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WHICH CURVES OVER Z HAVE POINTS

WITH COORDINATES IN A DISCRETE ORDERED RING?

BY

LOU van DEN DRIES

Abstract. A criterion is given for curves defined over Z to have an infinite point

in a discrete ordered ring.

Using this, one can decide effectively whether a given polynomial in T{X, Y] has

a zero in a model for the axioms of open induction.

Riemann-Roch for curves over Q is the main tool used.

Introduction. There is little doubt that most results in (classical) number theory,

suitably formulated, can be deduced from a very small subset of the set of 1st order

Peano axioms.

Indeed, some experience suggests that the main techniques and theorems can be

coded in 1st order terms and deduced from 2,-induction, i.e. using only the

induction axioms for 2,-formulas (G. Kreisel actually carried this out for parts of

analytic number theory).

Also the negative solution of Hubert's 10th problem can be deduced from

2,-induction, which implies that there is no algorithm deciding for a given

diophantine equation whether S,-induction can prove that it has no zeros, or

equivalently:

the set of diophantine equations solvable in a model of 2,-induction is not recursive.

So it seems a reasonable guess that (future) decision methods for the solvability

of certain types of diophantine equations will actually be derivable from rather

weak fragments of 2,-induction. (Question: Which subset of 2,-induction suffices

to deduce A. Baker's results?)

Taking this speculation seriously, one is led to the following program:

given a certain fragment of 2,-induction, characterize the set of diophantine

equations which can be solved in a model of that fragment. Building on previous

work of J. C. Shepherdson [10], A. Wilkie recently took a first step in this direction

by proving [12]:

A polynomial f = f(X) G Z[X], X = (Xx, . . . , Xn), has a zero in some model of

open induction (see §1), iff there is an ideal I C Z[X] containing f such that I has for

each prime number p a p-adic integral zero and Z[X]/1 can be discretely ordered.

However, this does not yet solve Problem 5.1 of [12]—first posed by Shepherd-

son-whether the set of diophantine equations solvable in a model of open induc-

tion is recursive. The main result of this paper is an affirmative answer if we restrict

the diophantine equations to those in 2 variables.
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Using Wilkie's theorem for n — 2, we indicate an algorithm deciding for a given

equation

f(X,Y) = 0       (f(X,Y)GZ[X,Y])

whether it has a solution in a model of open induction.

Let me outline the method I followed:

Shepherdson's problem can be reduced to deciding whether the function field

over Q of the variety defined by an irreducible f(X) G Q[X] has a valuation ring of

a certain type.

Now for n = 2 these valuation rings are discrete and have a simple geometric

interpretation: they are the points of the (desingularized, projective) curve defined

by / over Q, and so we can apply standard methods in the theory of curves.

However, for n > 2, the valuation rings of the function fields do not have such a

simple geometric interpretation, and it seems that Shepherdson's problem is still

open for n > 2.

§1 gives precise definitions, §2 provides the mathematical results needed for the

algorithm, the existence of which is finally proved in §3. It may be useful to the

reader to consider §3, before reading §2 in detail, to see how the various results of

§2 are actually used.

1. Conventions and definitions. All rings are assumed to be commutative with 1.

A discrete ordered ring is a ring endowed with a linear ordering (compatible with

the ring operations) in which 1 is the smallest strictly positive element. Clearly such

a ring is a domain containing Z as a discrete ordered subring.

A model of open induction is a discrete ordered ring satisfying all induction

axioms

[A(x,0)AVy >0(A(3c,y)^A(x,y + l))]^Vy >0A(x,y)

with A(3c,y) an open formula in the language {+ , -, —, 0, 1, <} of ordered rings.

Given a domain D, its fraction field is denoted by Q(D), and for the localiza-

tions of D with respect to a prime ideal p_ of D and with respect to an element

/ G D \ {0} we use the standard notations:

Dp = {d/s\d G D,s G D \pj,     D = {d/fk\d G D, k > 0).

2. An algebraic characterization of 'discrete-orderable' and its consequences.

Lemma 1. Let D be a domain, ZcO. Then D has a discrete ordering iff no integer

n > 1 is a unit in D and the fraction field Q(D) of D has a valuation ring V whose

residue field is formally real and which satisfies l'nN"'n = Q(Nis the multiplica-

tive set {1, 2, 3, . . . } c D).

Proof. Let < be a discrete ordering on D, and denote its (unique) extension to

an ordering on Q(D) also by < . Clearly 1 and — 1 are the only units of D. Define

V< = {x G Q(D)\ — n < x < n for some n G N}, the ring of finite elements of

Q(D). Clearly V< is a convex valuation ring of Q(D), so its residue field is real (cf.

[7, §7]).
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Moreover, if d/m G V<y d G D, m G N, then d is a finite element of D, so

i/ G Z by the discreteness of the ordering on D; hence d/m G Q. Conversely,

suppose no integer > 1 is a unit of D and V is a valuation ring as described in the

lemma.

It is well known, see [7, §7], that then Q(V) = Q(D) has an ordering < , with

respect to which V is convex. Denote the restriction of < to D also by < .

We claim that < discretely orders D. For suppose 0 < d < 1, d G D. Then

i/GKn/JcQby assumption, so d = p/q for relatively prime p, q G N, q > 1,

implying easily l/q G D, contradicting the noninvertibility of q.    fj

Lemma 2. There is an algorithm which decides, given any deal I = (/,, . . . , fk) C

ZfX], X = (X,, . . . , A^), whether there is an integer n > 1 whose image in Z[X]/I

is a unit of this ring.

Proof. Clearly it suffices to decide whether there is a prime number p whose

image in Z[X]/I is invertible.

Now a prime p becomes invertible in Z[X]/I iff there are h,hx,...,hk& Z[X]

with ph + 1 = 2A/¡, i.e. iff 1 G (/, mod/), . .. ,fk mod/») c ¥p[X] (f modp de-
noting the image of / G Z[X] under the obvious map Z[X] —» F [X]), i.e. iff

F^n34/,(x)= • • •  =fk(x) = 0),

Fp being the algebraic closure of Fp.

By (quantifier) elimination theory for algebraically closed fields one can de-

termine an open sentence a (in the language of ring theory) such that

F 1= a «h. -,3*(/,(*) = • ••  =/*(*) = 0)

for each algebraically closed field F.

Combining this with the preceding remarks we obtain:

Some integer > 1 becomes a unit in Z[X]/I iff for some prime p: Fp 1= a. A

moment's reflection will make it clear to the reader how to determine, given any

open a, whether Fp\= a holds for some prime/?,    fj

Remark. For a principal ideal / = (/) this reasoning establishes the equivalence

between:

(i) no integer > 1 becomes invertible in Z[X]/I, and

(ii) each common prime divisor of the coefficients of / apart from the constant

term /(0) divides also the constant term. This case, for X = (Xx, X^, actually

suffices to obtain the decision method for equations in 2 variables mentioned in the

introduction. However, if we extend the theory of open induction by requiring the

models to be integrally closed in their fraction field, then the full lemma is useful to

obtain a similar decision method, cf. [4].

The following proposition is the basic result underlying our decision method.

Proposition 3. Let K be a field, K[x, y],y = (yx, . . . ,ym), a domain such that x

is transcendental over K andyx, . . . ,ym integral over K[x]. Let V be a valuation ring

ofK(x,y).
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Then the following are equivalent:

(i)Kn K[x,y]= K,

(ii) K is integrally closed in K[x, y] and V is the only valuation ring of K(x, y)

which extends the valuation ring K[l/x]^x/x) of K(x).

Proof. Considering K(x) and K(x, y) as algebraic function fields of one variable

over K, cf. [2, p. 1], we associate, as usual, to the valuation ring K[l/x]^x/x) the

place at infinity Px of Ä^x), while the finite places of K(x) are associated to the

other proper valuation rings of K(x) which contain K. Similarly, the places of

K(x, y) are associated to the proper valuation rings of K(x, y) containing K. If the

place Q of K(x, y) is associated to the valuation ring A, then Q is said to lie above

the place of K(x) which is associated to the valuation ring A n K(x) of K(x). The

places of K(x, y) lying above Px are called the infinite places of K(x, >>)-there are

at most [K(x, y): K(x)] of them-and the others, naturally, finite places.

A place Q, associated to the valuation ring A c K(x), resp. A c K(x,y),

determines an "evaluation" map:

f^f(Q)    f rom K(x) to A / m(A) u {oo},

resp. fromK(x, v) to A/m(A) U {oo}

which is on A the residue class map, and which maps the elements not in A to oo ;

f(Q) is called the value of /at the place Q, and if f(Q) = oo, Q is called a pole of/.

So we consider the elements of K(x), resp. of K(x, y), as functions defined on the

set of places of K(x), resp. of K(x, y) and in this role they are called (algebraic)

functions. Those without poles are so-called constants and they form a subfield, the

field of constants, which is for K(x) the field K, and for K(x, y) the algebraic

closure of K within K(x, y). For all this, see [2, Chapter I], or [9].

(i) => (ii). From V n K[x, y] = K, it clearly follows that V is a proper valuation

ring of K(x, y) containing K, and that it can only extend the valuation ring

K[l/x\x/x) of K(x) (because V n K[x] = K), so the place Qv of K(x,y) associa-

ted to V is an infinite place.

That K is integrally closed in K[x,y] is seen as follows: a function/ G K[x,y]

integral over K belongs to every valuation ring of K(x, y) containing K, so in

particular to V; hence/ G V n /T[x,y] = K.

Suppose now that, apart from Qv, there is another infinite place Qx of K(x, y).

We have only to derive a contradiction from this.

Let B be the integral closure of K[x] in K(x,y), and let / = {/ G K[x,y]\f- B

C K[x, y]}, so K[x, y] c B and / is the so-called conductor of B in K[x, y]; it is

important for us that / is a nonzero ideal of B as well as of K[x,y],

Because B is a Dedekind domain, we obtain / = px' ■ ■ ■ pk" for distinct maximal

ideals px, ... ,pk of B and ex > 0, . . . , ek > 0, and Ihese maximal ideals

px, . . . ,pk determine valuation rings Bp, . . . , Bpk, hence finite places Px, . . . , P¿

ôîK(x,y~).

Riemann's theorem, cf. [2, p. 22], implies that there is an algebraic function

/ G K(x, y) which has Qx as its only pole and has a zero of order at least e, at P¡

for / = 1, . . . , k.
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But/, having no finite poles, belongs to B = {q G K(x,y)\q has no finite pole},

hence to B n (PjBp¡y n • • • n(p_kB^ = PV ■ ■ P_ik = I C tf[x,y], so / G V

D A"[x,y] = /T; but/, having Qx as a pole, is not a constant, contradiction!

(ii) => (i). An algebraic function/ in V n K[x,y] has no finite pole because it is

integral over K[x], but also no infinite pole, because Qv is the only infinite place,

by assumption.

So such an / is constant, i.e. integral over K; hence, because K is assumed to be

integrally closed in K[x, y] we get/ G K, so V n ÄT[x,.y] = K.    □

Remark. The use of Riemann's theorem in this proof can be replaced by using

the strong approximation result in Ribenboim's [9, p. 76], which is there the main

lemma for the proof of Riemann's theorem.

Lemma 4. There is an algorithm which decides, given any irreducible f G Q[X, Y],

whether Q is integrally closed in Q[X, Y]/(f).

Proof. Let irreducible / G Q[X, Y] be given. By linear transformation of

variables we may assume / to be monic in Y, say degy/ = d > 0. Put x = X +

(f),y = Y + (/), so Q[X, Y]/(f) = Q[x,y]. Let K be the algebraic closure of Q in

the field Q(x, y). Then K is the unique finite extension of Q such that K c Q(x, y)

and (x,y) is a zero of an absolutely irreducible polynomial q(X, Y) G K[X, Y], cf.

[6, p. 71]. Note that each element of Q(x,y) is of the form p(x,y) for a unique

polynomialp(X, Y) G Q(X)[Y], degyp < d.

By a systematic search one will eventually find a polynomial p(X, Y) G

Q(X)[Y], degyp < d, an irreducible polynomial r(Z) G Q[Z], and a polynomial

q(X, Y, Z) G Q[X, Y, Z], such that r(p(x, y)) = 0, q(x, y, p(x, y)) = 0 and

q(X, Y, p(x, y)) is absolutely irreducible.

Then K = Q[p(x, y)] by the description of K given above. Now the integral

closure K n Q[*,y] of Q in Q[x, y] is a subfield of K. We determine the subfields

of K as follows: let m = deg r(Z) and let a,,..., am be the distinct roofs of r(Z),

identifying, say, p(x,y) with a,.

By [11, 56], we can determine the Galois group G of r(Z) over Q as a

permutation group on (a,,..., am}. Then, by the fundamental theorem of Galois

theory, the subfields of K are the fixed fields of the subgroups H of G which

contain {a G C|a(a,) = a,}. Again, by a systematic search, one will find as many

subfields of K in the form Q[A(a,)], X(Z) G Q[Z], as there are such subgroups H of

G (to tell these fields apart one may use the algorithms in [3, Fact 4]), and then all

subfields of K have been found.

For each subfield Q[X(/>(x, y))] we compute a (uniquely determined) polynomial

q G Q(X)[Y] with \(p(x,y)) = q(x,y) and degy q < d. Then Q[\(p(x,y))] c

Q[x, y] iff q G Q[X, Y\. By this equivalence we can decide whether Q is the only

subfield of K contained in Q[x, y], i.e. whether Q is integrally closed in Q[x, y].

D
Remarks, (i) If / G Q[X, Y] is absolutely irreducible, then Q is automatically

integrally closed in Q[X, Y]/(f).



186 LOU VAN DEN DRIES

This case is the essential one from the diophantine viewpoint: if / G Q[X, Y] is

irreducible but not absolutely irreducible, then the rational solutions of / = 0 lie on

the intersection of two distinct affine curves q(X, Y) = 0 and q"(X, Y) = 0, where

q is an absolutely irreducible factor of /in K[X, Y], K a suitable finite extension of

Q, and q" is a conjugate of q over Q different from q; elimination theory then gives

a method to determine all rational solutions of / = 0 of which, by Bezout, there are

at most (deg qf <j(deg/)2.

(ii)/ = X2 — 2Y2 is an example of an irreducible but not absolutely irreducible

polynomial in Q[X, Y], such that Q is integrally closed in Q[X, Y\/(f).

Lemma 5. Let K be a field of characteristic 0, V a discrete valuation ring of K, and

i: K-,o> an indexing such that (K, i) is a computable field (cf. [8]), i(V) is a recursive

subset of iù and such that an algorithm exists for deciding, given a polynomial in V[X]

by the indices of its coefficients, whether its reduction in V[X], V = V/m(V), has a

zero in V. Then there is an algorithm computing for every irreducible polynomial

/ G K[Y] the number r(f) of extensions of V to a valuation ring of K(y), y being a

root off in the algebraic closure of K.

Proof. For irreducible/ G K[y], r(f) equals the number r in the decomposition

/ = /, X • • • X/r of /in irreducible factors/,, . . . ,/, in L[Y], where (L, W) is any

valued field extension of (K, V) such that:

(a) (L, W) is henselian,

(b) the residue class field of V is algebraically closed in the residue class field of

W,

(c) a generator ir of m( V) also generates m( W).

Indeed, for such a valued field extension we have a (K, K)-embedding of

(Kh, Vh), the henselization of (K, V), into (L, W), making Kh relatively algebrai-

cally closed in its extension L, so the number r of irreducible factors of the

(separable) polynomial / is the same in L[ Y] as in Kh[ Y], and so equals also the

number of irreducible factors of / in K[ Y], K being the completion of the valued

field (K, V).

But the (monic) irreducible factors of/ in K[Y] are in 1-1 correspondence with

the extensions of V to a valuation ring of K(y), where/(y) = 0, cf. [5, p. 16].

From this description of r(f) we obtain an algorithm based on Gödel's complete-

ness theorem as follows: let 2 be a set of sentences in the language of valued fields

augmented by names for the elements of K, such that the models of Diag(Ä", V) u

2 are exactly the valued field extensions (L, W) of (K, V) satisfying (a), (b), (c)

above.

By the assumptions on (K, V, i) we may assume that Diag(AT, V) u 2 is recur-

sive. For an irreducible polynomial / G K[ Y] we can then determine r(f) as the

number r G {1, . . ., deg/} for which "/ decomposes in r irreducible factors" is

derivable from Diag(AT, V) u 2.    □

Remark. Suppose / is monic, / G V[ Y] and the discriminant of / is invertible in

V. Then, by Hensel's lemma, a decomposition of its reduction / G V[ Y], V =

V/m(V), in monic irreducible factors in V[Y], can be lifted to a decomposition in



CURVES OVER Z 187

V[Y], V being the completion of V; so in that case r(f) is simply the number of

monic irreducible factors of/ in V[ Y].

3. Main results.

Theorem. The set P of polynomials f(X, Y) G Z[X, Y] with a zero in a model of

open induction is recursive.

Proof. By Gödel's completeness theorem Z[X, Y] \ P is recursively enumerable.

So we have only to show that P is recursively enumerable. Its subset Fstandard =

{/ G Z[X, Y]\f has a zero in Z} is clearly recursively enumerable, so again it

suffices to show that the subset Fnonstandard = {/ G Z[X, Y]\f has a zero (x,y) is a

model of open induction with x or y not in Z} is recursively enumerable, because

p = p i i p
standard K-J   M nonstandard*

In fact, we prove that Fnonstandard is recursive.

Let/ = f(X, Y) G Z[X, Y] be given,/not a constant.

Using Kronecker's algorithm [11, p. 79], we can find a decomposition/ =/,

X • • • X/ with all / G Z[X, Y] irreducible. Then / G Fnonstandard «*¿ G

nonstandard for some I < i < r.-So to decide whether/ G Fnonstandard we may as well

assume that/is irreducible in Z[X, Y] (and nonconstant).

Under this assumption we claim:

/ G ^nomtandard <=>Z[X, Y]/(f) can be discretely ordered and/has

for each prime number/) a/?-adic integral zero. (*)

Indeed, if the right-hand side of (*) holds, then Theorem 3.3 of [12] (or rather its

proof) shows that Z[X, Y]/(f), endowed with any of its discrete orderings, can be

embedded in a model of open induction, so (x, y), with x = X + (f),y = Y ■+- (/),

is then a nonstandard point of the curve f(X, Y) = 0 in a model of open induction.

Conversely, suppose (x,y) is a nonstandard point on the curve f(X, Y) = 0 with

coordinates x, y in a model of open induction. Then |x| or |y| is infinite in that

model, so x or y is transcendental over Q, so the prime ideal {p(X, Y) G Q[X, Y]:

p(x,y) = 0} of Q[A\ Y] is not maximal, and contains the irreducible polynomial/;

hence it equals/- Q[X, Y]. By Gauss's lemma this implies: {p G Z[X, Y]: p(x,y)

= 0} = (/). Again from the proof of Theorem 3.3 of [12] we obtain from this the

right-hand side of (*). So the proof of (*) is now complete.

The existence of an algorithm for deciding, given any polynomial in Z[X, Y],

whether it has for each prime number p a /7-adic integral zero follows immediately

from Ax's theorem [1, p. 267], which says that the theory of the set of />-adic fields

is decidable. So, by the equivalence (*) above, we are reduced to deciding whether

Z[X, Y]/(f) can be discretely ordered. By Lemma 1 of §2, a necessary condition is

that no integer > 1 becomes invertible in Z[X, Y]/(f). Suppose we have found this

to be the case by the criterion mentioned in the remark following Lemma 2. Then,

by Lemma 1, we have only to decide whether, for x = X + (/), y = Y + (/), the

fraction field Q(x,y) of Z[x,y] has a valuation ring V with real residue field such

that V n Q[x, y] = Q. After a Q-linear transformation of coordinates we reach the

situation that f(X, Y) = f'(X', Y') is monic in Y', where X', Y' are the Q-linear
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forms in X, Y acting as the new variables. Then

Q[x,y] = Q[x',y']^Q[X', Y']/f'Q[X', Y'],

x' is transcendental over Q and y' integral over Q[jc']. So by Proposition 3 a

valuation ring V of Q(x, y) as described exists if and only if the following two

conditions are satisfied:

(i) Q is integrally closed in Q[X, Y]/fQ[X, Y] ~ Q[x, y],

(ii) there is only one valuation ring of Q(x', y') which extends the valuation ring

Q[l/x'](i/jc) °f Q(x'), and this valuation ring has real residue class field.

Whether (i) holds can be checked by applying the decision method described in

Lemma 4. The assumptions of Lemma 5 are fulfilled for K = Q(x') and V =

Q[\/x'\\/xy so Lemma 5 shows how to decide the first part of (ii). If this first part

of (ii) holds, we use the following equivalences to verify the second part of (ii):

there exists a valuation ring of Q(x',y') which extends Q[l/*'](i/X) and has real

residue class field <=> Q(x', y') has an ordering in which x' is infinite (in absolute

value) ** R1= 3C{(\/r > C 3sf'(r, s) = 0) V (Vr < C 3sf'(r, s) = 0)}.

The first equivalence follows from the well-known relation between nonarchi-

medean orderings and real places, see [7, §7], the second equivalence follows from

quantifier elimination for R.    fj

Let us summarize the purely mathematical content of the preceding proofs in the

following proposition, which does not involve notions of recursion theory.

Proposition. Let f = f(X, Y) G Z[X, Y] be absolutely irreducible and assume the

coefficients off have no common divisor and that the leading term off, considered as a

polynomial in Y, is of the form a ■ Yd, a G Z. Then f has a nonstandard (i.e. not both

coordinates in Z) zero in a discrete ordered ring if and only if the following conditions

hold:

(i) the coefficients off apart from the constant term /(0, 0) have no common prime

divisor,

(ii) fis irreducible as a polynomial in Q((\/X))[ Y],

(iii) R N 3C{(Vr > C 3s fir, s) = 0) V (Vr < C 3s fir, s) = 0)}.

Proof. Let x = X + (/), y = Y + (f) in Z[X, Y]/(f). Then (i) expresses that no

integer 1 is a unit in Z[x, y] (see remark following Lemma 2). (ii) means that there

is only one valuation ring of Q(x, y) which extends the valuation ring Q[l/^](i/x)

of Q(x): simply note that x is transcendental over Q, that Q((l/A")) is the

completion of Q(X) w.r.t. the valuation whose valuation ring is Q[l/A'](1/A.), and

apply [5, (2.12)]. (iii), in combination with (ii), says that this unique valuation ring

has real residue class field: see the last part of the proof of the theorem.

Combining these observations with Lemma 1, Proposition 3 and the remark

following Lemma 4 yields that (i), (ii) and (iii) together say that Z[x,y] has a

discrete ordering; from this the proposition easily follows.

Remarks. 1. Among the polynomials in Z[X, Y] the absolutely irreducible ones

are, from the diophantine viewpoint, the interesting case; see the remark following

Lemma 4. Dividing such a polynomial by the g.c.d. of its coefficients and carrying

out a transformation of coordinates X' = X + \Y, Y' = Y, X a suitable integer,
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makes the polynomial satisfy the assumptions of the proposition (w.r.t. the new

variables X', Y').

2. To obtain necessary and sufficient conditions for /(satisfying the assumptions

of the proposition) to have a nonstandard zero in a model of open induction, one

has only to add the following extra clause:

(iv)/ has for each prime number p ap-adic integral zero.

3. For applications to special cases, extensions of the preceding results and

number theoretic interpretations of these, see [4].

Acknowledgement. I thank Gerard Welters for an inspiring discussion in

connection with Proposition 3.
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