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LOCALIZABLE ANALYTICALLY UNIFORM SPACES

AND THE FUNDAMENTAL PRINCIPLE

BY

SÖNKE HANSEN

Abstract. The Fundamental Principle of Ehrenpreis states that the solutions of

homogeneous linear partial differential equations with constant coefficients have

natural integral representations. Using the Oka-Cartan procedure Ehrenpreis de-

rived this theorem for spaces of functions and distributions which he called

localizable analytically uniform (LAU-spaces). With a new definition of LAU-

spaces we explain how Hormander's results on cohomology with bounds fit into

Ehrenpreis' method of proof of the Fundamental Principle. Furthermore, we show

that many of the common Fréchet-Montel spaces of functions are LAU-spaces.

1. Introduction. Let fi c R" be open and convex and denote by S (ß) the space of

infinitely differentiable functions in ß with its usual Schwartz topology. Let

P(D) = (Plk(D)) be an L X A-matrix of differential operators with constant coef-

ficients (where D = -id/ax). Let u = (ux, . . ., uk) G S(ß)*. Then the Fundamen-

tal Principle proved by Ehrenpreis [8], [9] and, independently, by Palamodov [16]

states that u satisfies the homogeneous equation P(D)u =0 if and only if a

representation
j

«*(*) = 2 f djk(z, 3>'<-> dpj(z) (1.1)
1   JVj

holds for all x G ß and k = 1, . . . , K. Here y is a positive integer, (d) =

(djk(z, 3Z)) is a y X A-matrix of differential operators with polynomial coefficients

and the Vfs are algebraic varieties contained in the characteristic variety V for

P(D);

V= {zGC";kerP(z)^0}.

P(z) is considered here as a linear map from C* into CL. The operators dJk and the

varieties Vj only depend on P(D). The Radon measures d¡ij have supports con-

tained in Vj and satisfy, with a suitable positive continuous function k on C, the

growth condition

" k(z)\d^(z)< +00, (1.2)
/,'

which is such that it insures the convergence of the integrals (1.1) for every x G ß.

More precisely, (1.2) holds for some member k of the family % of all positive

continuous functions k on C such that

sup \y(z)\/k(z) < +00 (1.3)
z<EV
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236 SÖNKE HANSEN

for every <p G S'(ß) (here <p(z) = <p(c?_,<'z>), z G C, is the Fourier-Laplace trans-

form). It turns out that the family % defines a seminorm topology on S '(ß) which

coincides with the usual strong topology (ß is assumed to be convex). The

seminorms are given by the numbers (1.3). % is called an analytically uniform

structure for £(ß). Its importance lies in the fact that it enables one to find

measures d^ such that (1.1) is valid for all x G ß whereas the Paley-Wiener

estimates would a priori only lead to a representation (1.1) valid for all x in an

arbitrary but fixed compact subset of ß, i.e. the measures dfij would also depend on

this compact.

For the proof of the Fundamental Principle it is essential that the analytically

uniform structure % satisfies an additional condition called localizability of

Ehrenpreis. Let us briefly indicate the reason for this. The kernel of P(D) is via the

Fourier-Laplace transform canonically dual to a quotient space of a locally convex

space of entire functions / with seminorms supzSC,|/(z)|/A:(z) < + oo, k G %.

The proof of the Fundamental Principle therefore rests on a description of this

quotient space. More specifically, one has to find in every coset a representative

satisfying good bounds (stemming from %). Such a representative / can be given

by first constructing it locally and afterwards globally on C using a suitable theory

of cohomology with bounds. The localizability condition on % is then introduced

to insure that the bounds given by % are compatible with the bounds necessitated

by the cohomology.

In this paper we give a treatment of the more functional analytic part of the

proof of the Fundamental Principle. Following Ehrenpreis' approach outlined

above we do this for linear partial differential equations with constant coefficients

in localizable analytically uniform spaces (LAU-spaces). The LAU-spaces which

we use are closely related to but more general than Ehrenpreis' PLAU-spaces. The

main point is that the localizability condition which we impose is well suited for

working with Hörmander's results on cohomology with bounds (see [12, Chapter

7.6]), while Ehrenpreis' condition enables one to use a quantitative version of the

Oka-Cartan procedure. So we in particular clarify the relationship between

Ehrenpreis' method and Hörmander's results. This task was suggested to us by a

remark made by Ehrenpreis in his book (see [9, Remark 1.6]). We introduce

localizable analytically uniform structures in §2. In §3 the Fundamental Principle is

derived for LAU-spaces from a theorem on division and extension of entire

functions with bounds. That theorem will be stated without proof. We should

however mention that its proof contains the hardest parts of the proof of the

Fundamental Principle. In §4 we give examples of LAU-spaces. In particular S (ß),

ß c R" open and convex, and similar spaces of ultradifferentiable functions are

shown to be LAU-spaces.

2. Localizable analytically uniform structures. Let % be a nonempty set of

positive continuous functions on C. For k G % and every complex valued

function/on C define

Pk(f) = sup \f(z)\/k(z).
zSC"
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This is a nonnegative number or + oo. Let A% (resp. C<x) denote the locally convex

space of all entire (resp. continuous complex valued) functions /on C with

\fiz)\/k(z)-,0 as z -» oo for every k G % and the topology given by the semi-

norms pk, k G %. Let 911 = 91t(9C) be the set of all nonnegative upper semicon-

tinuous functions m on C such that m/k is bounded on C for every k G %. The

set 9lt describes the bounded sets in A% and in C%. In fact, for every bounded set

B in C% there is m G 911 with B c {/ G C<£ \f(z)\ < m(z), z G C}. Now

consider the following two conditions on %.

(AU) For every k G % there exists k' G % with

k'(z + z')- (2+1 ¿|2) <k(z)

for all z,z' G C"with|z'| < 1.

(L) For every k G % there exists k' G % such that one can find for every

m G 911 (3C) with «i(z) < k'(z), z G C", a plurisubharmonic function <p on C with

e* G 9lt(9C)and

m(z) < £?**> < k(z),       z G C".

Definition 1. Let % be a nonempty set of positive continuous functions on C.

% is called an analytically uniform structure ( = AU-structure) iff it satisfies (AU).

% is called a localizable analytically uniform structure (= LAU-structure) iff it

satisfies (AU) and (L).

Recall that a function tp: C-»[-oo, +oo) is plurisubharmonic iff it is upper

semicontinuous and its restriction to every complex one-dimensional line is sub-

harmonic. Besides other well-known properties of plurisubharmonic functions to

which we refer ([11] and [12]) we shall frequently make use of the following fact:

The smallest upper semicontinuous majorant of the supremum of a sequence of

plurisubharmonic functions is also a plurisubharmonic function provided this

supremum is uniformly bounded from above on every compact subset of C. This

follows immediately from Lemma 3.3 in [11] if one expresses the sup by a suitable

lim sup.

Remark. Ehrenpreis calls a subset 911, c 9lt(9C) a sufficient bounded analyti-

cally uniform structure (= BAU-structure) for % if for every k G % there exists

k' G % such that one can find for every m G 9\l(%) with m(z) < k'(z), z G C,

an element m' G 91t, with m(z) < m'(z) < k(z), z G C. So condition (L) just

means that the set of all logarithmically plurisubharmonic functions in 91t is a

sufficient BAU-structure for %. Note that in (L) one only needs to consider all m

belonging to a sufficient BAU-structure. It is therefore convenient to know that the

subset of all continuous functions in 91t(3C) is sufficient if % is an AU-structure.

To prove this just set with some fixed partition of unity (a,.)ï° with uniform bound

A > 0 on the number of overlaps and on the diameters of the supports for a given

m G 9H(gC)

00

m'(z) = 2     sup    m(z')ctj(z),       z G Cf.
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Then m' is continuous and m(z) < m'(z) < A- sup{m(z + z'); |z'| < A}, z G C.

The statement now follows easily from (AU).

Let us collect some basic properties of the spaces A%.

Proposition 1. Let % be an AU-structure. Then A% is closed under translations,

differentiations and under multiplication by polynomials, and these operators are

continuous on A%. T is a continuous linear functional on A^ iff there exists a

(nonunique) Radon measure dp. on C" with f k(z) |</p|(z) < + oo for some k G %

and

n/)= f f(z)dv(z)   for all f G A^.

If % is a LAV-structure there exists for every z0 G C a function f G A% with

/(¿o) = 1-

Proof. The first part of the proposition follows from a repeated application of

(AU).
A continuous linear functional T on A% can be extended for some k G % by the

Hahn-Banach theorem to the Banach space of all continuous functions / on C

with f(z)/k(z) -, 0 as z —> oo and the norm pk. The assertion on T then follows

from the Riesz representation theorem.

Now assume that % is a LAU-structure. Since 91t contains all nonnegative

continuous functions with compact support we can find by (L) a plurisubharmonic

function tp with e* G 91t such that e~'F is integrable over a neighbourhood of zero.

By Theorem 4.4.4 in [12] there exists an entire function/with/(0) = 1 and

/
|/(z)|V2,"<*»(l +|z|2p" d\(z) = a2 < +00

Here dX denotes the Lebesgue measure on C. We can pass from the L2- to the

sup-estimate:

,1/2

\f(z)\ < cn[ f       |/(z + z')\2 d\(z')\
l*'l<l /

<cna-  sup   ^-•>(l+|z + zf)3"/2
1*1 <»

holds for all z G C. Using (AU) we conclude that / G A%. In view of the

translation invariance of A% the proof of the proposition is complete.

We shall now compare our notion of LAU-structure with Ehrenpreis' definition

of PLAU-structures. For this definition we refer to Chapter IV. 1 in [9]. The

condition (b) stated there is essentially the same as condition (AU) above. More

important is the fact that Ehrenpreis' localizability conditions (d) and (e) imply

localizability in our sense.

Proposition 2. Let % be an AU-structure. If % is product localizable in the sense

of Ehrenpreis then % is a LA U-structure.

Proof. Let k G % be given. By (d) in [9, IV. 1], there is a k' G % so that for any

continuous m G 91t with m(z) < k'(z), z G C, and every z0 G C there is an entire



LOCALIZABLE ANALYTICALLY UNIFORM SPACES 239

function /(•; z0) such that |/(z0;z0)| > 1 and

w(zo)|/(z;zo)| < min(k(z), m'(z)), z G C,

for some m' G 91t independent of z0. Now choose a sequence (zfff, Zj G C, such

that m(z) < sup, m(zf)\f(z;zf)\, z G C, and let <p be the smallest upper semicon-

tinuous majorant of the function sup, log(m(zJ)\f(-;zJ)\). Then <p is plurisub-

harmonic, e* G 91t and m(z) < c**> < /t(z) for all z G C. Hence (L) is true for

all continuous m G 91t. As explained above (preceding Proposition 1) this suffices

to conclude that % is localizable.

The product decomposability condition (i.e. the "P" in PLAU) which Ehrenpreis

imposes on % is necessitated by the induction-on-dimension arguments occurring

in the Oka-Cartan procedure. This condition is superfluous when working with

Hörmander's results on cohomology with bounds instead.

3. The Fundamental Principle. The Fundamental Principle will be given for

localizable analytically uniform spaces defined below. The definition of these

spaces is essentially the same as Ehrenpreis' [9, Chapter IV. 1].

Definition 2. Let W be a locally convex space. Iff there exist a (L)AU-structure

% and a separately continuous bilinear form [•, •] on W X A% such that W is

isomorphic under this pairing (i.e. under map w—*[w, •], w G W) to the strong

dual of A% then W will be called a (localizable) analytically uniform space

( = (L)AU-space) with (L)AU-structure % and pairing [ •, • ].

Example. Let Si c R" be open and convex. Then S (ß) is a LAU-space. The

LAU-structure % is given in §4, example (iii), and the pairing [ •, • ] between S (ß)

and A % is given by

[«,/] = F-'/(«),       u G S(ß) and/ G A%. (3.1)

Here F denotes the Fourier-Laplace transform which maps S '(ß)> the space of

distributions with compact support in ß, isomorphically onto A% and is defined by

Ffp(z) = <p(e_,<,z>), z G C", <p G S'(ß)- Since S(ß) is a reflexive Fréchet space it is

in fact a LAU-space in the sense of Definition 2.

Using the examples (iv) and (v) in §4 we see in the same way that the Fréchet

spaces S„(B) and S(ß, (Mp)) of ultra-differentiable functions in the sense of

Beurling (with weight w) and of Roumieu (with weight sequence (Mp)), respectively,

are LAU-spaces.

For the spaces S(ß), Sw(ß) and S(ß, (Mp)) the following abstract definition of

differential operators with constant coefficients on AU-spaces coincides with the

usual definition if D = -ia/ax.

Definition 3. Let W be an AU-space with AU-structure and pairing [•, •]. Let F

be an L X A-matrix of polynomials. Denote by P(D) the linear mapping from WK

into WL which is the transpose with respect to [ •, • ] of the linear mapping from A ̂

into A* given by the matrix multiplication/—» 'P(— •)/>/ £ ^%- These operators

P(D) will be called differential operators with constant coefficients with symbol F.

With the definition (3.1) of the pairing for S (ß) we have

u(x) = 8x(u)=[u,e-¡<*->]
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for all m G S (ß) and x G ß (8X = Dirac measure at x). Therefore the integral

representation (1.1) follows from the

Fundamental Principle. Let W be a LAU-space with LAU-structure % and

pairing [-, ■]. Let P(D): WK-, WL be a differential operator with constant coeffi-

cients and with symbol P. Then there exist (only depending on P) a positive integer J,

a J X K-matrix (djk(z, az)) of differential operators with polynomial coefficients and

algebraic varieties  Vj G {z G C; rank 'P(z) < K), j = 1./, such that u =

(«,,..., uK) G WK is a solution of the homogeneous equation P(D)u = 0 if and only

if for every f G A%and every k = 1, . . . , K

[«*>/] "2 ¡ dJk(z,oz)f(-z)dií¡(z).
1   JVj

Here the d¡ij are Radon measures on Vj depending on u but not on f which satisfy for

some k G %

( k(z) \dnj\(z) < + oo,       j = 1, . . . , J.
vi

In particular, the integrals representing u converge absolutely in W.

The hardest part in the proof of the Fundamental Principle is the proof of some

deep theorems on division and extension of holomorphic functions. We shall only

state them here. These results have been proved by Ehrenpreis [9] and Palamodov

[16]. More recent proofs making heavy use of Hörmander's results on cohomology

with bounds [12] have been given by Björk [6] and by Liess [14]. Björk's statement

of these results is closest to the one which we give now.

Division- and Extension-Theorem. Let Q be a K X L-matrix of polynomials.

Then there exist a positive integer J, K-vectors dj(z, oz) of differential operators with

polynomial coefficients and algebraic varieties Vj c {z G C"; rank Q(z) < K},j =

I, . . . ,J, and there is a positive constant M such that the statements (Div) and (Ext)

hold for every plurisubharmonic function <p on C.

(Div) For every entire function v: C" —* CL we have

dj(z, Zz)(Qv)(z) = 0    ifzG Vj,j =l,...,J.

Conversely, if an entire function g:  C -, CK satisfies dj(z, dz)g(z) = 0 if z G Vj,

j = 1, . . . , J, then there exists an entire function v: C -» CL with g = Qv in C,

sup |o(z)|«-*'(l>(2 +|2|2)"" <  sup Igiz)^-^. (3.2)
zea- zee

Here and in the following <pM denotes the function

<pM(z) = sup{tp(z + z');z' G C, \z'\ < M),       zGC (3.3)

FA« supremum is in fact a maximum since <p « upper semicontinuous.

(Ext) For any entire function g: C —» C* there is another entire function f:

C -, CK such that

dj(z, az)(f - g)(z) = 0   ifzGVjandj=l,...,J,

sup |/(z)|e"^W(2 +\z\2)~M < max   sup \dj(z, az)g(z)\e"**\
zee? J      zeVj
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Since we cannot refer to the literature for exactly this statement we have to make

some comments about it. One can prove this theorem by constructing v and / in

(Div) and (Ext), respectively, at first locally near every point in C and then

globally by correcting the resulting cochains with the help of Hörmander's results

on cohomology with bounds. The local construction can be done keeping the

necessary uniform bounds on the cochains if we use coverings of C with cubes of

size 0(| f \~m) as the centers f of the cubes tend to infinity. Here m isa constant

depending only on Q. This is in fact the Semilocal Quotient Structure Theorem of

Ehrenpreis. To apply Hörmander's technique (see [12, Chapter 7.6]) for passing

from local to global we have to note two simple refinements to his approach.

Firstly, the coverings to be used to define the cochain groups have to be chosen

such that the sizes of the cubes belonging to the covering are bounded in a manner

we have just indicated. Hörmander works with coverings consisting of congruent

cubes. But it is easily checked that his results are not essentially changed when

working with the more general coverings which are necessitated by the local

construction. Secondly, we do not require the plurisubharmonic functions <p to

satisfy a Lipschitz-like condition |<p(z) — <p(z')| < c if \z — z'\ < 1 (see Theorem

7.6.10 in [12]). Hörmander uses this condition only to pass from F2-estimates for

holomorphic functions to corresponding sup-estimates. This is achieved with the

inequality

\u(z)\ < Cne"M f \u(z')\2e~2^ dX(z')\
\J\z-z'\<l )

which holds with a constant C„ depending only on the dimension n for every entire

function u, every plurisubharmonic function <p and all z G Cf. Since this passage

has to be made several times we have to know that the function <p, is plurisub-

harmonic if <p is. Because of the uniformity in all plurisubharmonic functions (!) of

the L2-estimates for the 3-operator (see in particular Theorem 4.4.2 in [12]) we can

then see that the constant M > 0 occurring in (Div) and (Ext) may actually be

chosen independent of <p.

Lemma 1. Let <p be plurisubharmonic and let M > 0. Then <pM (defined in (3.3)) «

also plurisubharmonic.

Proof. Let z G C and c G R with <pM(z) < c be given. By the upper semicon-

tinuity of tp there exists for every z' G C" with \z'\ < M a positive e such that

<p(í + Í") < c for all £, Ç' G C with \z - f | < e and \z' - f '| < t. From the

Heine-Borel theorem we therefore get <pM(Ç) < c if \z — f | < b for some positive 8.

Hence tpM is upper semicontinuous and therefore also plurisubharmonic by Theo-

rem 1.6.2 in [12].

Let us now show that

(Div) and (Ext) imply the Fundamental Principle. A "function" u G WK is a

solution of the homogeneous equation P(D)u = 0 if and only if it defines via the

pairing [ •, • ] a continuous linear functional on the quotient space

A%/~QÄJ, (3-4)
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where Q is the K X L-matrix of polynomials given by Q(z) = 'F( — z), z G Cf. This

follows by duality from the definition of differential operators on LAU-spaces.

Choose J, dj and Vj as in the Division- and Extension-Theorem. Let C% denote

the locally convex space consisting of all /-tuples (A,, . . ., hf) of continuous

C*-valued functions A- on V. with |A.(z)|/A:(z) -, 0 as z —> oo, z G VJyj = 1, . . . , /,

for every k G % and carrying the topology defined by the family (parametrized by

k G %) of seminorms

(A„ . . . , hj) -, max   sup |A,(z)|/&(z).
J 26 Vj

Let A denote the linear mapping from A * into C% given by / —>

(dx(-,az)f\v¡,...,dj(-,az)f\Vj).

Since % is an AU-structure, A is well defined and continuous. We shall show

that the kernel of A coincides with QAlfc and that A is a homomorphism (in the

sense of functional analysis). From this would follow that A identifies the quotient

space (3.4) with a subspace of C% and the proof of the Fundamental Principle is

then completed by a standard application of the Hahn-Banach theorem and the

Riesz representation theorem (as in the proof of Proposition 1). _

Since A is continuous it follows from the first part of (Div) that QA^ is

contained in the kernel of A. Now let g G A * be given with Ag = 0. Since % is

localizable (i.e. (L) holds) there exists a plurisubharmonic function <p with e9 G

91t(5C) and |g(z)| < e*^, z G Cf. Therefore there exists by (Div) an entire func-

tion v: C\->CL with g(z)= Q(z)v(z), z G C, and (3.2). Applying (AU) re-

peatedly we see that v G A¡£. So QA^ coincides with ker A and is in particular

closed.

Now let us prove that A is a homomorphism. Let k0 G % be given. With M > 0

as in (Ext) choose k G % with

k(z + z')(2+|z|2)A/ <k0(z), (3.5)

for all z, z' G C with \z'\ < M. This is possible by (AU). Choose k' G % (depend-

ing on k) as in (L). Let g G A* with \d/(z, 9Jg(z)| < k'(z) if z G Vpj = 1, . . . , J,

be given. We are done once we have exhibited an entire function / G A * with

A/ = Ag and |/(z)| < k0(z), z G C. By the localizability (L) of % there exists a

plurisubharmonic function <p (depending on g) with e* G 9lt(5C), \dj(z, 3z)g(z)| <

i?*<z)ifz G Vj,j = 1, ...,/, and

e«M) < k(z),       z G C. (3.6)

From (Ext) now follows the existence of an entire function /:  C -» C* with

N(f - g) = 0, \f(z)\ < (2 + \z\2)Me^z\ z G C. Using (AU) we get / G A£ and

with (3.5) and (3.6) we obtain |/(z)| < k0(z) for every z G C, as desired. This

completes the proof.

4. Some examples of LAU-structures. Many spaces of entire functions occurring

in Fourier analysis are naturally given as locally convex inductive limit spaces

defined by weight functions. By the Paley-Wiener theorem the space of

Fourier-Laplace transforms of  S'(ß)> the space of distributions with compact
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support in ß, ß c R" open and convex, is an example for such a space. Our

purpose is to show that a rather large and important class of inductive limit spaces

of entire functions (containing in particular the example just mentioned) can be

given LAU-structures defining the spaces algebraically and topologically.

Let 2 = (o,-)f be a sequence of continuous real valued functions a, on C such

that for allj

o,(z)<o} + ,(z),       zGC, (4.1)

and

Oj(z) — Oj+x(z) -, — oo    as z -> oo. (4.2)

For complex valued functions/or C set

?,(/) = sup \fiz)\e-°¿*\       y =1,2,....
zêC

Let A [2] be the space of all entire functions / which satisfy qj(f) < + oo for

some y depending on/. Equip A[Z] with the natural locally convex inductive limit

topology. Analogously, let C[2] be the locally convex inductive limit space consist-

ing of all continuous complex valued functions / on C with qj(f) < + oo for some

j = J(f)- Let 5C = %£ be the set of all continuous functions k on C which are

given with some sequence (0})J° of positive numbers 5, by

k(z) = sup 8je°'(z)   for all z G C.
j

Recall that a (LS)-space is a countable inductive limit of Banach spaces with

compact spectral mappings. It is well known (see e.g. [10, §25]) that a (LS)-space is

Hausdorff if the spectral mappings are injective and that Hausdorff (LS)-spaces are

in particular Montel spaces.

Theorem 1. Let S, A[S] and % = %z be as above. Then A[2] is a (LS)-space

and A[H\ = A^as locally convex spaces. If for every positive integer j there is another

positive integer I such that aj(z + z') + log(2 + |z|2) - a,(z) < C for all z, z' G Cf

with \z'\ < 1 and some finite constant C independent of z and z', then % is an

A U-structure. If, in addition, there exists a sequence of plurisubharmonic functions

((Pj)? with

oj(z) < <fj(z) < oj+x(z),       zGC, (4.3)

for all j = 1, 2, ... ,  then % is a LAU-structure.

Remark. Except for the localizability statement, this theorem has been proved

by Taylor [17]. He uses Hörmander's results on 9-solvability in his proof and

therefore assumes the a, to be plurisubharmonic. A purely functional-analytic proof

of Taylor's theorem has been given by Bierstedt, Meise and Summers (see [3] and

[4]). We shall essentially follow their method in the

Proof of Theorem 1. From Montel's theorem and (4.2) it follows easily that

every sequence of entire functions which is bounded with respect to the seminorm

qj has a subsequence which converges with respect to the seminorm qJ+x. This

implies that A [2] is a (LS)-space.
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To show A[1.] = A% let us first prove the corresponding result C[2] = C% for

the associated spaces of continuous functions. Provided % is nonempty, C[2] is

obviously continuously imbedded in C%. To prove the converse let U be a closed

absolutely convex neighbourhood of zero in C[2]. We have to find k G % such

that {/ G C[2]; pk(f) < 1} c U. By the definition of the inductive limit C[2]

there exists a sequence (e,)J° of positive numbers such that

00

U {/ G C[2]; <?,(/) <Ej)gU. (4.4)
y=i

Choose a locally finite partition of unity (a,)J° on C, a, continuous with compact

support, such that

exp(a,_,(z) - a,(z)) < 2"'e/    if a,(z) ¥= 0 and / > 1. (4.5)

Choose a sequence (5,-),° of positive numbers 5. < 1 such that

8j exp(o,(z) - a,(z)) < min(5„ 2_/e/)    if a,(z) ¥= 0, I < I < j. (4.6)

Since this involves for every 5, really only finitely many conditions such a sequence

(5,)J° can be found. Now set

k(z) =     sup     8je°J(z),       z G C. (4.7)
y-U,...

It follows from (4.6) that this supremum is locally a maximum and therefore k is

continuous and k G %. In particular, % is nonempty. To show that pk is the

required seminorm let/ G C[2] with

|/(z)| < A:(z),       z G C",

given. Defining a0 = a, and recalling that Ô, < 1 we then have by (4.1) and (4.7)

q,(aj) <    sup    /fc(z)exp(-a,(z))
«,(')*0

<    sup    maxlexp(a,_,(z) - a,(z)),    sup 5, exp(o,(z) — o/z))).

From (4.5) and (4.6) now follows that q,(aj) < 2_/e, for all /= 1, 2.

From (4.4) and the assumptions on (/we therefore obtain/ = 2J° 2~!(2'alf) G i/

provided this series converges with respect to the inductive limit topology. As for

this, first note that qj(f) < + oo for some j. Since exp(oj(z) — aj+x(z)) tends to

zero with l/|z| (see (4.2)) it is easily seen that the above series converges with

respect to the seminorm qJ+x and hence converges in the inductive limit topology.

Thus we have now shown that the subspace topology on C[2] inherited from C%

coincides with its original inductive limit topology. To show that C% c C[2] we

prove that more generally any bounded subset of C% is already bounded with

respect to some seminorm q}. Assume that, on the contrary, there exists a bounded

subset B of C% which is unbounded with respect to every seminorm q¡. We may

thus choose a sequence (/,)" in B with

|/r<z/)|>/.e^>1       /=1,2,..., (4.8)

for a sequence (z,)" in C" which tends to infinity. Choose a sequence (5,)" of

positive numbers 5, < 1 such that Sje"^ < e'l<2/),  1 < I < j, and such that the
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function k(z) = sup, 5,e0j,(z), z G C, is continuous and therefore in %. Then we

have k(z,) < e"l(Zl) for all /. But this implies together with (4.8) that the sequence

(/)f° cannot be bounded with respect to the seminorm pk. This contradicts the

assumption that B is bounded in C%. So we have shown that C% = C[2] and that

this space has a fundamental sequence of bounded subsets. This implies that C[2]

is a (DF)-space (see e.g. [13, §29]).

These facts enable us to apply a homomorphism lemma of A. Baernstein II to

the inclusion mapping A[2,]<L, C[2] to derive the (nontrivial) fact that A[2,] in its

inductive limit topology is actually a subspace of C[2]. In view of C[2] = C^ we

then know that A [2] = A% as locally convex spaces.

Homomorphism Lemma (Baernstein). Let E be a Monte! space and let F be a

(DF)-space. Let T be a continuous linear mapping from E into F with the property

that T~l(B) is bounded whenever B is. Then T~l is a continuous linear mapping from

TE onto E.

For a proof see §2 in [1].

Now assume that there is a sequence (l(j))JL\ of positive integers /(_/') and a

sequence (a,)" of positive reals a, such that for ally

0j(z + z') + log(2 + |z|2) < a,a)(z) - log a, (4.9)

if z, z' G C with \z'\ < 1. Let k G % be given. More specifically, let us assume

that k(z) = supj Sje"^, z G C", for a sequence (S,)J° of positive numbers. Making

constructions as above we can find k! G % with

k'(z) < sup a, ■ 8ia)ea¿z),       z G Cf.

j

From (4.9) now follows

k'(z + z')(2 + |z|2) < k(z)    if z, z' G C, \z'\ < 1.

Thus % is an AU-structure.

Now assume that, in addition, there exists a sequence of plurisubharmonic

functions (<p,)f° with (4.3). Let k G % be given. Choose a sequence (ey)J° of positive

reals with

e,e^z) < max e.e^z)   if z G C, \z\ < /, (4.10)
j<i

for all / = 1,2,..., and choose k' G % with

k'(z) < sup ^e«« < k(z),       z G C. (4.11)
j

Using (4.3) and the continuity of a, such choices can be made. Let m G 91t(9C) be

continuous with

m(z) < k'(z),       z G C. (4.12)

Since {m} is bounded in C% we already know that m(z) < /• ew<z), z G C, for

some / G N. By (4.2) we can find an integer l0 > I + 2 with

m(z) < E,+2e^*z)   if z G C, \z\ > /„. (4.13)



246 SÖNKE HANSEN

By (4.10) and (4.11) we have

k'(z) < max e¡e^z)   if z G C, \z\ < l0.

This results with (4.11), (4.12) and (4.13) in m(z) < e«z) < k(z), z G C, where

<p(z) = max,.</o(<p,.(z) + log e,), z G C.

Since obviously ev G 91t(5C) and since <p is plurisubharmonic we have shown

that % is localizable (recall that the continuity assumption on m is no restriction

when dealing with AU-structures). This completes the proof of the theorem.

Examples. Theorem 1 applies to the following examples of spaces A[2,], 2 =

(a,)", in full strength to give localizable analytically uniform structures % = %z

with A [2] = A%.

(i) The space of polynomials in n variables with complex coefficients. In fact, this is

the space A[Z\ with the sequence 2 = (a,)J° consisting of the plurisubharmonic

functions

Oj(z) = j■ log(2 + |z|2),       z G C,j =1,2,....

For this example the proof of the Fundamental Principle leads to a generalization

of Hubert's Nullstellensatz to submodules M of "éP* (K G N, 9 = ring of complex

valued polynomials). This follows from the geometric description which one

obtains for the quotient module tyK / M. This example was given by Ehrenpreis (see

[9, Chapter V.8]).

(ii) FAe space of Laplace transforms of analytic functional on an open convex

subset ß c C. By the Ehrenpreis-Martineau theorem (see [9, Theorem 5.21] or [12,

Theorem 4.5.3]) this is the locally convex space /I[2], 2 = (ö,)J°, with

a(z) = sup  Re<z, f >,      j = 1, 2, ... ,

for a sequence (Kj)™ of compact convex A, c ß exhausting ß and satisfying

Kj c int KJ+X. In the case ß = C this is the space of all entire functions of

exponential growth. Being continuous and the supremum of plurisubharmonic

functions the functions o, are seen to be plurisubharmonic. This allows us to regard

the space %(Q) of holomorphic functions in an open convex subset ß of C in a

natural way as a LAU-space. This example was for ß = C considered in detail by

Ehrenpreis (see [9, Chapter VI]). He proved %(C) to be a LAU-space.

(iii) The space of Fourier-Laplace transforms of the space S'(ß) °f distributions

with compact support in a convex open subset ß ofR". In fact, by the Paley-Wiener-

Schwartz theorem the Fourier-Laplace transform maps S '(ß) isomorphically onto

A[2] if we let 2 = (Oj)Jexs consist of the functions

aj(z) = j ■ log(2 + |z|2) + ///Im z),       z G C,j G N.

Here (//,), eN is the sequence of supporting functions corresponding to a fixed

sequence (^€N of compact convex subsets A, c ß with A, c int KJ+X which

exhausts ß. This means that Hj(r¡) = sup{<x, tj>; x G A^}, tj g R". The functions

Hj are plurisubharmonic since they are continuous and a supremum of plurisub-

harmonic functions. Therefore all functions Oj are plurisubharmonic.
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This example was for polyhedra ß c R" shown to be LAU by Ehrenpreis (see [9,

Chapters V.5 and IV.5]). The statement of analytical uniformity follows for

arbitrary open convex ß readily from Taylor's theorem [17].

(iv) The space of Fourier-Laplace transforms of the space of Beurling ultradistribu-

tions S^(ß) with compact support in an open convex subset ß of R". For the

definition of these ultradistributions and their basic properties we refer to [5]. Here

w is assumed to be a continuous real valued function on R" satisfying the

conditions

(a) 0 < w(0) < <o(£ + rj) < «(£) + «(tj) for all £ tj G R",

(ß) S «(80 + \í\rn~l di < + oo, and

(y) <o(£) > a + b ■ log(l + |£|), £ G R", for some real a and positive b.

The preceding example (iii) is contained in example (iv) since the Schwartz

distributions correspond to <o(£) = log(l + |£|).

By the Paley-Wiener theorem for Beurling ultradistributions (see Theorem 1.8.14

in [5]) the Fourier-Laplace transform maps S^(ß) isomorphically onto A[2.] if we

let 2 = (Oj)jeN consist of the functions Oj(z) = j + j ■ w(Re z) + //,(Im z), z G C,

/ G N. Here (//,-),• eN is chosen as in example (iii).

It is immediately clear that Theorem 1 applies to give A [2] = A% for a certain

AU-structure. But the localizability is not obvious because w(Re •) need not be

plurisubharmonic. However, since there is for every / G N a positive e, with

//.(tj) + ej\r¡\ < Hj+X(r¡), tj G R", we can infer the localizability of % from state-

ment (a) in

Lemma 2. Let u be a continuous real valued function on R" with (a), (ß) and (y).

Then there exist for every e > 0 plurisubharmonic functions <p+ andq>_ such that

(a) — c — e|Im z\ < <p + (z) — w(Re z) < e|Im z\,

(b) — c — e|Im z\ < <p_(z) + w(Re z) < e|Im z\,

for all z G C with a constant c independent of z.

Remark. More generally, one can approximate Lipschitz functions by plurisub-

harmonic functions (see [15, Proposition 2.1]). However, the approximation for

large |Im z\ given in [15] is too crude for our purposes.

Proof of Lemma 2. Let e > 0. Choose an entire function/with/(0) =#= 0 and

|/(z)|< exp(-w(-Rez) + e|Imz|),       z G C (4.14)

The existence of such a function / is related to the existence of nontrivial test

functions in tf)u with support contained in {x G R"; |x| <e} (see [5]). In fact, /can

be chosen as the Fourier-Laplace transform of such a test function. Now choose

8 > 0 with |/(z)| > 8 if \z\ < 8. Choose a sequence (z,)f, Zj G C, such that the

union of all balls with center z, and radius 8 covers C. Let <p+ be the smallest

upper semicontinuous majorant of the function

z -» sup(log|/(z - Zj)\ + w(Re zj) - e|Im z,|).
j

Then <p+ is plurisubharmonic on C".
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Given z and zy we have, using (a) and (4.14),

log|/(z - Zj)\ < -«(Re Zj) + «(Re z) + e|Im z\ + e|Im z,|.

From this the second inequality in (a) follows. Using (a) we obtain for \z — z}\ < 8,

log|/(z - Zj)\ + «(Re Zj) - e|Im Zj\

> log 8 - «(Re z - Re zj) + «(Re z) - e|Im z\ - e8.

Hence the first inequality in (a) follows with c = -log 8 + e8 + sup{«(£); |£| < 8).

Choosing/ with

|/(z)| < exp(-w(Re z) + e|Im z\),       z G C,

instead of (4.14) and defining <p_ as the smallest upper semicontinuous majorant of

the function z —» sup7(log|/(z — zj)\ — «(Re zj) — e|Im z.|) we can derive (b). The

proof is analogous to the proof of (a) and is therefore left to the reader.

The space of Beurling ultradifferentiable functions on R" was considered by

Berenstein and Dostal (see [2, Chapter II, §2]). There it is shown that &u is

analytically uniform. The localizability of Su is not shown there.

(v) FAe space of Fourier-Laplace transforms of the space of Roumieu ultradistribu-

tions ê '(ß> (Mp)) with compact support in an open convex subset ß of R". Here (Mp),

p G N", is a logarithmically convex sequence satisfying a nonquasianalyticity

condition. For a precise definition we refer to [7] (in the notation of [7], S '(ß> (A^,))

is the space &¿(M(p), ß)). By the Paley-Wiener theorem for Roumieu ultradistribu-

tions (see e.g. [7, p. 37]) the Fourier-Laplace transform maps e'(ß» (^)) isomor-

phically onto .4[2] if we let 2 = (Oj)JeN consist of the functions Oj(z) = M(jz) +

//,(Im z), z G C,j G N. Here again (Hj)J£N is chosen as in example (iii) and

M(z) =  sup   log(\z'\/Mp), z G C.
/>eN"

The nonquasianalyticity of (Mp) implies that A//,,/l/'1 tends to infinity with \p\.

Hence the supremum defining M is locally a maximum and so M is continuous and

plurisubharmonic. Therefore all functions Oj are continuous and plurisubharmonic

and Theorem 1 applies to give A[2] = A% for some LAU-structure %.

Chou has shown (see [7, Chapter I, §2.3]) that S (ß, (Mp)) is analytically uniform.

This and the localizability were also proved by Ehrenpreis (see [9, Chapter V.6]) in

case ß = R".

Remark. The statements on analytical uniformity in the foregoing examples

contain nothing new. Localizability, however, seems to be difficult to verify when

using the methods of [9] for spaces like S (ß) when ß c R" is open and convex but

no polyhedron and a complete proof has, in fact, not been carried out in [9]. With

the methods used here these examples can be handled rather easily, however. This

is of course mainly due to our new definition of localizability (see condition (L))

which eases that of Ehrenpreis considerably.

Remark. Ehrenpreis has shown that the space of Fourier-Laplace transforms of

the space of Schwartz test functions ^(R") admits an analytically uniform struc-

ture and he thus proved that ^ '(R") is an AU-space (see [9, Chapter V.4]). This has

been generalized by Berenstein and Dostal [2] to a proof that the space of Beurling
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ultradistributions ^(R") is an AU-space and by Chou [7] to a proof that the space

of Roumieu ultradistributions ty '(ß, (A^,)) in an open convex subset ß of R" is an

AU-space. In [9] and [2] also the question of localizability of tf)'(Rn) and ^(R"),

respectively, is studied. However, the definition of localizability used in [2] (see

Definition 3(viii) on p. 21) only requires for every m G 91t(9C) the existence of a

plurisubharmonic function <p with m(z) < e'fi'\ z G C, and e'p G 91t. But when

working with this definition the proof of the Fundamental Principle given in [2,

Chapter IV, §2] is not complete. Note that our stronger localizability condition (L)

is essential for proving A to be a homomorphism (last part of §3). The point in all

this is that one has to insure that a subset 91t, c 91t(5C) is a sufficient BAU-struc-

ture in the sense of Ehrenpreis (see [9, p. 97]) when 91t(9C) is to be replaced by

91t,. However, even in [9] this point is not always treated carefully. On p. 127 in [9]

it is implicitly assumed that all functions B' exp(A'\ • |) form a sufficient BAU-

structure for the space of holomorphic functions of exponential growth. But there is

no reason for this to be true. A sufficient BAU-structure is easily found though

when looking at the last part of the proof of our Theoem 1. Unfortunately, we have

not yet fully understood the localizability proof for <>Ù'(Rn) given in [9]. But it

seems that [9] contains more or less all those ideas which should be essential in

proving a theorem analogous to Theorem 1 for a suitable class of (LF)-spaces of

entire functions containing as particular examples the spaces of Fourier-Laplace

transforms of (ultradifferentiable) test functions in an open convex subset of

euclidean space.
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