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BOOLEAN POWERS: DIRECT DECOMPOSITION AND

ISOMORPHISM TYPES

by

kenneth hickin and j. m. plotkin

Abstract. We determine properties of Boolean powers of groups and other

algebraic structures, and we generalize Jónsson's theorem on Boolean powers of

centerless, directly indecomposable groups. We show that every nonabelian, finitely

generated group has 2*° nonisomorphic countable Boolean, and hence subcarte-

sian, powers. We show that nonabelian groups G such that either (i) G is not the

central product of two nonabelian groups or (ii) every pair of nontrivial normal

subgroups of G intersect nontrivially yield nonisomorphic Boolean powers with

respect to nonisomorphic Boolean algebras.

Summary. We determine properties of Boolean powers of groups and other

algebraic structures in the spirit of Jónsson [4] and Lawrence [6]. In §1 our main

theorem concerns direct decompositions of Boolean powers and generalizes in a

functorial setting Jónsson's well-known theorem on Boolean powers of centerless

indecomposable groups. In §2 we show that every nonabelian, finitely generated

group has 2"° nonisomorphic countable Boolean, and hence subcartesian, powers.

(For regular k > X0 the existence of 2" mutually nonembeddable subcartesian

powers of power k of every nonabelian group of power < k has been proved by

Shelah using unstable theories.) We also show the following groups G to be

Boolean separating in Lawrence's sense that Boolean powers over G separate the

isomorphism types of all Boolean algebras: G is nonabelian but G is not the central

product of two nonabelian groups; G is nonabelian and every pair of nontrivial

normal subgroups of G intersect nontrivially (such groups are finitely subdirectly

irreducible in Jónsson's terminology).

1. Let 5bea Boolean algebra and let X be its Stone space. B can be identified

with the Boolean algebra of clopen subsets of the compact, O-dimensional, Haus-

dorff space X. Let 91 be an algebraic structure. C(X, 31) is the set of all continuous

functions from X into 91 where 91 has the discrete topology. C(X, 91) < 91* is an

algebraic structure (under pointwise operations) of the same similarity type as 91

and is called the bounded Boolean power of 91 with respect to B. C(X, 91) is thus a

certain subcartesian power of 91 whose members have finite range in 91 correspond-

ing to a finite partition of 1 E B (finite from the compactness of X).

Remark. To define the Boolean power any set representation b —» Xb < X of B

as subsets of a set X can be used. But we have a special use for the ultrafilters of B

(i.e. the elements of the Stone space X), first noticed by Jónsson [4], to project by
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point-evaluation direct factors of Boolean powers of 91 back to direct factors of 91.

Elements of the Stone space can be selected via discontinuity of this direct factor

point evaluation map. A single "discontinuous" direct factor of C(X, 91) yields by

projection a local system of proper direct factors of 91. So, using the Stone space is

very natural. (See Theorem 1 for details.)

Of particular interest to us are cases where 91 is a structure possessing direct

factors which themselves can form a Boolean algebra. Such structures are discussed

by Fell and Tarski [3]. We will restrict our proofs to the case where 91 = G is a

group while keeping in mind that similar results hold for rings and many other

systems.

Let/ E C(X, 91). Since/is continuous, X is compact, and 91 is discrete, there are

distinct a¡ E 91 and pairwise disjoint clopen subsets U¡ of X (1 < i < n) such that

A"= U {L/|l </'<«} and U¡ = f~x(a¡). Thus/has constancy sets corresponding

to a finite partition of 1 E B.

Terminology. U, V, U¡, V¡,. .. always denote clopen subsets of X. U is the

complement of U. G always denotes a group and all groups are written in additive

notation. A(G) and A(X, G) denote the sets of subgroups of G and C(X, G) which

are direct factors of G and C(X, G) respectively.

For U E X andg E G,letf(U,g): X--> G be

/(Í/'S)(X)=U     XEU.

Clearly f(U, g) E C(X, G). From the previous paragraph each h E C(X, G) has a

unique representation as f(Ux, gx) + • • • +f(U„,gn) where {U¡\ 1 < i < n} parti-

tions X and gx, . . . , g„ are distinct elements of G. C(X, G) is generated by

{f(U, g)\ U E X, g E G}. For D< G, U E X we define f(U, D) = {f(U, g)\ g E
D}.f(U, D) is a subgroup of C(X, G). For D E A(G) we also define S(U, D) to be

the subgroup of C(X, G) generated by the groups {f(V, D)\ V E U}.

Lemma. 8(U, D) E A(X, G).

Proof. Let G = D ® D0. From the unique representation for elements of

C(X, G ) it is easily seen that

C(X, G) = 8(U, D)®8(U, D0)®S(U, G).   □

For our main theorem we need to assume that A(G) and A(X, G) are Boolean

algebras under set intersection and algebraic join. The following simple theorem is

contained in the results of Fell and Tarski [3]. Let f G be the center of the group G.

(a) A(G) is a Boolean algebra under set intersection and algebraic join;

Theorem 0. The following conditions on G are equivalent:

(a) A(G) is a Boolean algebra under sei

(b) A(G) has unique complementation;

(c) For all D E A(G) and all qp E Hor

Under these conditions we say A(G) is Boolean.

(c) For all D E A(G) and all y E Hom(G, f G) we have <p(D) < D.
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A similar theorem holds for a more general class of algebraic structures in which

centers and internal direct decompositions can be defined relative to a dis-

tinguished binary operation. The theory includes, for example, the direct decom-

position of a ring as the sum of two-sided ideals. In this situation the "center" of a

ring is its two-sided annihilator. We refer the reader to [3] and [5].

We need also to consider when A(X, G) = A(C(X, G)) is Boolean.

Lemma 1. (a) If Hom(G, fG) = 0 then Hom(C(X, G), $C(X, G)) = 0 and

A(X, G) is Boolean.

(b) If B ¥= {0,1} then Hom(G, £G) = 0 if and only if A(X, G) is Boolean.

Proof, (a) Clearly $C(X, G) = C(X, ?G). Let 4> e Hom(C(X, G), ÇC(X, G)).

Suppose that, for some /( U, g), <ï>(/( U, g)) ¥= 0. Then, for some x E X,

ttx ° <fr(f(U, g)) is a nonzero element of fG where ttx is projection on the xth

coordinate. Let <p embed G in C(X, G) via h \->f(U, h). Then ttx ° 4> ° <p is a

nontrivial element of Hom(G, fG). Thus $ = 0.

(b) Assume B ^ {0, 1} and 0 =é (p E Hom(G, £G). Since B =£ (0, 1}, we can

choose U such that 0 ^ U ¥= X. Choose x E U. Now C(A^_G) - 8(U, G) ©

8(Ü~, G). Define 4> E Hom(C(A-, G), $C(X, G)) as follows: $(8(Û~, G)) = 0 and for

all h E 8(U, G), &(h) = f(U, y ° irx(h)). Clearly ®(8(U, G)) { 8(U, G) since <p is

nontrivial. So by part (c) of Theorem 0, A(X, G) is not Boolean.    □

For A E A(G) (resp. A(X, G)), tta is the projection of G (resp. C(X, G)) onto the

direct factor A. tta is unique provided A(G) (resp. A(X, G)) is Boolean.

Projection Lemma. Assume Hom(G, fG) = 0. Suppose fy E A(X, G), h E fy,

and V E hx(g)for some g E G. Then f(V, g) E fy.

Proof. Let C(X, G) = fy ® %. We have 8(V, G) E A(X, G). Consider the

homomorphism tt = wq, ° wä(KG) ° tt^. Since fy and fy0 are complementary and

projections increase centralizers, tt: C(X, G) -* fC(Ar, G). So, by our assumption, tt

must be trivial. Now tt^H) = h and Ti^yQ^h) = f(V, g). Thus ir(h) = TTq¡ (f(V, g))

= 0 proving that/( V, g) E fy.    □

For x E X and <*D E A(X, G) let G(x, fy) = {f(x)\f E fy}, G(x, fy) = Trx(fy)

< G.

Lemma. Assume Hom(G, ?G) = 0 and C(X, G) = fy ® fy)0. Then G = G(x, fy)

® G(x, %).

Proof. By considering constant functions one can see G = G(x, fy) +

G(x, fy0). That G(x, fy) n G(x, fyQ) = {0} follows from fy n fy0 = {0} and the

projection lemma.    □

With Hom(G, fG) = 0 and fy E A(X, G) fixed, the function x ^ G(x, fy) maps

X into A(G). We denote this mapping by G( , fy). After endowing A(G) with the

discrete topology, it makes sense to ask about the continuity of G(, fy ).

Definition. G has local direct factors if every finite subset of G is contained in a

proper direct factor of G.
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Theorem 1. Suppose Hom(G, fG) = 0 and fy E A(X, G). If G( , fy) is not

continuous, then G has local direct factors.

Proof. G(, fy) not continuous means there is an A E A(G) such that S = {/» E

X\ G(p, fy) = A} is not open. Hence there is ap0 E S such that for each U with

p0E U there is a q E U with q E S. Let C(X, G) = fy ® fyQ. Then G = G(p0, fy)

® G(p0, fy0). We claim one of G(/>0, fy), G(/>0, fy0) has local direct factors and

hence G does too.

Let F E G, F finite. Let ttx, tt2 be the projections of G onto G(/»0, fy) and

G(p0, fy0) respectively. Say ttx(F) = {gx, . . . , gk) and tt2(F) = {hx, . . . , h,}. Let

/ G fy, 1 < i < k, and f] E fy0, 1 < j < t, be such that/(/»0) = gi andff(P(¿ = h,.

Let £/< = /f'U), ^ = fj-\hj), I < i < k, I < j < t. Now set V = n1<(<* I/j n
H i<7<, 1^- F is open and p0 E V. Thus there is a q E V, q & S. We have

{gx,...,gk}E G(q, fy) while {Ä„ ...,h,}E G(q, %). Further G(^r, fy) +

G(p0, fy) and G(q, %) * G(Po, %).

Case 1. G(/»0, <>D) <f G(q, fy). Then 7r,(T) ç G(/»0, <$) n G(<?, <$) < G(Po, fy).

Case 2. G(p0, fy) < G(q, fy). Then since A(G) is Boolean, G(q, fy0) < G(p0, fy0)

and tt2(F) E G(Po, %) n G(q, %) = G(q, %) < G(/»0, %).

We can assign the finite subsets of G to Yx, Y2 as follows: F E Yx if ttx(F) is in a

proper factor of G(p0, fy); F E Y2ii tt2(F) is in a proper factor of G(/>0, ^q). One

of Yx or y2 must be cofinal in the finite subsets of G. If it is Yx then G(p0, fy ) has

local direct factors, if Y2, G(p0, fy0) does.    □

When Hom(G, fG) = 0, C(X, A(G)) is a Boolean algebra and we can define a

Boolean monomorphism $>: C(X, A(G)) -» A^, G) as follows: any <p E

C(X, A(G)) has a unique representation as <p(Ux, Dx)\y ■ ■ ■ \/<p(U„, Dn) where

(¡p(i/„ D¡) is defined in a manner analogous to f(U¡, g¡) and where {U¡\ I < i < n)

partitions X while Dx, . . . , Dn are distinct elements of A(G). Let ^(<p) = 8(UX, Dx)

® • • ■ ®8(Un, Dn). It is routine to check that $ is a Boolean monomorphism.

Notice that if $ is onto A(X, G), we have the isomorphism A^, G) = A(C(X, G))

= C(X, A(G)) of Boolean algebras. This roughly says that the Boolean power

functor commutes with the direct factor functor.

Theorem 2. Assume Hom(G, fG) = 0 and fy E A(X, G). Then fy E range($) //

and only if G(, fy) is continuous. Hence $ is onto A(X, G) if and only if G( , fy) is

continuous for all fy E A(X, G).

Proof. Suppose fy E A(X, G) n ranged) and let <p E C(X, A(G)) with 0(<p) =

fy. Let <p(Ux, Dx) V • • • \/<p(Un, Dn) be the unique representation of <p. Then

fy = 8(UX, Dx) ® ■ ■ ■ ®8(U„, D„). For x E Up G(x, fy) = Dj. Thus, G( , fy) is

constant on each Í7, and G(, fy ) is continuous.

Conversely, suppose fy E A(X, G) and G( , fy) is continuous. There is a parti-

tion {U¡\ 1 </<«} of X and distinct H¡ E A(G), 1 < / < n, such that G(x, fy) =

H, for x E U,. Iff E fy,f(U¡) E H,. Thus D < 8(UX, Hx)® ■ ■ ■ ®8(Un, Hn). We

show fy = 8(UX, Hx) ® ■ ■ ■ ®8(Un, Hn) by showing the generators f(V, h) of

each 8(U¡, H¡) are in fy. Fix/( V, h) with V E U„ h E ZZ,, For each x E V there is

an fx E fy  with fx(x) = h. Let Vx = f;\h). { Vx\ x E V} covers V. Since X is
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compact and V is clopen, V = Vx u • • • U Vx for some xx, . . . , xm E V and we

can assume Vx n Vx = 0 for /' =£j. By the projection lemma f(Vx, h) E fy,

I < i < m. But' /(F, h) = f(Vx¡, h) + ■ ■ ■ +f(VXm, h) and f(V, h) E 4. Clearly
fy = d>((p) where tp = <p(c/„ Hx)y ■ ■ ■ \/<p(Un, Hx).   Q

Corollary. If Hom(G, fG) = 0 and for some Boolean algebra B the mapping 4>

is not onto A(X, G), then G has local direct factors; thus if G does not have local

direct factors, the isomorphism A(X, G) = C(X, A(G)) holds for all Boolean algebras

B.

This corollary is a simple consequence of Theorems 1 and 2. It applies trivially

provided G is indecomposable and centerless and yields A(A", G) = C(X, A(G)) =

C(X, (0, 1}) = B. This isomorphism was first established by Jónsson [4].

We next consider the condition of having local direct factors.

Definition. For A E G, A    is the normal closure of A in G.

Theorem 3. Assume A(G) is Boolean and G = KG where K is a countable set. If G

has local direct factors then G is the direct sum of an infinite set of groups.

Proof. It is convenient to use the following fact about Boolean algebras: if

<¿>,| / < w) is an infinite sequence of elements of B then there is a subsequence

<¿>;> and another sequence <c, > of elements of B such that for all L 0¥=c¡ < bi

and Uj ¥= k, c, A c, = 0. Now let K = U {K¡\ i < w} where K¡ is finite for each

i < co. Since G has local direct factors, let G = Ai ffi B¡ where K¡ < A¡ and

B¡ =/= {0} for each /' < u. {B¡\ i < «} is evidently an infinite subset of A(G). By our

opening remarks there is a subsequence <Z?,) and a sequence <C, > of elements

from A(G) such that for all j, 0 ^ C¡ < B¡, and thus C = 2®C, exists in G. We

show C E A(G). We proceed by constructing the complement of C. Let x E G.

Say x E K^. Hence for all m > n, ttc (x) = 0. Put x = xx + x2 where xx E C,

© • • • © C¡ñ and x2 E C,o © • • • ffi C¡n (complement). We have ttc¡ (x^ = 0 for all

j. Thus x2 E D {CAj < co}. Let H be the group generated by {x2\ x E G). Then

G = C ffi H.   □

Corollary. If Hom(G, fG) = 0, G = KG where K is countable and G is not a

direct sum of an infinite set of groups, then <P is onto A(X, G) for all B and

A(X, G) « C(X, A(G)).

For example, if G is finitely generated and Hom(G, fG) = 0 then A(X, G) «

C(X, A(G)) holds for all B.

If G has local direct factors, we have no general criterion (involving conditions

on G and B) to determine when <P is onto A(X, G) and hence when A(X, G) —

C(X, A(G)) holds. However, we can give a complete answer when G is an infinite

direct sum of groups.

Theorem 4. Let B be an infinite Boolean algebra and suppose Hom(G, fG) = 0. If

G is a direct sum of an infinite set of groups, then $ is not onto A(X, G).
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Proof. Let G = 2^_, ®G,, By Theorem 2 it suffices to produce a fy E A(X, G)

for which G( , fy) is not continuous. It is well known that in any infinite Boolean

algebra there exists a countable set of nonzero elements whose pairwise intersec-

tions are zero. Let { U¡\ 1 < ¡' < co} be such a collection in X, the Stone space of B.

We describe fy and fy0 by telling which generators of C(X, G) are in them. For

VEX,

(i) ifVr\U„ = 0 for all n thenfi V, g) E fy for all g E G,

(ii) if V n Um t^ 0 and V n U„ ¥= V while V n Uj = 0 for all j < m, then

f(V, g) E fy for all g E G, + • • • + Gm,

(in) if V n Um= V then/(K, g) E fy for all g G G, + • • • + Gm andfiV, g) E

6D0forallgG2m+1<1G,,

fy and ^o are generated by the above designated elements.

We claim C(X, G) = fy ffi fy0. It suffices to show that each f(U, gk) E fy + fy0

where gk E Gk, 1 < k < w, and that <$ n 'î'o = (°)-

Ciwe 1. Í/ n i/„ = 0 for all n. From (i) we have/(t7, gk) E fy.

Case 2. U n U„ = U for some n. We apply (iii). If n > k,f(U, gk) E fy and if

k>n,f(U,gk)Efy0.

Case 3.1 is the first index for which U n U, ¥= 0 or U while U C\ U}■ = 0 for all

/ < / and I > k. Then from (ii) we have/(U, gk) E fy.

Case 4. Same conditions as Case 3 except I < k. From (iii)/(t7 n U„ gk) E fy0.

Consider V - U fl ~Ü¡. By our choice of /, if V n U¡ =£ 0 then j > /. We

want to show f(V, gk) E fy + fy0. This would allow us to conclude f(U, gk) =

f(U D U„ gk) + f(U n ~U„ gk) E fy + fy0. Either Case 1, 2, or 3 allows us to say

/( V, gk) E fy + fy0 or we are in the circumstances of Case 4. That is, m is the least

index for which V n Um =£ 0 or V and V n ¿7, = 0 for all j <m and m < k.

Note of course w > /. As above we conclude /( V n C/m, g*) G ^ and we consider

/( V n i/m, gj. Again either Case 1, 2, or 3 apply or we are in Case 4 for V n tVm.

As the index of the first intersecting U- is rising, this process terminates in a finite

number of steps. We then see that /( V, gk) E fy + fyQ and thus /( U, gk) E fy +

fy0. Hence C(X, G) = fy + fy0.

Now we show fy n fy0 = {0}. Let h Efy. h = f(Vx, gx) + ■ ■ ■ +f(Vn,gn)

where /( V¡, g¡) is a generator of fy as described in (i), (ii), or (iii). In the case of

types (ii) and (iii) the relevant index m is considered part of the type. It is easy to

see that generators of distinct types commute and that generators of like types can

be combined. Thus we may assume h = f(Vx, g,) + • • • +f(V„, g„) where/(F,, g¡)

is a generator of fy and Vx, . . . , Vn are pairwise disjoint. The same remarks apply

to A G fy0. If h E fy n fy0 and x E X, by our above comments there are genera-

tors/(F,, gx) and/(K0, g0) of fy and fy0 respectively such that h(x) = fiV^ g¿)(x)

= f(Vx, gx)(x) and x E V0 n Vx. From the definition of fyQ, V0 E Um for some m

and g0 G S„+Kj G,, Now x E V0 n Vx and we have Vx n Um =£ 0. Hence

f(V\> 8\) is either of type (ii) or (iii). In either case g G 2,<7 G, where j < m. But

2,<m G,- n 2m + 1<1 G,. = {0} and hence g0 = gx= 0. Thus h=0andfy nfy0 =

{0}.
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We complete the proof by showing G( , fy) is not continuous. Let S =

U i<i<« Uj, T = S = n i<I<u Uj. T is closed and nonempty. T is not open. If it

were, {U¡}, T would be an open cover of the compact space X which has no finite

subcover. Thus there is a p E T, p G interior of T. So each neighborhood of p

contains points of S. Let N0 be a neighborhood of p. There is a least m0 such that

Um <~î N0=£ 0. Let TV, = N0 n Um. p E Nx so there is a least m, with £/m n TV,

t^ 0. Note ra0 < m,. Continuing this process, we get a sequence of integers

m0 < mx < . . . , and a sequence of neighborhoods of p, TV0 d TV, D ... such that

^ n /V; t^ 0. From the definition of fy it is easy to see that G(p, fy) = 2™, ®G,

= G. Let A be any neighborhood of /» and let m be the least integer with

Um n N t* 0. Choose any q E Um C\ N. Since <? G t/m, G(í7, <$) = G,

+ • • • + Gm. Thus G(, eD) is not continuous at p.    □

Next we give an example of a group G possessing "countably local direct

factors" but which is not isomorphic to an infinite direct sum of nontrivial groups.

This G is a group for which Theorems 1 and 2 are of no use in analyzing A(X, G).

For such a group we do not know if there must exist a Boolean algebra B such that

A(X, G) has "discontinuous" members (not in the range of i>).

The construction of G is an easy direct limit of Boolean powers. Let B be a

countable atomless Boolean algebra and let I £ B be a maximal ideal. Let ZZ be a

nonabelian simple group and let P = C(X, H) be the Boolean power of ZZ with

respect to B. Let M be the subgroup of P generated by {f(U, g)\ U E I, g G H).

M is the direct sum of infinitely many subgroups PD » P where every factor PD

corresponds to an element D of a fixed pairwise disjoint generating set of I and

PD = <f(U,g)\U<D,gEH> = 8(D, H).
We define a chain of groups under subgroup inclusion (GJ a < co,} as follows.

Put G0 = P. The crucial properties of the construction will be

(a) For all a < co,, Ga « P.

(b) For all a < ß < co,, Ga is a direct factor of Gß.

Suppose Ga = P has been defined. Let cp: Ga -» M embed Ga as a direct factor PD
f

of M and let Ga E Ga+X be isomorphic to the embedding Ga—» M c P. This

embeds G0 as a direct factor of Ga+, since every direct factor PD of M is also a

direct factor of P. Now suppose a is a limit ordinal and Gß is defined for all ß < a

and (a) and (b) are satisfied. Using (b) we decompose A = U {Gß\ ß < a} into an

infinite direct sum of subgroups A¡ (0 < / < co) with every Aj isomorphic to a direct

factor of some Gß = P; specifically let < /?,| i < co) be cofinal in a and let A¡ be

such that Gß+ = Aj ffi G^. Thus every A¡ » P (all nontrivial direct factors of P are

isomorphic to P) and A = M. We may choose Ga so that the extension Ga D A is

isomorphic to P D M. Since every G^ ( y3 < a) is a direct factor of some G^, G^ is

a direct factor of Ga also.

Now let G = U {Ga\ a < co,}. Using (b) we see that for all a < co„ Ga G A(G).

Hence G has "countably local direct factors": every countable subgroup of G is

contained in a proper direct factor of G. We claim G cannot be the direct sum of
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infinitely many nontrivial subgroups. To obtain a contradiction suppose G =

2°°-i ®L, (Lj ¥= 0). Choose a < co, so that Ga ni^O for all i. Ga s P is the

normal closure of a single element (since H is nonabelian and simple) contrary to

Ga meeting all the direct factors of L¡ of G.

2. Isomorphism types. Let P(G, B) be the isomorphism type of the bounded

Boolean power of G with respect to B. Lawrence calls a group G Boolean

separating (Zi-separating) if B i-> P(G, B) is one-to-one on all isomorphism types

B. In [4] it was shown that every nontrivial, indecomposable, centerless G (actually

Hom(G, fG) = 0 is sufficient) is 5-separating in the strong sense that B can be

recovered from P(G, B) as A(P(G, B)) = B.

Before presenting our first theorem we need the

Definition. Çg(H) = the centralizer of the subgroup H E G in G. A nonabelian

group G is centrally indecomposable if and only if G cannot be expressed as a sum

G = H + K of nonabelian subgroups H and K with Z<" Ç ÇG(H). Notice that if

G = H + K as above, then ZZ n # Ç fG and G « ZZ + K/Ü where ñ Ç fZZ +

fZC and Q n f ZZ = £2 n ÇK = 0.

Theorem 5. If G is nonabelian and centrally indecomposable, then G is B-separat-

ing.

Notice that every centerless, indecomposable group is centrally indecomposable.

Lawrence [6] has shown that:

(1) No abelian group is 5-separating;

(2) No direct square G X G is B -separating (since there are Boolean algebras

B0 9* Bx with B0 X B0 « Bx X Bx, and C(X, G X G) « C(X X X, G) is easily

checked); and

(3) Every nonabelian, finite, subdirectly irreducible group is 5-separating.

We enlarge Lawrence's positive result to

Theorem 6. Let G be a nonabelian group in which every two nontrivial normal

subgroups intersect nontrivially. G is B-separating.

Our final result is motivated by proofs occurring in Shelah [7], Baldwin and Saxl

[1], and Belegradek [2] that every countable nonabelian group has 2* subcartesian

powers in every cardinal k > N0. In fact for k > H0 and regular there are 2"

mutually nonembeddable such powers. These proofs all use logical instability

which says nothing in the countable case k = Nn. Boolean powers do settle the

problem in this case, at least for finitely generated groups.

Theorem 7. Every nonabelian finitely generated group G has 2"° nonisomorphic

countable Boolean powers.

Of course Boolean powers cannot be expected to provide mutually nonembedda-

ble groups as in stability theory where delicate set theory is used.

Theorems 5 and 6 considerably increase the class of directly indecomposable

groups known to be Ä-separating from [4] and [6]. Let x and A be the classes of

nonabelian groups of Theorems 5 and 6, repectively. Thus members of A satisfy
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the "normal filter" property of Theorem 6 while members of x are centrally

indecomposable. These classes are somewhat independent because of the central

product construction for groups: if G G A and f G ^ 0 then every central power P

of G with amalgamated center (P = 2®{GJ a G Z}/ß where Ga ^ G and Í2 = <za

— zß\ a =£ ß E I, z E fG» also belongs to A because, for a E I, f P = ÇGa since

the centers of the Ga are amalgamated in P, and every nontrivial normal subgroup

of P intersects some Ga E P nontrivially. This gives many members of A — x- For

example, let F(n) be the free class 2 nilpotent group on n generators. Let F(2) =

<a, b}. $F(2) is infinite cyclic with generator [a, b] and every nontrivial normal

subgroup of F(2) meets fT(2) nontrivially. Thus F(2) E A, so every central power

of ^(2) with amalgamated center is in A too (but not in x, except for F(2) itself).

Notice that if n > 2, then F(n) G A because ÇF(n) has rank(n(n — l)/2). But it is

not difficult to show that F(n) E x (free nilpotent groups of any nilpotency class

should be in x also). An indecomposable group which none of our theorems show

to be 5-separating is F(n) X F(n)/Q (n > 2) with ß = {(z, -z)\ z E ÇF(n)}

(amalgamated center). We do not know if this type of group is Zi-separating. So, in

spite of our positive results, the problem of characterizing Z?-separating inde-

composable groups remains quite open. We have no example of a nonabelian

indecomposable group which is not Ä-separating. Another class of interest is

^ = {G| Hom(G, fG) = 0}. We know from §1 that indecomposable members of

¥ are ß-separating since A(X, G) — B (Jónsson's proof in [4] extends to this case

as well). This result is evidently not contained in Theorems 5 and 6, again because

of central amalgamations: if G G ^, then every central power P of G with

amalgamated centers is in ty also and P will be indecomposable provided G is

centrally indecomposable.

In the proof of Theorem 7 we select a certain class of 2"° nonisomorphic,

countable, atomic Boolean algebras and we show that every nonabelian finitely

generated group G "separates" all the members of this class. The special structure

of these Boolean algebras provides means for recovering B from C(X, G) not

available when dealing with arbitrary Boolean algebras as in Theorems 5 and 6. In

fact the proof of Theorem 7 reduces to two cases: either G is nilpotent or G is

centerless. In the first case we show that if B is atomic, then a fixed finite cartesian

power Bm of B can be isomorphically recovered from any Boolean power C(X, G)

of G over B, thus guaranteeing 5-separation for atomic B except in cases similar to

Lawrence's example- Bx & B2 but Bxm = B2 -which are the only nonabelian coun-

terexamples to Zi-separation we know of. In the case that G is centerless we do not

do quite as well-we recover the normal subgroup series of C(X, G) corresponding

to the Tarski ideal series of B. (The Tarski ideal of B is generated by all atoms and

atomless elements of B.) The clarification of this situation will likely be facilitated

by Ketonen's recent classification theorem for countable Boolean algebras which

we do not attempt here.

Proof of Theorem 5. First we make the

Definition. Let B be a Boolean algebra with Stone space X and let G be a

group. Let fy G A(*, G).
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(a) G(x, fy) = fy(x) = {f(x)\f E fy} (this is the evaluation map notation of

§1).
(b)y(fy) = {xEX\G(x, fy)i£G}.

(c) x is the class of nonabelian centrally indecomposable groups.

Lemma 2. Suppose G E x, C(X, G) = fy0 ® fyx, and x EX. Then there is a

unique i = 0 or 1 such that G(x, fy¡) -£ fG (i.e., x E y(fy¡)) and for this value of i we

have $G(G(x, %)) = IG.

Proof. Since C(X, G) = fy0 ® fyx, it is easy to see that G = G(x, fy0) +

G(x, fyx) where the subgroups G(x, fy¡) commute elementwise (i.e., G is a central

product of these subgroups) and since G E x, exactly one of these subgroups is

nonabelian and the other is contained in fG. It remains to verify the final equality.

We have £G = SG(x, %) + ÇG(x, %) = SG(G(x, %)) because G(x, %_,) E $G.

D

Lemma 3. Let fy E A(X, G). Then y(fy) is clopen.

Proof. Put C(X, G) = fy © S. Choose a E G - ?G and put f(X, a) = d + e

where d E fy, e E &. We claim that for all x E X

x E y(fy) (i.e., G(x, fy) «£ fG) if and only if d(x) E fG. (♦)

Assuming (*) the proof that y(fy) is clopen is to put d = f(Ux, ax)

+ • • • +f(Un, a„) where U¡, 1 < / < n, are pairwise disjoint. Then y(fy) must be

the union of some of the U¡.

Now for (*): the reverse implication is immediate since d(x) E fy(x) = G(x, fy).

To prove the forward implication contrapositively assume x E X and d(x) E fG.

Then e(x) G fG and by Lemma 2, x E y(ë) — y(fy) (because exactly one of

G(x, fy) and G(x, &) is central in G).    □

Lemma 4. Let C = C(X, G).If&,fy e A(X, G), then fc(S ) E Çc(fy) if and only

ify(fy)Ey(&).

Proof. (<=) Suppose y(fy) E y(&) and/ G fc(S). By Lemma 2, fix) E fG for

all x G y(S) since ?G(G(x, &)) = fG. Hence fix) G f G for all x E y(fy) E y(g)

which implies/ G Çr(fy).

(=>) Suppose $c(&)EÇc(fy) but U = y(fy) - y(&) ¥* 0. U is clopen by

Lemma 3. Choose a E G - fG. We have fiU, a) E fc(S) since U n y(&) = 0

while fiU, a) <£ Çc(fy) because if x E U E y(fy), then Lemma 2 says <TG(G(x, fy))

= f G and hence a G f G does not centralize G(x, fy ) (which implies /( U, a) &

$c(fy )). So, /( U, a) E fC(S ) - fc(6D ) which is impossible.   □

Completion of the proof of Theorem 5. By Lemma 4, the condition fc(S) Q

Çc(fy) defines a reflexive and transitive preorder fy < S on A^, G). Let < be the

induced partial ordering of the equivalence classes [fy] of A(X, G) under < . By

Lemma 4, [fy] = [S] if and only if y^) = v(S) because [<$>] < [S] if and only if
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y(&) E y(fy). By Lemma 3, (y^)! fy E A(X, G)} = {U\ U E X). Hence, <

defines on [A(X, G)] a lattice ordering isomorphic to that of B.   □

Proof of Theorem 6. If fG = 0 then G is Ä-separating by Jónsson's Theorem

[4]. So assume f G ^ 0 and every two nontrivial normal subgroups of G intersect

nontrivially. Thus fG is a rank 1 abelian group because every subgroup of £G is

normal in G. There are two cases. Either f G is cyclic or a quasi-cyclic /»-group

(Case 1), or else fG is torsion free and a subgroup of the additive rationals (Case 2).

Let B be a Boolean algebra, X its Stone space. Let C = C(X, G) be as in § 1.

Case 1. In this case G is subdirectly irreducible with minimum normal subgroup

Zp of order/». If g G C, let Lg consist of all the elements of

[g,C] =<g+/-g-/|/GC>c

(normal closure in C) which have order/» and lie in fC. Let Sg = {x E X\ g(x) E

fG}. Noting that fC = C(X, fG), it is easily seen that Lg is generated by all the

fiV, Zp) = {f(V, a)\ a E Zp) E C where V E Sg is a clopen set on which g is

constant. (/( V, Zp) is the minimum normal subgroup of /( V, G).) Hence, for all

g, h E C, Lg = Lh if and only if Sg = Sh. Since every V E X is an Sg for some

g G C, the subgroups {Lg\ g E C} form a lattice isomorphic to B and G is

Zi-separating.

Case 2. Let us first note (*) if N ^ 0 is a subgroup of fG then ÇG/N is periodic.

If g G C, let LÄ = [g, C] n fC and let Sg = {x G *| g(x) g fG} as in Case 1.

Define a relation ~ on C as follows: if g, /t G C then g ~ h if and only if both

LgLh/Lg and LgLh/Lh are periodic.

C/a/w. If g, A G C then g ~ A iff 5g = Sh.

Proof of Claim. Suppose Sg ¥= Sh. Without loss of generality assume we have

0 * V Ç Sg - Sh. Thus [g,C]D[g, 8(V, G)] n fiV, fG) + 0 and since FflS,

= 0, [/t, C] n fiV, fG) = 0. Hence LgLh/Lh » Lg/Lg n LA is not periodic since

it contains a non trivial subgroup of fiV, fG) which is torsion free. So h -*- g. On

the other hand, suppose Sg = Sh = S. So Lg, Lh E 8(S, fG) and both Lg and LA

intersect every /( V, f G) nontrivially where V E S. In view of (*) this implies both

8(S, ÇG)/Lg and 8(S, IG)/ Lh are periodic. Hence h ~ g and the claim is estab-

lished.

Thus ~ is an equivalence relation on C. We partially order the equivalence

classes C/~ as follows: [g] < [/i] if and only if LgLh/Lh is periodic. It is easy to

check, as in the claim, that [g] < [h] if and only if Sg E Sh. Since every clopen set

is Sg for some g G C, the ordering < on C/~ is isomorphic to (the Boolean

lattice) B and, since — and < are definable in C we conclude that G is

Zi-separating.    □

Proof of Theorem 7. The proof is divided into two cases according to whether

G equals the largest term f °°G of its transfinite upper central series • • • faG <

fa + 1G • • • defined by f°G = 0, $a + xG/$ttG = Ç(G/ÇaG) for ordinals a with

continuity at limit ordinals. If G = f °°G, then since G is finitely generated, simple

commutator calculus shows the last limit group f AG must itself be finitely normally

generated in G. Hence G is nilpotent. This will be Case 2.
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Case 1. G ¥- f °°G. Put F = G/^G. It is routine to check by induction that, for

all ordinals a and Boolean algebras B, $aC(X, G) = C(X, faG). (This would be

true in any "bounded" subcartesian power of G in which all functions have finite

range in G.) Hence H = f °°C(X, G) = C(X, £°°G) and we can recover from

C(X, G) the group

K = C(X, G)/H » C(X, F).

Now F ¥= 0 is centerless, so A(ZC) is Boolean.  By Theorems  1,2, and 3 the

canonical mapping <P: C(X, A(F)) ->■ A(K) defined as in §1 by <p(U, D) h» 8(U, D)

where U E X, D E A(F) is onto A(K).

Claim. Suppose 0 ¥= <5¡) e A(ZC). Then

(1) fy is finitely generated if and only if fy - 8({px}, £),)©••■ ©ÓY{/»„}, D„)

for some isolated points/»,, . . . , pn E X and D¡ E A(F).

(2) fy has no finitely generated direct factors if and only if fy = 8(UX, Dx)

ffi • • • ®8(Un, Dn) where each U¡, I < i < n, has no isolated points and D¡ G

A(F).

Proof of Claim. Since F is finitely generated, every 8({p), D) at D is finitely

generated where p is an isolated point of X and D E A(F). On the other hand if

U =£ 0 is not just a finite set of isolated points and 0 ¥= D E A(F), 8(U, D) is not

finitely generated since every finite subset of 8(U, D) lies in some subgroup

f(Ux, D) ffi • •• ®f(U„, D) t¿ 8(U, D) where {U¡\ 1 < i < n} is a partition of (V.

Both parts of the claim easily follow from these observations.    □

Define R = R(B) to be the ideal of B generated by all the atoms of B together

with the atomless elements of B. Inductively put Rx = R and Rn + X/Rn =

R(B/Rn).

For b E B, let Ub C X be the clopen set corresponding to b. If I is an ideal of B,

define I(X, F) E C(X, F) = K to be the join of the subgroups {8(Ub, F)\b E I}.

It is well known that K/I(X, F) s= C(X — I, F) where X — I is the Stone space of

B/I.
By the previous claim and the above definitions we have

(i) R(X, F) is the join of all fy E A(K) where fy is either finitely generated or fy

has no nontrivial finitely generated direct factors.

Having found R„(X, F), we have

(ii) Rn+x(X, F)/Rn(X, F) is the join of fy E A(K/Rn(X, F)) where fy has the

properties enunciated in (i). Consequently the subgroup series {RTI(X, F)\ n > 1}

can be defined in K. Also

(iii) B/Rn has an atomless element if and only if K/Rn(X, F) has a direct factor

with no finitely generated subfactors.

It is well known that there are 2"° countable atomic Boolean algebras which

differ in the sets of values of n for which B/Rn(B) has atomless elements. In the

Stone space this means: in the sequence X = A'0 D^'d X2 D . . . where Xtt+X

= limit points of X", there are values of n for which X" contains points which are

not the limits of isolated points. Constructing such Boolean algebras involves

combinatorially the partitioning of an infinite set of atoms obtained at stage n into

infinitely many new (stage n + I) atoms and optionally a "dense" portion as well.
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These values of n can be recovered from P(B, F) = isomorphism type of C(X, F)

in accordance with (i)-(iii) giving 2K° nonisomorphic Boolean powers of F and

hence of G.

Case 2. G is nilpotent. Let & be the class of 2"° countable atomic Boolean

algebras used in the preceding case. We will show that G separates &, i.e., the map

B -» P(G, B) is one-to-one on isomorphism types for B G 6B. A simple fact about

& we will use later is (0) if B0 * Bx E & and m > 1, then B™ m Bx (since a direct

product does not affect the stages at which atomless elements occur in the

R -series).

Assume B E & and let C = C(X, G) where X is the Stone space of B. For

a E G define [a, G] to be the normal closure of the set of commutators {a + g —

a - g\ g G G}. Let ttx be the projection of C at x E X; so TTx(f) = fix). Put

supp(/)= {xE X\fix)^0}.

We use the following easily checked facts.

(1) For all/ G C and x E X, ttx(U, C]) = [/, C](x) ^ 0 if and only if fix) £ fG.

(2) Let/ h EC. \ffix) = h(x) for all x E supp(/) then [/, C] Ç [A, C]; indeed,

if h = /(<7„ g,) + • • • +/(c/,, g„) (t/,.'s pairwise disjoint) then [h, C] =

2®[/(i/,.,g,),C].
(3) If G is any group, g G G, and z G f G then [g, G] = [g + z, G],

Put r = the minimum general rank among the abelian subgroups {[/, C] n £C| /

G C — fC}. (All of the abelian subgroups in this set are nontrivial because every

nontrivial normal subgroup of the nilpotent group C meets f C nontrivially.) Hence

r > 1. Suppose/ G C with supp(f) = {x} where x is an isolated point of X. Then

by (1)» [/> C] n fC CI fô({x}, G) = fG which is finitely generated since G satisfies

the maximum condition on its subgroups. Thus 1 < r is finite.

Put S = {h E C\ [h, C] n £C has rank r}. Notice that S = S + f C by (3). We

claim

(4) For all h G 5 there is a unique isolated point x E X with A(;c) G f G.

If two such points xx, x2 existed, then [h, C] n fC would have, according to (2),

direct factors of rank > r at both xx and x2 coordinates and thus would have

rank > 2r, contrary to h E S. On the other hand, some such x must exist because

B E & is atomic (the isolated points of X are dense).

Define an equivalence relation — on the cosets 5/fC as follows:

If H « {ft, + ÇC, ..., h„ + $C) is a finite subset of S/fC, then H is called a

related set provided there exists an additive dependence relation among the

subgroups {[A,., C] n fC| 1 < / < n), i.e., there exist z, G [A,, C] (not all z¡ = 0)

such that 2z, = 0. Let R = {ZZ Ç S/ÇC\ H is a minimal related set} and let — be

the equivalence relation on S/ f C generated by the subsets R, i.e., every H E R is

a subset of a single — equivalence class.

For each isolated point x E X put Sx = {A G S\ h(x) & fG}. By (4) there is

exactly one such x for every A G 5. Note also that h + ÇC E Sx for all h E Sx. We

claim

(5) If HER, then for some isolated point x E X, H E Sx; hence every

-equivalence class of S/ÇC is contained in some SX/$C; and
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(6) For every x E X, every n + 1-element subset of SX/ÇC is related, where

n = rank(fG). Hence, for every isolated point x E X, SX/ÇC is divided into m < n

equivalence classes under ~ (mis the same for all x).

Proof of (5). If a related set H contained members of both Sx and Sy with x =£y

isolated points of X, then H would not be minimal since [H n Sx, C] and

[H n Sy, C] are independent.

Proof of (6). The first part is obvious. That m is fixed is clear since m depends

only on the properties of G and not on x.    □

We next show that a Boolean algebra isomorphic to Bm is generated by a

definable collection {Tg\ g E C} of subsets of S/ÇC. If / G S, let [/] denote the

~ -equivalence class of / + fC. We define Tg for g G C by Tg = {[/]| f E S and

[g, C] n [/, C] n fC t¿ 0}. Let x E X be a fixed isolated point, let cp G Sx and

U EX. Put T(Í7, <p) = {[fy]\y EU, y isolated, fy E Sy, and fy(y) = <p(x)}. Thus
T(tV, <p) picks out the —equivalence classes [fy] E Sy (for all the isolated .y G U)

which correspond to the class [cp] E Sx under the coordinate-indexing of copies of

G. Notice that x simply fixes a coordinate copy of G for reference. We claim

(7) Under set theoretic operations, the sets {T(c7, rp)| cp G Sx, U E X} generate

a Boolean algebra % isomorphic to Bm; and, letting "3" be the Boolean algebra

generated by the sets {Tg\ g E C}, we have

(8) 3" Q % and

(9) % E 3".
The proof of (7) is completely routine using the fact that B G £B is atomic.

Proof of (8). Every Tg E 3" is seen to be the union of finitely many sets of the

form T(i/, <p) by considering the unique representation of g as "Zf(U¡, g¡) = 2/

since [g, C] = 2[/, C] and Tg = U {7}} and every Tf is a certain finite union of

the form 7}- = T(t7,, <p,) u ■ • • U T(i/,, tpj where <py G Sx correspond to the ~ -

equivalence classes which happen to nontrivially intersect [f(y), G] n ?G (y E

u,).
Proof of (9). Let cp G Sx and U E X. We claim

T(i7, cp) = TfiUMx)>.

Clearly E holds. So, equality will follow (consulting the definition of Tg and

recalling (4)) provided: if / G Sy for some isolated y E U and if [fiy), G] n

[qp(jc), G] n £G 7¿ 0 then [/] = [<p,] where cp, G Sy, %(y) = <p(x). Now [/(>>), G] n

[<p(x), G] n £G t^ 0 implies {/, cp,} is a minimal related set whence [/] = [cp,]

follows.    □

Thus Bm is definable in C(X, G) and (in view of (0)) the proof is complete.    □
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