower of nilpotent groups

{i7,(F(A/„, A),/,)} satisfies a Mittag-Leffler condition. Thus,

[A/, A] « i70(F(A/, A)) a proj Lim, i70(F(A/„, A)) * proj lim„[A/„, A].
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Remark. The proof above relies on simplicial techniques. Alternatively, a topo-

logical argument, based on Lemma 2.7 of [16], can be constructed using elementary

obstruction theory. It is curious that no elementary algebraic proof is available.

2.5. Proposition. The category ty is I-split.

Proof. Q, the d.g.a. concentrated in degree zero, is the zero object of 9.

9 has finite coproducts. For if M and A are objects of 9 then so too is M ® A.

If A/ = ©a>0 aM and A = ©^o ßN are positive weight splittings of M and A

respectively, then M ® N = ©r>0 (@a+ß-y(aM ® ßN)) is a positive weight

splitting of M ® A (where y(M ® A) = ©a + /3_y aM ® pN).

9 has finite products. For if M and A are objects of <? let M X Q N be the

product of simply-connected d.g.a.'s. That is,

M XQN     4     A

M -,      Q

is a pull-back diagram. M X ß A is not minimal, but by Theorem 6.1 of [9] there is

a   minimal  algebra   A/IIA  and  a   map   p:   A/IIA-»A/ XQN   such   that  p*:

//*(A/riA) -, H*(M XQ A) is an isomorphism.

Thus we have

M XQN        t-        MWN       -^        M XQN

A/ TV

where PM and F^ are defined by the commutativity of the diagram.

If L is a minimal algebra and /: L —* M and g: L —> A are d.g.a. maps, then

there is a unique d.g.a. map <¡>: L —» M X Q N such that

P;«<|. = /andP;»(f. = g.

By Proposition 6.4 of [6] the lifting problem

,MWN
i

£,*'-*    Mx0N
<t>

has a solution (/, g): L -» A/IIA unique up to d.g.a. homotopy.

Uf-f and g^g' then (/, g) ~ (/', g'). For let

F:L'-^M,       Rfsxf,

G:L'^N,       G:g^g'.

Then L'-* L1 X L'   -,    M X 0 N is a homotopy: (/, g) ~ (/', g').
A FXqG v

Thus

A/LIA

M N
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is a product diagram in the homotopy category of minimal algebras. A/IIA is an

object of 9 since S(MTTA) = S(M) © 5(A) and by Lemma 3.13 below we can

"lift positive weight splittings over weak equivalences" in this situation. (If M =

©a>0 aM and A = ®ß>0 ^A are positive weight splittings, then M XQ N = Q

© (©r>0(yAi ®y A)) is a positive weight splitting of MXQN. Now apply

Lemma 3.13 to the map p: A/LIA -h> M XQ A.)

If M is an object of 9 and / G Hom^Af, A) satisfies / ° / = /, then there is a

factorization (in <3>)

M -, M

P \ S1 i

A

such that/? ° i = lN. This follows from 3.12 below.

If M is an object of 9 then by definition (see 2.3) dimß S(M) < oo. So if

M at MXUM2 (or MXWM2) then S(M) at S(MX) © S(M2). Also if S(M) » (0) then

M = Q. Thus put n(M) = dime S(M) and M will satisfy the conditions of (1.4).

Summing up, we have shown that 9 satisfies conditions (1.1)—(1.4).    Q.E.D.

Because of Proposition 2.5 our questions about unique factorization in 9 have

been reduced to the study of conjugacy properties of idempotents (by Corollary

1.10). This necessitates the study of the topological properties of Aut(Af) Ç

End(A/) for each object M of 9.

3. Algebraic groups of automorphisms. If A is a finitely generated d.g.a. then

End(A) is an affine (^-variety and A\xt(A) is an affine Q-group. Further, Aut(A) C

EndL4) is an open imbedding.

This follows from the following elementary observations:

End(A) is faithfully represented on a finite dimensional subspace of A.

Preservation of the multiplicative structure is a quadratic relation (hence alge-

braic) and commutation with dA is a linear relation.

AutL4) = det~\Q \ {0}) is open because det: End(A) -» Q is continuous.

3.1. Remark. Properly speaking Aut(A) and End(A) are not algebraic varieties,

but are the g-rational points of the g-varieties Aut(^ ®e K) and End(A ®e K),

respectively, where K is an algebraic closure of Q. This is the point of view adopted

in [5] which is our basic reference for the theory of algebraic groups.

Our slight heresy shall not cause difficulties. (To translate from our terminology

to that of [5], one need only insert the words, "the Ç-rational points of', where

appropriate.)

(3.2) A positive weight splitting on a finitely generated minimal algebra M =

©a>0 aM induces a morphism of (9-algebraic groups (ß-group) \; Q* -^Aut(M)

where \(t)(x) = t" ■ x for x G aM, and t G Q*. Further, X extends to a morphism

of varieties X: Q -, End(A/) such that X(0) = 0MJL_

Thus, if M is an object of 9, then Om G Aut(Af) (Zariski closure) if A/ is

finitely generated.

Conversely, if Om G Aut(Af) then M is in 9 (for M finitely generated).
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The proof of this assertion will only be outlined. A general discussion of toroidal

symmetry of minimal algebras is advanced in [14].

Step 1. If Om G Aut(A/) then Om G T where T Q Aut(Af) is any maximal

(2-split torus. This follows from the following more general result about certain

representation of algebraic groups.

Let G Q Gl( V) Ç Home( V, V) be an algebraic subgroup such that Ov G G.

Then Ov G T where T ç G is any maximal (2"sP"t torus. A detailed proof is

contained in [14].

Step 2. If Oy G T (as above) then there is a one-parameter subgroup (1-p.s.g.) X:

Q*->T such that X extends to X: Q -h. F with X(0) = Ov.

This follows from the following result proved in [11].

If F-» T is a toroidal imbedding (F—> T is an open dominant imbedding and,

T X T^>T extends to an action F X f''-* f), then for any orbit X in f \ T there

is a 1-p.s.g. \:Q*^>T extending to X: Q -, F with X(0) G X.

Thus, the assertion above follows because Ov = T • Ov is the unique point in its

orbit.

Step 3. If X: Q* -> F Ç Aut(Af) is a 1-p.s.g. that extends to X: Q -> End(Af) with

X(0) = Om, then this induces a positive weight splitting on M.

This requires an elementary proof from linear algebra. For each t G Q*, \(t) is

ß-diagonalizable with eigenvalues t" for various integers a. Thus M = © „A/,

where aA/ is the eigenspace of X(/) with eigenvalue /". All weights are nonnegative

because X extends to X. 0M = M° because X(0) = Om.

Thus, we have established the following characterization of finitely generated

minimal algebras M with positive weights:

M has positive weights if and only if Om G Aut(Af) (Zariski closure) within

End(A/).

3.3. Proposition. // M is a finitely generated object of 9 and A is a retract of M,

then A is in 9.

Proof.  From  the remarks  above, we need only prove that On G Aut(A)

(because retracts of minimal algebras are minimal).

Let N -, M -, N satisfy r ° i = \N. This induces
•       r

End(M) -, End(A),       <b(f) = r ° / . i,

a morphism of varieties. Now Om G Aut(A/). Thus Om G (Aut(Af))0 (the irreduc-

ible component of 1). <í>((Aut(A/))°) Q End(A) is irreducible, as is its closure,

<f>((Aut(A/))°). Moreover,

1„ G (Aut(A)) n <f>((Aut(A/))°) = S.

Further, S Ç <f>((Aut(A/))°) is open. Thus,

On G <b( (Aut(A/))°) C <i>((Aut(A/))°) = S.

Therefore, On G Aut(A).    Q.E.D.
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Thus, to complete the proof of Proposition 2.5 we still have to prove the

following two assertions.

(3.4) (Homotopy) idempotents split in 9.

(3.5) Proposition 3.3 is true withoui assuming M is finitely generated. (Thus 9 is

closed under retracts.)

Assertion (3.4) follows easily with the aid of Lemma 2.4. Let e: M -, M

represent an idempotent homotopy class (thus, e c^ e ° e). Now let

A=  H   Imagée"    and   J=  IJ   kernel e".
n>\ n>\

Then A C M is a d.g. subalgebra and J Q M is a d.g. ideal. Futher M = N © J.

Thus

A>-» M —*, A is a retract.
p

A routine verification shows that

' ° p\m„ — Am„    f°r au " > 0.

By Lemma 2.4 / ° p ^ e.

The proof of assertion (3.5) requires the following discussion of pro-algebraic

groups.

(3.6) If M is not finitely generated, then Aut(Af) and End(A/) are no longer

algebraic varieties. However, the situation can be remedied as follows. Every object

M of 9 has a canonical series

Q = A/, ç A/2 Ç • • • Ç ind lim„ Mn = M

(where Mn is the subalgebra generated by elements of degree < ri) which induces

Aut(A/2)     *- • • • ^-      proj lim„ Aut(A/J = Aut(Af)

n n n
End(A/2)     «-•••*-    proj lim„ End(A/J = End(A/).

Thus Aut(A/) and End(A/) are pro-algebraic varieties (inverse limits of algebraic

varieties). In order to make use of this observation we shall need the following facts

from algebraic group theory and general topology.

Let G be a g-group. If ^i&q = (F|F is a finite union of cosets of (2-closed

subgroups of G) u {0} then %G is the set of closed sets for a F, compact

topology on G, the %-topology. If <j>: G -, H is a morphism of Q-groups then <b is

continuous for the % -topology. If Kernel <b is a unipotent subgroup of G then

<}>((?) is a ^-closed subgroup of H [5, p. 363]. Consequently, for such <j>: G —> H, <j>

is a closed map in the ^-topology.

3.7. Projective Limit Theorem. If {X¡, wJ) is an inverse system of topological

spaces and continuous maps such that

(a) for each i, X¡ =£ 0 is compact and Tx,

(b) 17^: X¡ -» Xj is closed for each i > j,

then proj lim. X¡ is nonempty.

Such a system will be called a proper system and proj lim X¡ will be called a

proper limit. For a proof, see [14, Theorem 1.2.1] or [15, Theorem 3].
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(3.8) If M is a minimal algebra, then the natural map S: Aut(Af) -* Aut(S(A/))

has a locally unipotent kernel. That is, for all <J> G Kernel S and all x G M there

exists nx such that (<b — l)"'(x) = 0.

This is easily proved by induction along the canonical series of M. See for

example [17]. Thus we have

.

Aut(S(A/J)

4

Aut(S(A/„_,))

4

If S(M) = S(MN) for some A (for example, if M is an object of 'S5) we have

Aut(S(A/„))

for all k > 0. Hence, Ker rN+kN is unipotent.

3.9. Proposition. Let M be a minimal algebra such that dimß S(M) < oo and let

Gn = Aut(A7„). Then for sufficiently large integers N,

*<- GN <r- GN+ ,<-••

is a proper system of topological spaces for the %-topology.

Proof. (3.6), 3.7 and (3.8) above.

Remark. If Ak Ç Gk are nonempty ^-closed sets and rk¡(Ak) Q A,, then

{Ak, rkJ\A } is also a proper system.

Much of the structure theory of (2_grouPs remains valid for proper limits of

(9-groups [14]. In particular, the following theorem is central to our discussion of

splitting idempotents of minimal algebras.

3.10. Theorem. If {G¡, w*} is a proper system of Q-groups, then there exists

T Ç G = proj lim G, such that

(a) F is a closed subgroup of G (in the ^-topology).

(b) i7,(F) C Gj is a Q-split torus for all i.

(c) F is maximal with respect to conditions (a) and (b).

If S Ç G satisfies (a), (b) and (c) then there exists g G G such that gSg~l = T.

Proof. In the algebraic case (G, = G- for all i and y) this is a standard result (see

[5, p. 263]). The general case follows from two applications of the Projective Limit

Theorem 3.7.

Aut(A/J

4

Aut(A/„_,)     ^

\
■

Aut(AW)

Aut(MN)        ->
5
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Assume for the moment that ■nij: G, -, Gj is onto for i > j. Then each 17^ induces

5"(i7y): <5(Gi)-,(5(Gj) where ^(G^ = {F ç G,|F is a maximal ß-split torus).

S/G,) can be given the stucture of a homogeneous space over G, in such a way that

(S/G,), 9/i7y)} is a proper system. Thus

proj lim ^(G,) is nonempty.

Given {F,} G proj lim ?T(G,) it is a routine verification to show that F =

proj lim T¡ satisfies (a), (b) and (c).

If 5 ÇZ proj lim G, satisfies (a), (b) and (c) then 5, = n¡(S) C G, is a maximal

ö-split torus for each /', and S = proj lim i7,(5). But

TranCf(S„ T,) = { g G G^gS^1 = Tt]

is closed and nonempty for all /'. Thus TranG(5, F) = proj lim TranG(5„ T¡) is

nonempty by the Projective Limit Theorem 3.7.

Hence, the proof is complete once we have justified the assumption that each my.

G, -, Gj is onto.

Observe that G s proj lim 17,(G) and that ir¡(G) = n>>( ^¡(Gf).

Thus G is a proper limit of the proper system (i7,(G), 17^}.    Q.E.D.

For the first application of Theorem 3.10 we complete the proof of the Proposi-

tion 2.5.

3.11. Proposition. M is an object of 9 if and only if Mn is an object of 9 for all n

and dimn S(M) < 00.

Proof. If M is in 9, then any positive weight splitting on M restricts to a

positive weight splitting on Mn.

Conversely, if Mn is in 9 for all n and dimß S(M) < 00 we shall construct a

1-p.s.g. X: Q* -^ Aut(M) such that X extends to X: Q -» Aut M with X(0) = Om.

By Theorem 3.10 and Proposition 3.9 there exist tori T¡ C Aut A/, for each /' > 0

such that proj lim T¡ = T is a maximal torus in Aut(Af). Since tori are faithfully

represented on S(M) (which is finite dimensional) there exists A such that

dim F„ = dim TN and S(Mn) = S(MN) for all n > N. Since ker rkN is unipotent

for A; > A it follows that r¡ y. F( -, Tj is an isomorphism for / >j > N.

By assumption that exist \: Q* -, T¡ (i > A) such that X, extends to X,: Q -,T¡

(Zariski closure) with \(0) = Om.

For 1 > A we have

4- 4
,Ti+1 £     Aut(A//+2)

/    1=* 1
/    „2L.J ç     Aut(A/, + 1)

S y       1* 4
ß*     -*    Tt Q       Aut(A/()
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Thus, there exist unique liftings which make the whole diagram commute. Since

S"(M) = 0 for all n > A, X = proj lim X, extends to X: Q -> f = proj lim ft with

X(0) = Om (since all eigenvalues of X are multiplicatively generated on S(M)).

Q.E.D.

3.12. Conclusion of Proposition 2.5. Suppose A-» A/-» A satisfies r ° i = \N,
i r

where M is in 9. Then Nn -, Mn —» A„, rn ° in = \N . By Proposition 3.3, Nn is in 9

for all n. Then by Proposition 3.11, A is in 9.

Hence we have completed the proof that 9 is an /-split category.

In order to prove unique factorization in 9 we need to prove that any two

irreducible II-splittings (resp., H-splittings) of a fixed object M of 9 are compati-

ble. This too we deduce with the aid of Proposition 2.5.

Let A be a simply-connected d.g.a. of finite type such that p: MA -+ A is onto,

where MA is minimal and p*: H*(MA) —> H*(A) is an isomorphism. Let F Ç

Aut(A) be a ß-split torus and let

B = {(a, ß) G (A\xt(MA)) X T\p ° a = ß ° p}.

3.13. Lemma. In the pull-back diagram

B U T

1Ï Ip*
Aut(MA)      -,     Wom(MA,A)

p.

(a) q is one-to-one.

(b) r is onto.

(c) B —* T splits as a morphism of Q-groups.

Proof. If q(a, ß) = q(a, ß') then ß ° p = ß' ° p. Thus ß = ß' because p is

onto. This proves (a).

Let ß G F. Then in

MA  - — ,   MA

pi 4p
A       -,       A

ß

the dotted arrow exists because p is a fibration and a weak equivalence. (See [6].)

This proves (b).

Kernel(r) = {(cx,ß)\ß= 1}.

That is,

MA      A      MA

p4 4p    if a G Kernel(r).
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Thus a at 1 because the lifting problem has a solution unique up to homotopy. In

particular, Kernel(r) is unipotent. Thus by the Proposition on p. 219 of [5],

B -+, T splits because B is a ß-split g-group.    Q.E.D.

Let M be an object of 9 and suppose M —» WMa is an isomorphism (in 9,
(Pa)

where morphisms are homotopy classes, as in 2.3). Let {ga} Q End^(M) be the

corresponding splitting idempotents (since 9 is /-split). Thus

M % M

Pa   N S  ia

commutes in 9 and ga = ga ° ga in 9 for all a. So if we choose d.g.a. maps

{ea} C End(M), ea representing ga for each a, we have ea ^ ea ° ea.

3.14. Lemma. Let M and {ea} be as above. Then there exist a Q-split torus

T G Aut(A/) and a collection {e'a} Ç. Tsuch that

(a) e'a ^ ea for all a, and

(b) e'a = e'a ° e'a for all a.

Proof. We have a commutative diagram in 9

WMa

(Pa)   S \

M      -,    XQMa
(Pá)

and a homotopy-commutative diagram of d.g.a. morphisms

e„

M -, M

p4 4p

X Q Ma     -,      XQMa
Ja

where/, is projection followed by inclusion and p represents (p'a). Define

Q*x- ■ ■ XQ* X Aut(XßA/a)

nx„ \ /> j

WAut(Ma)

as follows. Let Ma = © ¿>0 k(Ma) be a positive weight splitting of Ma and let

K(t)(x) = '* ' x for x G k(Ma). nXa andj are the obvious maps.

By Lemma 3.13  there is a Q-s\o\it torus F C Aut(A/) such that the lifting

problem

M       --,        M

p{ 4-p
XQM«      7       XQM°

has a unique solution in T for each ß G X(Q* X • • • X g*) = 5._

Since each weight splitting is nonnegative, {/„} Ç S CAut(Xß A/a)and there

are 1-p.s.g.'s ua: Q* -, S which extend to wa: Q —> S with «a(0) = /a. Thus each
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1-p.s.g. coa: Q* —> S has a unique lifting

F

Each u'a extends to w'a: Q -» F again because the weight splittings are nonnega-

tive.

Let e'a =o)'a(0) for each a. Then we have the following strictly commutative

diagram of d.g.a. morphisms:

M        -*■ M

p4 4p

XßA/„      -,      XQMa.
fa

Then ea ^ e'a because they both solve the same lifting problem and e'a = e'a ° e'a

because e'a G f.    Q.E.D.

Thus for any irreducible Il-splitting {ga} of M we can find representative

{ea} ç End(Af) and a maximal g-sP»t torus F Ç Aut(A/) such that {ea} C f.

Another irreducible Il-splitting {ha} yields a collection {/a} of representatives and

a maximal g-split torus S Q Aut(M) such that {/0} Ç S. By Theorem 3.10 there

exists x G Aut(A/) such that x ° T ° x"1 = S. Thus in the category 9 the two

splittings are compatible. By Corollary 1.10 the two splittings are equivalent. Thus

each object M of 9 satisfies unique factorization with respect to the formation of

products. The dual statement (coproducts) is somewhat easier as no lifting lemmas

are needed (the coproduct does not have to be constructed). The details will be left

to the reader.

3.15. Theorem. Let M be an object of 9. Then any two irreducible W-splittings of

M are equivalent.

3.16. Theorem. Let M be an object of 9. Then any two irreducible U-splittings of

M are equivalent.

Remark. The question of unique factorization for p-local (or /?-adic) positive

weight spaces remains open. There is an added challenge to this problem arising

from the fact that there exists no /»-local analogue to the algebraic nature of

rational homotopy types.
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