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COUNTING DIVISORS WITH PRESCRIBED SINGULARITIES

BY

ISRAEL VAINSENCHER

Abstract. Given a family of divisors {/),} in a family of smooth varieties { Ys}

and a sequence of integers mx, . . . , m,, we study the scheme parametrizing the

points (s,yx, . . . ,y,) such that^, is a (possibly infinitely near) m,-fold point of D,.

We obtain a general formula which yields, as special cases, the formula of de

Jonquieres and other classical results of Enumerative Geometry. We also study the

questions of finiteness and the multiplicities of the solutions.

1. Introduction. The aim of this work is to obtain formulas for the number of

divisors in a family which possess points with specified multiplicities. For instance,

if the family is given by the hyperplane sections of a smooth subvariety Y of a

projective space, we wish to count the hyperplanes satisfying specified contact

conditions with Y.

About a century ago de Jonquieres published his Memoire [10], exhibiting a

formula for the number of plane curves of a given degree having prescribed

contacts with a fixed plane curve. The formula itself has generated much interest

(cf. Enriques and Chisini [3], MacDonald [16], [17] and Mattuck [19]). Shortly

afterwards, the flourishing school of Enumerative Geometry produced a wealth of

results on contacts of lines and planes with surfaces in 3-space and other enumera-

tive problems (cf. Zeuthen and Pieri [27]).

The next generation of algebraic geometers somewhat changed the emphasis,

from the counting of singularities per se, to the discovery of certain invariants

definable in terms of those singularities. Thus, one finds in C. Segre [24, p. 75] the

definition of the genus of a curve in terms of the invariant v — 2/t, where v is the

number of double points of a gxn on the curve. The Zeuthen-Segre invariant

(Enriques [4, p. 167]) and the very definition of the canonical system [4, p. 49] are

further examples of the "new" trend.

Possessing now as we do, a well-developed intersection theory, it is natural to try

and go back to the origins, and vindicate (to today's taste and sense of rigor) those

classical formulas. In fact, Hilbert's 15th problem calls for "... the actual

carrying out of the process of elimination in the case of equations of special form

in such a way that the degree of the final equations and the multiplicity of their

solutions may be foreseen" [8, p. 464]. We hope this work will provide a step in this

direction. For a survey on recent developments on the subject, we refer to Kleiman

[12], [13].
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The paper is organized as follows. In order to study singular divisors in a family

{Ds}, it is convenient to look at the pairs (y, s) such thaty is a singular point of Ds.

This leads to our definition of incidence correspondences in §2. The case where the

ambient spaces Ys are curves is treated in §3. Here is also handled the case of

arbitrary dimension but with just one assigned multiplicity. In §4 we apply the

machinery developed so far to retrieve the formula for the degree of the dual

variety (4.2), the Zeuthen-Segre invariant (4.3) and the formula of de Jonquieres

(4.4). In §5 we derive formulas for contacts of lines with a surface in 3-space. In

§§6 and 7 we introduce a step-by-step procedure to handle the case of arbitrary

relative dimension. Roughly, to get a hold on the divisors that possess, say, one

triple and another double point, we first restrict to the subfamily of divisors with a

triple point. Then we construct a new family by taking (virtual) transforms at each

assigned triple point, and finally we search for the double points in the new family.

In §8 we obtain formulas that apply to the counting of bitangent and tritangent

planes of a surface in 3-space. We explain how to deal with contacts of a

hypersurface with higher-dimensional linear spaces and give an example in 4-space

(8.4). We also show how to get formulas for the number of curves (embedded in a

family of surfaces) displaying specified coincidences of tangents at a singularity.

This yields, as special cases, the number of cusps of a general net on a surface

(8.6.3), as well as the cuspnodes of a general web (8.6.4). The last two paragraphs

are devoted to the questions of finiteness and multiplicity of the solutions.

As a general proviso, all schemes are assumed to be quasiprojective over an

algebraically closed field k, and points are /c-rational. The intersection theory used

here is that of Fulton [5]. If A* is a scheme and Z C lis closed, we denote by [Z]

the class of Z in the Chow group A .(X). We denote by jz the degree of a zero cycle

z of a projective scheme.

Acknowledgement. This work is based on my Ph. D. thesis (MIT, 1976). Many

thanks are due to S. L. KJeiman, my adviser, for all his encouragement and helpful

discussions.

2. Incidence correspondences. Suppose we are given a diagram of maps of

schemes,

W c X 3 D

1
S

We think of X —> S as a family of ambient spaces, and of W and D as the total

spaces of families of subschemes (iOses' {jDs}seS. We call a subscheme of S the

incidence correspondence of W in D if it has the following universal property: a map

T -» S factors through it iff  WT c DT holds (as subschemes of the pullback

Proposition (2.2) will give a criterion for the existence of incidence correspon-

dences. It is instructive, however, to look first at some of the examples that

motivate the whole business.

(2.1) Examples. (1) Let Y be a smooth, projective variety. Let Ac Y X Y be the

diagonal subvariety. Given a positive integer m, let mA denote the subscheme of
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Y X Y with ideal /(mA) = /(A)m. Let S be (the parameter space of) a linear system

on Y with universal divisor D c Y X S. Put S = Y X S, X = Y X S and take W

and D to be the pullbacks of mA and D to X. Then the incidence correspondence

of W in D consists of the pairs (y, s) such thaty is an (at least) m-fold point of Ds.

(2) Suppose now dim Y = 1. Put Y' = Y X ■ ■ ■ XY (/-times). Let Aq, denote

the diagonal {(y0, . . . ,yj) E Y X Y'\ = y,}. Given a sequence of positive in-

tegers m := mx.m„ let mA stand for the positive divisor

mA = m,Ao, + • • • +m(Ao,.

Observe that the fibre of mA over (y„ ...,yj)E Y' is the divisor mxyx

+ • • • + my, in Y. Let S and D be as in (1). Finally, put S = Y' X S, X = Y X

5, and take IF and /) to be the pullbacks of mA and D to X. In the present

situation, the incidence correspondence of W in D consists of the points

(yx, . . . ,y„ s) E S such that Ds > 2 m^i holds. Roughly, the classical formula of

de Jonquieres counts the number of such points (if finite and provided t + dim S

= 2 mj). We retrieve the formula by computing the class of the incidence corre-

spondence in the Chow ring A (S).

(3) Let S be the Grassmann variety of lines in P" and let P -» S be the universal

P'-bundle. Put S = Pxs-XsP (Mimes) and put X = P Xs S. Now let

mA c X denote the sum of multiples 2 m,Ao, of the relative diagonals. Given a

hypersurface H c P", set D = P n (H X S), then take D to be the pullback of D

to X. The incidence correpondence of mA in D now consists of the points

(y„ . . . ,y„ I) in P" X • •• XP" X S such that either the line / is contained in H

or H cuts out in / a divisor > 2 »y,-. This is certainly an appropriate setup for

counting lines satisfying prescribed contact conditions with a hypersurface.

(2.2) Proposition. Let f: X^Sbe a map of schemes, let W c X be a closed

subscheme, and let D E X be the scheme of zeros of a section of an invertible

&x-module L. Suppose fJ^L <8> 0^) is locally free and that its formation commutes

with base change (e.g. if W is flat and proper / S and R xf#(L <8> ©„,) = 0 holds). Then

the incidence correspondence of W in D exists and is equal to the scheme of zeros of a

section of the locally free 6s-module f^(6w <8> L).

Proof. There is a natural diagram of maps of 0^-modules,

(2.2.1) i        \a

0^>L<8> I(W) ->L->LO3>0„,-»O,

where the vertical arrow is the section defining D.

Now it is clear that, for each map T—>S,DT^ WT holds if and only if aT = 0.

The assertion now follows from Altaian and KJeiman [1, Proposition (2.3)].   □

3. Relative dimension 1. In order to apply (2.2) to the preceding examples, we

start by working out their main common features.

(3.1) Fix a smooth map/: X —* S. Let D denote the scheme of zeros of a section

of an invertible 0^-module L. Let m = m,, . . . , m, be a sequence of nonnegative
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integers. Unless stated otherwise, we will assume t = 1 if the relative dimension off is

> 1. We denote the /-fold cartesian product of X over S by X'. The projections

from X' onto (resp. omitting) the /th factor will be denoted byp,, (resp. p,j). The

diagonal subscheme of A2 over S is denoted by A or Ax/S. We denote by mA the

subscheme with ideal /(mA) = /(A)m. The pullback of A to X' via the projection

onto the i,j factors is denoted by A,..

We are interested in the set of singular points of the fibres of D —» S. Since each

fibre Ds is (locally) defined by one equation in Xs, a point is of multiplicity > m on

Ds if and only if the local equation of Ds lies in the mth power of the maximal ideal

there. (If Ds = Xs, each point of Xs is considered to be of multiplicity > m for

every m.) In order to globalize this observation, as well as to treat the case of

several assigned multiplicities, we are lead to consider the subscheme mA c X

X s X' defined by the ideal

I(mD) = /(Ao,r . . . /(Ao,r    (product).

(3.2) Lemma. mA is finite and flat over X'.

Proof. The subscheme mA of A"2 is flat over X (via, say, p2 ,). Indeed, this

assertion is trivial for m = 1. For m > 2, we consider the exact sequence

(3.2.i) o^ /«-'//» ^emA^e(m_1)A^0

where / is short for 1(A). Because X is smooth/S, each Im~x/Im is a locally free

0^--module (in fact isomorphic to the symmetric power Sm_xQx/s). Thus mA is flat

over X as claimed. For t > 2 (hence rel dim = 1), the proof is easy and will be

omitted.    □

(3.3) We define the m-Jacobian of D as the incidence correspondence of mA in

PJ+\, i-D. It exists by (2.2), because mA is finite and flat over X'. It will be denoted

by J(m; D). The m-contact sheaf of L is the 0^.,-module

(3-3.1) &x/Sim; L) = (p,+1)i)(0„,A ®p,'+,,,L).

(This is a "secant bundle" in the sense of Schwarzenberger [23].) It will also be

written simply &x(m; L) or S (m) if no confusion is likely. The m-contact section is

the section of &x/s(mJ, L) which is the adjoint (= direct image viap, + , ;) of the

composition

P*+1.1* r

0   ->  Pr*+1,,L^L®0„A.

Here s is the section of L defining D and r is induced by the restriction 0 -+> 0^.

We say D is m-regular if the Koszul complex of the m-contact section is exact. If S

is Cohen-Macaulay, then D is m-regular iff J(m; D) is of the right codimension

rank & (m)

K?,(m'+r')'
where n = rel dim X/S (cf. (3.5) below)).
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(3.4) Proposition. (1) J(m; D) is the scheme of zeros of the m-contact section.

(2) Suppose D is m-regular. Then J(m; D) repesents the top Chern class of

5X/S(m; L) (in any decent intersection theory).

Proof. (1) The assertion follows from (2.2).

(2) The assertion is well known for nonsingular S [6, p. 153]. For the general

case, we sketch a proof in the lemma below, for lack of reference.

(3.4.1) Lemma. Let X be a quasiprojective scheme. Let  &  be a locally free

Qx-module of rank p. Let s be a section of & and let Z denote the scheme of zeros of

s. If s is regular (i.e., the Koszul complex AS * —> 0Z is exact) then [Z] = cp(&) n

[X]inA.(X).

Proof. We proceed by induction on the rank of S. When p = 1, then Z is a

Cartier divisor, £ = &X(Z) and the assertion is proven in Fulton [5, p. 160].

Suppose p > 2 and considerp: P(S) —»X. Nowp*: A.(X) -» A.(P(&)) is injective,

according to Verdier [26, Assertion 6.9, p. 170]. Thus we may assume S fits into an

exact sequence &' "^ & -» & ", where S " is an invertible 0^-module. We get a

section s" of £ " which is easily seen to be regular. Denoting by Z" the scheme of

zeros of s", we have [Z"\ = c,(S") n [X]. Let /: Z" c X be the inclusion map.

Clearly, i*s factors through a section s' of /*£'. It can easily be seen that s' is also

regular and that its scheme of zeros is just Z. Hence, we have, by induction,

[Z]=cp_,(/*£')n[Z"]    in A.(Z").

We push forward to A .(X) and use the projection formula. Now standard proper-

ties of Chern classes yield the assertion.   □

Next we compute the class of the m-contact sheaf in the Grothendieck ring KX'.

We start with the case t = 1 (and arbitrary relative dimension).

(3.5) Proposition. We have the formula

m-\

&x/s(m; L) = L 2   $,(«*/*)    '« KTX.
o

(Sj = ith symmetric power.) In particular,

rankS^A(m;L) = ('« + »-l)>

where n = rel dim X/S.

Proof. We argue as in the proof of (3.2).

Tensoring the sequence (3.2.1) byp£,L and applying (p^j)* yields the exact

sequence

0 -» L <8> Sm_x(£lx/S) -> S(m) -> S(m - 1) ->0,

where S(m) is short for Sx/S(m; L). The formula now follows by induction on m.

□

(3.5.1) Remark. S(m) := &x/s(m; L) is equal to EGA's sheaf of principal parts

of order m - 1 [EGA IV4, 16.7.1.2].
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Here is what £(m) looks like, locally. Suppose X = Spec B, S = Spec A, L =

6X, &b/a = B dxx® ■ • ■ ®B dxn. Now £(m) corresponds to the quotient

B ®A B/Im, where / denotes the diagonal ideal of B ®A B generated by all

b ® 1 — 1 ® b (b in B), and the 5-module structure is induced by bQ(bx ® b^ =

(b0bj) ® b2. Recall that £lB/A = I/I2 and that the universal ^-derivation of B is

given by db = b ® 1 - 1 ® b (class mod I2). £ (m) splits in the direct sum of the

I'/I'+x (i = 0, . . . , m — 1), and each of these is free with basis dx'x> . . . dxj?,

where the exponents range over all sequences of nonnegative integers which add up

to /. Denote the dual basis by 9, ,. Then, for each b in B, the class of 1 ® b

mod Im is equal to

2(3,,...^)^,''...^.
Let F be a local equation of D. Then the m-contact section has the coordinates

3;| iJF. Therefore, J(m; D) is defined locally by the (m+n„~x) equations 8(i ^F -

0.'

(3.6) Theorem. We have, in the Grothedieck ring K~(X'), the formula

&x/s(m; L) = 2  (pZ&x/siW' L))\ ~ 2  "i/A,J-
i=l V      h>i I

(The last parenthesis stand for the twisting by the ideal of a divisor.)

Proof. We assume / > 2. Write for short qj = p,+XJ (j = 0, . .. ,t), px= ptl,

and similarly for qt,P{. Consider the closed subscheme W of X Xs X' with ideal

I(W) = I(m2AoJ) ■ • • I(m,AQJ)   (products).

Thus, /(mA) = I(mxA0j)I(W) holds. Because I(W) is invertible, we get an exact

sequence

o-> eMiAoi ® /(wo - e^ -* <V -o.

Tensoring it with qfiL and applying (q0)t yields the exact sequence

(3.6.1)

0 "* (%).(©„,*„  ® /( W) O tf L) "> £^/s(«i; *<) "* (?6>,(<V ® <7o^) ->o

11 (definition) ||

^ pf £a-/s(™'; l)

where m' denotes the sequence m2, . . . , m,. The latter equality holds by the

Principle of Exchange (or flat base change). Here is the relevant diagram:

Qh

WdXxsX'        ->       X'

m'A<z X XSX'-X      P-X      X'~x

/ Pa

X
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By induction on /, it follows that p*&x/s(rnj', L) is the sum of the (t — l)-last

terms of the proposed formula.

Now it remains to identify A in (3.6.1) withpf&x/s(mx; L)( —2A>, mAAw). For

this, we observe that X xs X' is equal to the fiber product X' Xx,-\ X', where we

regard X' as a scheme over X'~x viapx. Further, with this identification in mind,

the projections onto the 1st and 2nd factors are equal to <?q and <l\ (see diagram).

Moreover Aq, is precisely Ax,/x,-\. Thus, applying (3.5) to A'-» X'~x andpj"L ®

/( W) (in place of X -» S and L, respectively), we get

7M|— 1

A = &x,/x,-,(mx;p*L ® I(W)) = p*xL ® I(W) 2    St(Qx./x,-x).
o

Observe thatpj: X' -+ X'~x is the pullback of X -^ S:

x>     P-X   x

Pli 1
X'~x      -H>      S.

Finally, since formation of relative differentials and of symmetric powers of a

locally free module commutes with base change, we see that A is indeed equal to

the 1st term of our formula. This completes the proof of the theorem.   □

The recursive relation stated below will be needed later for the proof of the

formula of de Jonquieres.

(3.6.2) Proposition. 77te contact sheaves satisfy the relation

S(«,«+l;i) =  £(m.u; L) + P,*+l(Mfi^)")( ~ 2   ™A,,+ l)     '" *X*' + ')-

Proof. Consider the fibre square

xxsx,+x     <4 xxsx,+2

Ub lib
X'+x ^ X'+2

(Xx, . . . , Xl+X)        I—»       (xt+\> -*i> • • • > xi> xt + \)-

where the horizontal maps are diagonal embeddings. Set W = (1, m, u)A, that is,

the subscheme of AXSA"+2 with ideal /(A01)/(A02)m' . . . /(Ao^,)"^^ ,+2)u.

Since W is flat over X'+2, we have the formula

l{j~\W))=j*l(W).

By the construction of j, we have

j*i(w) = /(A0,,+,ri/(A0,r • • • i(\>,r.
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Thus, j~x(W) is just (m, u + 1)A. Consequently, we may write

&x/s(m, u + 1; L) = (?6)+(0(„)U + ,)A ® (q'0)*L)    (by definition)

= (<7o)*l/*(<V ® <7o*^))

= /*(9o)*(©w ® ^o^)    (by the Principle of Exchange)

= '*£*/.s0> Ibu; L)

= [<*q*L(-uA,+2x -2 ™/A+2,/,+i)

+ 2 <?/*+.£, + 9?+3£xM*l *<)]    ™ K-(X'+X)

(by (3.6)), where £, is short for

&x/s(m,; L)(-uAt+2,l+ 1 - 2  mhAh + x,l + 1).

By definition of /, we have

■ _ \ Pt+\    for / = 1 or/ + 2,

q'1 ~ [p,_x     for 2 < / < t + 1.

We also have

* r(^ \ - \P?+iQx/s      for (h + l,l+\) = (t + 2, 1),

1    (*+u+l)|/(AM) fori </<*<*+1.

Therefore we get

£a-/s(w, u+ 1;L) =p;+,L(fii-/5)"(-2 wAA,+ i,/,)

+ 2 p*&X/s(mr> L)( - 2 "tf^A
\      h>l I

where we put m'h = mh for /i < / and m't+, = m. By (3.6) the last term in the

expression above is precisely £(m, u; L) in K'(X'+X), thus completing the proof.

□

4. Applications. Let Y, S and Z) be as in (2.1)(1). Let M be an invertible

0y-module associated to the linear system S. Put X = Y X S and L = M ®

0S(1). There is a section of L defining the universal divisor D c X. Now, if the

codimension of J(m; D)inX' is equal to the rank of £^/s(m; L), we have

[y(m; /))] = ctop £*/s(m; L).

(4.1) Proposition. Preserve the above notation. If we also assume J(m; D) finite

then the degree of its zero cycle is the integer \m; M\ defined by

(4.1.1) \m; M\ = f cln&Y(m; M),

where we put n = dim Y.

Proof. The degree may be computed by first pushing forward the zero cycle

from A(X') to A(Y'). Since X' is the trivial projective bundle Y' X S, the assertion
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follows from standard properties of Chern classes and the fact that

&x/s(m; L) = &Y(m; M) ® 0S(1).   □

(4.2) Degree of the dual variety. If S is induced by the hyperplane sections of

Y c P", then

(4.2.1) |2; M\ = c„£y(2; M) = cn(M + MQ,XY)

is the degree of the dual variety of Y (up to the inseparable degree of the dual map

[11, p. 250]).
(4.3) The Zeuthen-Segre invariant. Suppose Y is a surface. Set x := c2(^r)>

K := c,(S2y) and (by abuse) M := cx(M). Suppose dim S = 1. Then the formula

for |2; M\ is equivalent to that expressing the classical Zeuthen-Segre invariant / in

terms of x- Indeed, set

R :— # base points,

y := # singular members,

g :=  (arithmetic) genus of a member of S.

Then / is defined classically by

/ := y - R - 4g (Cf. Baker [2, p. 185]).

On the other hand, we may compute

y = |2;M|    (by (4.1))

= X + 2KM + 3M2   (by (4.2.1))

= X + 2(KM + M2) + M2 = x + 4(g - 1) + B.

(The assertion B = M2 holds because the base points are the zeros of the map

0f2 —> M defined by a choice of 2 members of S.)

Thus, we retrieve the well-known formula / + 4 = x (cf. Iversen [9, p. 974]).

(4.4) The formula of de Jonquieres. Suppose now Y is a smooth projective curve

of genus g and S is a linear system associated to an injective 0v-module M of

degree d. The m-Jacobian J(m; D) presently parametrizes the points (y„ . . . ,y„ s)

E Y' X S such that Ds > 2 m, y,. Suppose / + r = 2 m,. < d. If J(m; D) is finite,

then the formula of de Jonquieres expresses the degree of its zero cycle. Setting

v = d — 2 m,, we have

(4.4.1) / [/] - ^> 2o « + v - h)\h\ (8h)oh(mx - 1, . . ., m, - 1),

where a0 = 1, and ox, . . . ,o, denote the elementary symmetric functions in t

variables.

Recent proofs of the formula used some deep numerical relations in the Jacobian

of Y (cf. Mattuck [19]). The rest of this paragraph is devoted to the proof of (4.4.1).

By (4.1), we have / [/] = \m; M\. Denote by [m] the r.h.s. of (4.4.1). We claim

that

(4.4.2) \m;M\=[m].

To prove the latter equality (and hence (4.4.1)), we will need the following.
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(4.4.3) Lemma. There are formulas:

(1) \m, 0; M\ = 0,
(2) jm, 1; M\ = (d - 2 m,)|m; M\,

(3)\l,...,l;M\ = (d\)/(d-t)\,

(4)
\m,u+ 1;M\ = \m, u; M\ + (d + u(2g - 2))\m; M(-uy)\

- 2 w,|m„ . . ., m,, + u, . . ., m,; M\,

where y is a point of Y and M( — uy) := M ® I(y)u.

(5) \m; M\ = irm; M\, where irm denote a permutation of the m,.

Proof of (4.4.2). Replacing m by m, 1, . . ., 1, we may assume v = 0, because of

(4.4.3)(2). If m - 1.1 (t times), then [m] = t\. This is just fine by (4.4.3)(3),

because d = t (as v = 0). Now it is clear that (4.4.3)(3)-(4.4.3)(5) completely

determine \m; M\. So, to finish the proof, it suffices to verify that [m] satisfies the

following recursive relation:

[m,u+ 1] =[m,u, 1] +(d+ «(2g-2))[m,l]

- 2 mi[mv • • • , m,- + w, . . . , m„ 1]

with 1 + m + 2 m,: = d. The verification offers no surprises and will be omitted.

□
Proof of (4.4.3). Clearly, (2) implies (3). Also, (2) is a consequence of (1) and

(4).
To prove (5), let ttq denote the permutation of the coordinates of Y X Y' such

thatp07r0 = p0 andp,7r0 = pTi for i - 1,..., t. Wc clearly have that ^(A,,,) = Aq„„

and therefore, ^""'(mA) = (trm)A, where irm := mwX, . . ., mvt. With a slight abuse

of notation we may write, by definition of contact sheaves,

7T*&y(m; M) = v*(PqUPq*M ® 0„J = (p6)*<(Po*^ ® M

= (P6)»(Po*A/ ® <0„a) = &A™; M).

As it* = -n ~' holds (because it is an automorphism of Y'), we get

/ ct&Y(nr, M) = I TTmTT*cl&y(m; M) = j w^c,£r(7rm; M) — j c,&y(Trm; M),

thus proving (5).

For the remaining assertions, set, for short, £(w) := £y(m, u; M). To prove (1),

notice that £(0) = p*&Y(m; M), wherep: Y'+x -» Y' omits the last coordinate. (1)

now follows because the r.h.s. of this last equality has zero (/ + 1)-Chern class.

To prove (4), we recall from (3.6.2) the following formula:

£(« + 1) = &(u) + U*+,(A/fi?«))(- 2 *n„\l+\
V      h<t I

Lety and h denote, respectively, the embeddings of Y' onto Y' X y, and AA ,+ 1 in

Y'+x. We compute Chern classes modulo algebraic equivalence. Thus cx(MSlf") =

(d + u(2g — 2))y. Using the above formula to compute ct+x&(u + 1), we get

\m, u + 1;M\ = \m, u; M\ + (d + u(2g - 2)) ( c,y*&(u) - 2 mh f c,h*6(u).
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Using (3.6) together with the formulas

(ll+iy)(Y') = {y},     £'(A/+U) = tf(y),

y*(\i) = \,    (i<h< t),        qty_ = qt    (1 < / < /),

we get

y*&(u) = 6®," + 2 ?*Sy(m,.; A/(-wy))(- 2  »«***)    in *(!").
\      h >i I

Hence,

J Cly*&(u) = \m;M(-uy)\.

Similarly, we get, for h = t,

t*&(u) = q*&Y(u; M) + q*&Y(m,; M)fi®u

+ 2  ?,*£y(w,; M)  -m\,. - mA,. - 2  mjAjX
i \ i+i        /

However, the 1st two terms in the r.h.s. adds up precisely to

q*&Y(u + m,;M)\\\

Hence, we have proven

t*&(u) = &r(mx, . . . , m,_„ m, + u; M).

Finally, with the help of permutations on Y' and Y'+x (cf. proof of (5)) we get,

for any h = 1, . . . , t,

h*&(u) = &Y(mx, . . . , mh + u, . . . , mt; M),

thus completing the proof of (4.4.3).    □

5. Lines with prescribed contact with a hypersurface. Fix a projective space

P' = P( V). Let S denote the Grassmann variety of lines in Pr. Let Q denote the

universal 2-quotient of Vs. Thus X := P(Q) —» S is the universal family of lines.

Let H c Pr be a hypersurface of degree d, and let sH E H°(Pr, 0 (d)) be a

defining equation. Now sH gives rise to a section of L := &x(d) whose scheme of

zeros D c X is just the intersection X n (H X S) c P'xS. We say a line I and

the hypersurface H have m-contact with each other if / n H contains a divisor of / of

the form 2 m,;c,. The scheme J(m; D) presently parametrizes the pairs

((xx, . . . , xj), I) E H X • • • XH X S such that / n H > 2 m,oc,. Thus, one may

retrieve classical formulas for the number of lines satisfying prescribed contact

conditions with a hypersurface by computing the appropriate c.&x/s(m; 6x(d)).

Let us make a few explicit calculations for a surface in P3.

Set X = cx(Q) and set tt = c2Q. Thus, X (resp. tt) is the class of the "condition"

that a line meet a fixed other line (resp. that a line pass through a fixed point).

There are formulas:

A4 = 2 (= # of lines meeting 4 others),

it2 = 1 (= # of lines through 2 points . . . ),

\2tt = 1 (= # of lines meeting 2 others and passing through a point).
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Set 9 = cx6x(l). We need the Chern class of fl := &X/S. In view of the canonical

sequence on X = P(Q), 0 -»£2(1) -» Qx -> &x(l) -» 0, we can compute w := c,fi as

w = X - 20.

We also have the formulas 92 = X9 - tt, 03 = (X2 - tt)0 - \tt, 9a = 0. (The 1st

holds by Grothendieck's construction of Chern classes; the 2nd then follows.)

(5.1) Five-fold contact with a surface of degree d (t = 1, m = 5). The number we

are after is the degree of the zero cycle

/(5; D) = c5&x/s(5; 6x(d)).

By (3.5), this is the term of top degree in (1 + d9)(l + d.9 + w). . . (1 + d9 + 4w).

Using, as needed, the relations listed above, and pushing down to S, one finds the

zero cycle

424X4 + (50d - 192)X4 + (35d2 - 300d + 576)(X4 - tt\2)]

which has degree 5d(ld2 - 40d + 48) (cf. Baker [2, Formula (4), p. 90]).

(5.2) Doubly inflexional lines (t = 2; m, = m2 = 3). Their number is one-half the

degree of the zero cycle

z := c6&x/s(3, 3; ex(d)) = (d9x - 3A)[(d - 2)9X - 3A + X]

• [(d - 4)0, - 3A + 2X] ■ d92[(d - 2)92 + X][(d - 4)92 + 2X].

(The indices mean pullback to A X s A via the corresponding projection.)

Using the formulas A2 = -c,(fi) = -wA = (29 - X)A, pu(A) = p2*(^i) = l and

p2*(l) = 0, we may compute p2*(z)- We retrieve the number

d(d - 4)(d - 5)(d3 + 3d2 + 29d - 60)

(cf. Baker [2, Formula (5), p. 91], or Schubert [22, Formula (19), p. 236]).

(5.3) Tritangent lines (t = 3, m, = m2 = m3 = 2) meeting a general line. One has

to calculate the degree of

z := Xc6£(2, 2, 2; 6x(d)) - X fi  (dB, - 22 )((* - M + A - 22 ),

where 2, := 2A>, Ahi. We get 6 times the number

\d(d - 3)(d - A)(d - 5)(d2 + 3d - 2)

(cf. Schubert [22, Formula (15), p. 236]).

6. Arbitrary relative dimension. Let Y be a smooth variety and let D c Y be a

positive divisor. We say that D has a singularity of type m if the following holds:

first require that D have a pointy, of multiplicity > m,; next let Yx denote the

blowup to Y aty,, let Ex denote the exceptional divisor and let Dx denote the total

transform of D; then require that the effective divisor Dx — mxEx have a point y2

of multiplicity > m^ and so on. The sequence (yx,y2, . . . ) thus constructed is

called a singularity of type m of D.

Of course, if dim 7=1, it is clear that D has a singularity of type m iff

D > 2 m,y, holds.
(6.1) Let/: A —> S, D E X and L be as in (3.1). We no longer impose restrictions

on the relative dimension. Our goal is to construct an S-scheme J(m; D) whose
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fibre over any point s in S consists of the sequences of singularities of type m of the

fibre Ds.

We first define inductively a sequence of maps

Pt,x,pt,2:X{t}^X{t-l}.

We set A(0} := S, A(l} := Aandp,,, = px 2 :=/. For/ > 2, we view X{t - 1}

as a scheme/A{f — 2} viap,_, „ and we let

b,:X{t)^X{t-\}Xx{t.2)X{t-\}

denote the blowup of the diagonal. Then we set p,, = p{b„ where p, denotes the

projection onto X{t - 1}. Note thatp,, is smooth [EGA IV4, 19.4.8]. We denote

the exceptional divisor by E, (or E if no confusion is likely) and the /nth power of

its deal by 0,(m).

For each 0^-module &, we set

&(mx) := <$2(mx)®pl2&

and define inductively, for t > 2,

(6.1.1) &(m) := 0,+ ,(m,) ®P;+K2&(mx, ..., m,_j).

J(m; D) will be a subscheme of A(/}, defined by the following step-by-step

procedure.

For / = 1, m = m„ the subscheme J(m; D) c A was already constructed in

(3.3). The result below will enable us to go on assigning more singular points, one

at a time.

(6.2) Proposition. J(m; D) is also equal to the incidence correspondence of mE in

Pi,iD.

mE c X{2) Z)pj2xD

P2,\  S ^>   P2,2

J(m; D) c A X ^> D

Proof. The diagram (2.2.1) now reads

®*{2}

(6-2.1) i   ^<^

O^L(m)   ^   pl2L   -*  Pt^® 6mE^0.

Using the formulas

(Pp2),),L(m) = (Rpx),(P2*L ® /(A)m),

{RKxUpilL ® ej) = (P>,),(P2*L ® 0mA)

(see Manin [18, p. 63]), one shows that mE is flat/A, that (R xp2 ,)*(p2>2L ® 0^^)

= 0 and that the adjoint of a in A coincides with the m-contact section. This

proves the proposition.   □

(6.3) Continuing with our program of constructing J(m; D), notice that, because

mE is flat/A, the sequence (6.2.1) remains exact after restriction over J :=

J(m; D). Hence, the section of p22L that defines p2~2/3 yields a section sm of
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L(m)j. We call the scheme of zeros of sm the m-virtual transform of D, and denote

it by D(m).

At this stage, we replace D c A -^ S by D(m) c A(2}y -»/ and define, by

induction,

(6.3.1) J(m; D) := J(m2, ...,m,; D(mjj).

We leave to the reader the verification that (6.3.1) agrees with (3.3).

7. The generic class of J(m; D). Preserve the notation of §6. Denote by m, the

truncated sequence m„ . . . , m,.

(7.1) We say D is m-regular if, for each / = 1, . . . , /, the Koszul complex of the

m,-contact section defining./(m,; D) in./(m,_,; D) Xwj.n A{/} is exact.

If S is Cohen-Macaulay, then D is m-regular iff each J(mt; D) is either empty or

of the right codimension

2 (mJ + n-1)

LnA(/}.

We define inductively the m-contact virtual sheaf of L by

(7.1.1) &x/s(m; L) := &xWX{,-i}(mt; L(mjj) + p*x&x/s(mt; L)    in A"(A{/}),

where the first term on the r.h.s. is the (class of the) m,-contact sheaf of L(mj)

(6.1.1).

(7.2) Lemma. We have the formula, in K'(X{t}),

&x/s(m; L) = &xm/x(m2, . . . ,mt; L(mjj) + (p*x . . .plj)&x/s(mx; L).

Proof. The assertion follows immediately from the definitions. Just observe that,

replacing A -+ S by A := A{2) -h. S := A, we have A{/ - 1} = A(/}.   D

(7.3) Theorem. Suppose D is m-regular. Then the class of J (rrv, D) in A.(X{t}) is

the Poincare dual of the top Chern class of the m-contact sheaf of L. In symbols,

[J(m; D)] = ctop(&x/s(m; L)) n[A(/}].

Proof. We have, to start with, the equality

[J(mx;D)] = ctop(&x/s(mx; L)) n [ A]    in A. (x),

in view of (3.4)(2).

Set m' = m2, . . ., mt, replace A -» S by

A' := A{2) xx J(mx; D) -> S' := J(mx; D),

D by D' := D(mx) (6.3), and L by L' := L(mj)x,. By construction, we have

J(m; D) = /(m'; D). By induction, the class of the latter in A.(X'{t — 1}) is dual

to the top Chern class of £*/$'(>?!.'; ^')- Now A'(/ — 1} is obviously equal to

X{t} Xx S'. Since X{t) is smooth (hence flat)/A, the operations of pulling back

the homology class of a subscheme and taking the homology class of the pullback



DIVISORS WITH PRESCRIBED SINGULARITIES 413

of that subscheme are interchangeable. Thus, setting, for short, p = p2X . . . p, „ we

may write, in A.(X{t}),

[X'{t-l}]=p*[J(mx;D)]

= P*ctop(&x/s(mx;L))n[X{r}].

Now, denoting by / the inclusion A'{/ - 1} c A{/), we have

[/(m;D)] = /»[/(m';D(m,))]

= <'*(ctop £a"/s'(^': l') n [X'{t - 1}])    (introduction)

= ctoP £a-{2}/a-(w'; L(mjj) n i+[X'{t - 1}]    (projectionformula)

= cXop{Sx{2)/x{mj: L(mxj) + p*&x/s(mx; L)) n [X{t}]

= ^i&x/si^ L)) n[X{t}]    (by (7.2)).   Q

(7.4) Remark. It would be interesting to find explicitly the universal polynomial

p(mx, . . . ,mt; c„ . . . , c„; X) expressing the push down of ctop(£A./s(m; L)) n

[A{r}] to A.(X) in terms of m and of the Chern classes of fl-/5 and L. De

Jonquieres did it for A a curve. For / = 1 and A a curve or a surface, A. Lascoux

related p(m; c; X) to Thom polynomials [15]. We will retrieve several classical

formulas of Enumerative Geometry by computing the approrpiate p(m; c, X)

8. More examples. Return to the notation of §4. We restate (4.1).

(8.1) Proposition. Let Y be a smooth projective variety of dimension n. Let S be a

linear system associated to an invertible 0 Y-module M. Let D denote its universal

divisor. Suppose D is m-regular. If

dimS + /« = 2(W'+n"~1)

then J(m; D) is finite and the degree \m; M\ of its zero cycle is \m; M\ =

S c,„£y(m; M).

Proof. See the proof of (4.1).   □

(8.1.1) Problem. Is \m; M\ = \Trm; M\ for n > 1? (See (4.4.3)(5).)

In the first two examples below we take Y to be a surface. We freely use the

notation of (4.3).

(8.2) Bitangent planes of a surface in P3. Assume dim S = 2. Then the formula for

/ [J(2, 2; D)] is [/ (x + 2KM + 3M2)]2 - / (7X + 6K2 + 39KM + 42M2). This is

derived from (8.1) and (3.5) by pushing down c4&Y(2, 2; M) from .4(y{2}) to

A(Y X Y) and then to A(Y). The main ingredients of the computation are:

(a) The formula

fl1v{2}/y=p2*i2ft1® B(E) + 6(-E) - 0    inK(Y{2})

for the class of the cotangent sheaf of Y{2)/Y (viap2 ,, we recall). This formula

follows from the two standard exact sequences,

Z>*OrxJyy C "y{2}/y-> n(2)/rxy =J*®e/a>
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and

where/: /s^-> Y{2} is the inclusion of the exceptional divisor. (It is worth recalling

the well-known facts of a blowup such as b2: first, E = P(flV); second, the

tautological ample sheaf 0£(1) on E is equal to/*0y,2}(- E).)

(b) The intersection relations

E'-j^i-e)1-1)   in^l(y{2})

where we put e := cx6E(l). We also have e2 = Ke — x, (b2j)J(X) = 0 and (b2j)^(e)

~  lA(Y)-

In particular, if Y is a surface in P3 of degree d and S is a net of plane sections,

we have

f x = (d2 - 4d + 6)d,
(8.2.1)

f K2 = (d- 4)2d;    j M2 = d;     f KM - d(d - 4).

Substituting these in the formula above, we get

d(d - l)(d - 2)(d3 - d2 + d- 12),

the expression which is twice the number of bitangent planes through a general

point (cf. Baker [2, p. 153]).

If Y is the projective plane and S is a net of curves of degree d, the number

|2, 2; M\ is 9d4 - 36d3 + 12d2 + Sid - 66. This is twice the degree of the

"... conditions necessaires pour qu'une courbe plane puisse avoir deux points

doubles" (cf. S. Roberts [20, p. 276]).

(8.3) Tritangent planes of a surface in P3. Assume dim S = 3. A rather lengthy

calculation yields the following expression for |2, 2, 2; M\:

[ / (x + 2AM + 3M2)     - 14 j (x + 2KM + 3M2)

-f(X + 2KM + 3M2) j (7X + 18A2 + 84M2 + 89ATM)

+ f (138X + 316K2 + 1380M2 + 1576AM).

If Y is P2 and 5 is a general web of cubics, so that we have / x = 3,

/ M2 = / K2 = 9, J MK = -9, the formula gives the number 6 • 15. One can

check directly that 15 is precisely the number of triangles containing 6 general

points.

If Y is a surface in P3 of degree d and S is the complete system of plane sections,

substituting in the values for x, K2, etc. computed in (8.2.1), we get

d9 - 6ds + 15d7 - 59d6 + 204d5 - 339dA + 770J3 - 2056rf2 + 1920*/,

which is 6 times the classical formula for the number of tritangent planes (cf.

Salmon [21, Formula (vi), p. 292]). We recall that the factor 6 = 3! comes in
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because J(2, 2, 2; D) accounts for the divisor together with an ordered triplet of

singular points. It can be checked that most surfaces of degree > 3 possess exactly

the prescribed number of tritangent planes, though this does not follow from our

general criterion (see (9.1) below).

(8.4) Contacts of higher-dimensional linear spaces with a hypersurface. The difficul-

ties with the explicit computations of formulas increase rapidly. Conceptually,

however, this is a special case of the situation for divisors with specified singulari-

ties on a smooth family. One takes A —» S to be the universal family of r-subspaces

in a fixed projective n-space P", or its restriction to a suitable subvariety of the

Grassmannian of /--spaces in P". Each hypersurface H in P" of degree d induces a

subscheme DH c A, given by the zeros of a section of L := &x(d). The fibre of DH

over [/•] in S is the intersection H n [/"]. In this situation, we can again play the

game of successive blowing-ups and compute the generic class of J(m; DH).

The reader is invited to carry out the computations leading to the formula below.

(8.4.1) Number of 2-planes in P4 meeting a line and cutting a general hypersurface

of degree d > 4 in a curve with one triple point and another double point:

20d1 - 161d6 + 5l0d5 - l,611d4 + 6,\76d3 - \2,91dd2 + 10,080^.

That is, the degree of the zero cycle c9(&x/s(3, 2; <Qx(d)))o, where X/S is the

universal family of 2-planes in P4 and o denotes the special Schubert cycle of

2-planes meeting a line.

(8.5) Degree of the condition that a surface in P3 acquire 2 double points. Take

Y := P3, M := &pi(d), S := complete system of surfaces of degree d. For d > 3

we know (9.1)(3) D is (2, 2)-regular. The subvariety of 5 parametrizing the surfaces

with (at least) 2 (possibly infinitely near) double points is integral and of codimen-

sion 2. Its degree is, for char k # 2,

2 / c6£r(2, 2; M) = 2(d - l)2(d - 2)(4d3 - %d2 + id - 25),

in agreement with S. Roberts [20, top of p. 277].

(8.6) Curves with specified coincidences of tangents at a singularity. Let/: A—> S

be proper and smooth of relative dimension 2. Let D c A be the scheme of zeros

of a section of an invertible 0^ -module L.

We have defined, for each positive integer m, a closed subscheme J := J(m; D)

of A, which parametrizes the points x of A such that the fibre Ds of D over

s = f(x) contains x as an m-fold point. "In general", there should be m distinct

tangent directions to Ds at x. Now, for each sequence n := nx, . . . , n, of positive

integers such that nx + ■ ■ ■ + n, < m, one may ask for the generic homology class

of the set of x for which there are tangent directions t,, . . . , r, at x (in the surface

Xj) such that nx of the tangents to Ds at x coincide with t„ n2 with t2, etc. We

discuss here the general setup, then "compute" the generic homology class we

sought, and finally compute it explicitly in a few cases.

Consider the m-virtual (projectivized) tangent cone of D, i.e., the intersection

TmD = D(m) n E c A {2} of the m-virtual transform of D (6.3) with the excep-

tional divisor E. Thus, TmD is the scheme of zeros of the restriction of the section
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sm of L(m)j (6.3) to C := £/ Notice that, for each x in J, the fibre Ex is the

projective line of tangent directions of the surface Xs at x (where s = f(x)). If x is

m-fold, not (m + l)-fold in Ds, then (TmD)x is the positive divisor of the tangent

directions of Ds at x. If x is (m + l)-fold in Ds then (TmD)x = Es.

So we are back to the happy situation where we have got a family of curves (in

fact projective lines) C -» J, together with the scheme of zeros of an invertible

0c-module. We call J(n; TmD) the scheme of tangent coincidences of type n of D.

We say D is (m; n)-regular if D is m-regular and TmD is n-regular.

Applying (7.3) twice, we get, whenever D is (m; /i)-regular,

(8.6.1) [/(«; TmZ>)] = cX&x/s(m; L) + &E/X(n; L(m)Ej)   mA. (E<),

where p := (m2+l) + 2 nt.

Suppose now D is the universal divisor of a linear system S on a smooth,

projective surface Y associated to the invertible 0y-module M. Set P = P(fi'y).

Suppose

dimS = (w2+1)-2-r + 2",

If D is (m; n)-regular then J(n; TmD) is finite and the degree of its zero cycle is the

degree of

(8.6.2) cl + 2(SY(m; M) + M£P/r(/i; 6P(m))).

This follows from (8.6.1), recalling that now L = M ® 0S(1), X = Y X S and

E = P X S.

(8.6.3) Cusps of a general net on a surface. Taking m = 2 and n = 2 in the above

formula and pushing down to A(Y), we find 2(6M2 + 6MK + K2 + x) (cf.

Lascoux [15, p. 151]).

(8.6.4) Cuspnodes of a general web on a surface. We start with our surface Y and a

general web S (= 3-dimensional linear system). Construct Z := J(2; D) c A = S

X Y. Then look at the restriction B -» Z of A {2} = S X y(2} over Z, together

with the 2-virtual transform D' of the universal divisor of S. Finally, take T :=

J(2; T2D'). This gives us the cuspidal points of the fibres of D' over Z, which is

what we were after. Computing the class of T and pushing it down from S X P to

P := P(Q,XY{2]/Y), then to Y{2}, then to Y X Y and finally to Y, we find, for the

number of cuspnodes, the formula

2 j    f (x + 2KM + 3M2)     + [ (K2 + 4KM + 3M2)j (X + 2KM + 3M2)

- f (12x + 36 A2 + 144AM + 120M2)}.

Computing for Y = P2 and M = 0p*(3) one finds zero. This can be checked

directly by analyzing the possible degenerations of a cubic. The only ones with a

double point and a cusp are the unions of double lines with another line. But these

form a family of dimension 4, which can, therefore, be safely avoided by a general

web of plane cubics.
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Computing for Y = surface in P3 of degree d and M = 0y(l), subsituting in the

values for x> etc. from (8.2.1), we get, lo and behold, precisely the number

4d(d - 2)(d - 3)(d3 + 3d - 16) of Salmon [21, Formula (4), p. 292].

9. Conditions for m-regularity. Fix a smooth, surjective and proper map g: Y —> Z

and let M be an invertible 0y-module. Suppose V := gmM is locally free. Set

S := P(V*) and A := S xz Y = P(Vf). Let /: A -». S be the pullback of g. The
natural map of ©^-modules VY -» M gives rise to a section s of L := 0^(1) ® M

just as in §4. Again we denote by D the scheme of zeros of s in A and call it the

universal divisor of M.

We perform the constructions of (6.1) with Y —* Z in place of A -» S. Denote by

q,<x,qt>2 the maps Y{t) —> y{/ — 1} of (6.1). Clearly, the maps p,,: A{/}-»

A{f — 1} are just the pullbacks of q, „ and each A{/) is now the projective bundle

For the statement of the theorem, we recall (6.1.1) that M(m) stands for the

successive twistings of M by powers of the ideals of the exceptional divisors. Thus,

M(mj) = (ql2M) ® 02(m,), etc_

(9.1) Theorem. (1) Suppose (/?'?,+,_ ,)+M(m) = 0. Then J(m; D) is a projective

Y (t)-subbundle of X{t} = P(V*,,-j) of the right codimension

(« 2(m'+M"_1)>«:-rel dim 7/z)

and D is m-regular.

(2) (R xqt+ ,,)*M(m) = 0 provided that either

(a) m satisfies the relaxed proximity inequalities

(9.1.1) m,_, > m, + - - • +m, - 1   for i = 2, . . . , /,

and M is a sufficiently high multiple of some 0 Y-module N ample/Z; or

(b) the relative dimension of Y/Z is 1 and

degree MY(zX > 2(genus Y(z)) — 2 + 2 mi

for all z in Z.

(3) If Y ̂ > Z is a projective bundle (e.g. Z = Spec k, Y = P") and M is the rth

power of the canonical ample line bundle then D is m regular provided r > (2 mj) — 1

holds and m satisfies (9.1.1).

(9.2) Lemma. Suppose (R xq2 j)+M(m) = Ofor some positive integer m. Then:

(l)RxgmM = 0;

(2) V := gtM and Vm := (<72j,)*M(m) are locally free and there is a canonical

exact sequence

(9.2.1) o^Vm^g*V^&Y/z(m;M)^0

such that the dual surjection g* V* —» V* yields the identification

J(m; D) =P(V*m) EP(g*V*) = X;

(3) the m-virtual transform (6.3) of the universal divisor of M is equal to the

universal divisor of M(m).
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Grant the lemma. We proceed to prove (1) of the theorem. Set

m, := m,, . . ., m,_,. Applying (1) of the lemma to q, „ M(mj) and m, in place of g,

M and m, we get that (R xqttj)^M(mj) = 0. Repeating the process, we get down to

(R xq2 j)tM(mx) = 0. Hence J(mx; D) and P(V* ) are equal. Now replace g, M and

m by q2 ,, M(mj) and m2, . . ., mt. We have proven, by induction on /, that

J(m; D) is equal to the y{f}-projective subbundle P(V*) c A(/}, where

Vm := (<?,+,, ,)*A/(m) is locally free and fits into the exact sequence

o->Kas-*ft*1Ka-»sy(f}/y(l_1}(in;if(a))-»a

This completes the proof of (1) of the theorem.

Proof of Lemma (9.2). We apply (q2 ,),, to the canonical exact sequence

0 -» M(m) -» 9* 2M^ 92*2M ® 0m£ -> 0.

We get the exact sequence (9.2.1), together with the formula

(^1?2,.)^2*2^ = 0.

However, the left-hand side is equal to (R xqj)mq*M. By flat base change, the latter

is just g*(R xg^M). Since g is faithfully flat, we get Rxg+M = 0.

ft..        y{2}       1x1

<7i ft
y    <-    fxzy    -+    y

g Z s

Twisting (9.2.1) by 0P(^»)(1) we get the diagram of 0^-modules

S

0 - Vm(l) -» Vx(l) -+ &x/s(m; L) -* 0.

Here the vertical arrow arises from the universal quotient u: Vx^* &x(l) by

dualizing and twisting. The slant arrow s is just the m-contact section (3.3). It

follows that, for any map T -h> X, sT = 0 holds iff uT factors through V% -»( V*)T.

This proves (2) of the lemma. The remaining assertion follows from the definition

(6.3) together with the fact that the formation of gtM commutes with base change.

The main ingredient of the proof of (2) of the theorem is the following.

(9.3) Lemma (of proximity inequalities). Fix a regular scheme B. Set Bx := B,

and for i > 2 let /?,: /?, + fi,_, denote the blowup of 5,_, at a point y,_,. Set

b := b2 . . . bl+x. For each 6B   -module &, set

0(»i) :=  ©4+1to) ® V+l©*(*lr-l) ® • * *  ®**©B2K) ® &■

Suppose m satisfies the inequalities (9.2.1). Then (R xb)t6(m) = 0.

Proof. The lemma is an immediate consequence of the following assertion. Let

lDTL/- denote the ideal of a point Zj in Bl+X. For each sequence of nonnegative

integers n := nx, . . . , ns, set <3H- := '9HJ1 . . . 9HJ- (product of ideals). Then

(9.3.1) (/?'^(91Ln-(m))=0,
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provided the new sequences m,, . . . , m,, nx + • ■ • + ns satisfy the inequalities

(9.1.1).
We proceed for the proof of (9.3.1) by induction on /. Suppose / = 1. For each/

such that Zj is not in the exceptional divisior E := b~x(yj), we have

R%(m£(m)) = <DtyRlbm(<?J0(m))

where n- :=«„..., /?,._„ 0, nj+x, . . . , ns. Thus, we may assume each zy lies in E.

Without loss of generality, we may assume the Zj are distinct. Now, there is an

exact sequence,

(9.3.2) O^^"--^(l)^<D1tn-^91L?0£^O,

where I denotes the sequence equal to 1 on each slot where n, is > 0 and zero

otherwise. Tensoring it with 0B (m) and applying b^, we get the exact sequence

R'6,(911"--x-(m + 1)) -^ Rxbn(Gm(mj) -» RxbJj°mQE(m)).

By induction on max(n,, . . . , ns), the 1st term is zero. The last term is just

HX(E, 6MP-6E(m)), which is zero for m > nx + ■ ■ • +ns — 1 because E is a

projective space. This finishes the proof for / = 1.

Assume / > 2. Set b' := b2 . . . b,. Thus, b = b'bl+x. We study the exact sequence

(derived from the spectral sequence of composite functors)

R%(bt+X(A) -^R%(A) -» b',[(R ViM].

where we set for short A := 91L-(m). By the projection formula, we have

(R%+i)M) = ©(&)(* Vi),W»0)-
This is zero by the case t = 1. Now reorder the Zj so that Zj is in El+X iff r < / < s.

Set«' = nt,..., nr_, and n" = nr, . . . , ns. We have the exact sequence,

0_»(<DR?'(1))91L9"-1 _» git« ̂  91L5"0£(+i ^0.

Twist it by 6B+ (mj) and apply (b, + x)^. By the case / = 1, we get a short exact

sequence of direct images. Twisting this by 0(m() and applying b'n finally yields

the exact sequence

Rxb'J^(mj)bt^{(^-(mt + l))91t**-I))

-► R lb'Mm,)bl+,*((9Hn-'(^))^0) -h. 0.

The last zero is right because (bl + x)^,(<^l?"6E ) is supported at one point. Arguing

by induction on max(n"), we deduce that the middle term is also zero, thus

completing the proof of (9.3).

Proof of (2) of the theorem. Lety be a point of Y{t}, and lety, denote its

image in Y{i} (via qi+x , . . . 17,+,,). Let Bt denote the fibre of Y{i) over y,_,.

Thus, we have the sequence of blowings-up

Bt+\   -*  Bt^>   ■ ■ ■   -*Bl  -   Yy0>

where Bx is the fibre of Y —> Z containing y, and bi+x is the blowup of 5, aty,. Set

b := b2 . . . bt+x and set A', := NBi.
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By the Principle of Exchange, it suffices to prove HX(BI+X, Nxs"'(m)) = 0 holds

for v » 0. For this, we use the exact sequence, derived from Leray's spectral

sequence,

HX[BX, A,®" ® b,6(m)) -^HX(BI+X, Nx®*(m)) -+ H°(bx, N®v ® Rxb^e(m)).

By Lemma (9.3), the last term vanishes (for all v). On the other hand, by

ampleness, the 1st term is zero for v » 0. This proves (2)(a). If rel dim Y/Z is 1,

then Bx is a curve, each 6, is the identity map and 0(m) can be identified with

^.(-'"i^i - • • • -m,yj). This proves (2)(b).

Proof of (3) of the theorem. Preserving the notation of the proof of (2), we

now have Bx = P" for some n, and Nx = 0p.(l). It can be shown that bmQ(m)

contains an 6B -module A of the form A = 911,' . . . 'DTcJ, where each 91L, is the

ideal of a point P, and 2 n, < 2 m,. and supp(Z>,0 (m)/A) is finite. Therefore,

HX(BX, Nxrb,6(m)) vanishes provided Hx(P",A(r)) = 0. The latter holds iff the

natural map H°(P", 6p-(r)) —> H°(P", 0 /A) is surjective. The surjectivity amounts

to the possibility of finding nonhomogeneous polynomials of degree < r in n

variables with arbitrarily given Taylor developments around P, up to order n, — 1,

which can be achieved for r > -1 + 2 nt.    □

Problem (1) Suppose Y is the normalization of a plane curve. Consider the

linear system cut out by the plane curves of degree n. When is its universal divisor

m-regular?

(2) Get rid of the artificial condition (9.1.1).

10. Conditions for multiplicity  1.  Let  Y be a smooth projective variety of

dimension n. Let S be an /--dimensional linear system on Y. Set for short J :=

J(m; D) (D = universal divisor of S). Set

»■'+—2("*+;-0
Let G denote the Grassmann variety of codimension/ linear subsystems of S. We

have the following.

(10.1) Theorem. Suppose J is integral and of the right dimension j. Then there exist

integers s, e such that, for every subsystem S' in an open dense subset of G, J Xs S'

has precisely s distinct points and the multiplicity at each is 1 if J/S is separable and

is (char k)e otherwise.

Proof. We use a variation of the theorem on the transversality of a general

translate (cf. KJeiman [14]). Consider the diagram

J -+ J
?/ I? Ip

G   <-  S   -»   S,

where S -> G is the universal family and the square is cartesian. Since J is integral

and S —> S is smooth with integral fibres, therefore J is integral. By construction,

q~x(S') = J xs S' for each S' in G. Also, dim / = dim G. Moreover,p is every-

where ramified iff p is. Hence, by the lemma on p. 109 of [22], there are integers j
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and e such that, for each S' in some open dense subset of G, q~x(S') consists of s

distinct points and the multiplicity ( = length of the artinian local ring of the fibre)

at each is 1 or (char k)e, as asserted.

It remains to produce some manageable criterion for J/S to be separable. In one

direction, if S comes from the hyperplane sections of an embedding Y c Pr, then

J(2; D)—>Sis the dual map of Katz [11]. He shows that, possibly after replacing

the given embedding by its composition with a Veronese embedding, the dual map

is generically unramified iff char k ^ 2 or dim Y is even. On the other hand, we

learned from D. Laksov [secret notes] the following result. We no longer restrict S

to be a projective space.

(10.2) Proposition. Suppose the relative dimension of X/S is 1. Then the

ramification locus of J(m; D)/S is equal to J(m + 1; D) if char k \m and is

J(m; D) if cnar k\m.

Proof. We may assume A = Spec B, S = Spec A, L = 6X and £lB/A = B dx

for some x in B. Let F be a local equation of D. As explained in (3.5.1), there are

differential operators 3,: B —» B such that J := J(m; D) is cut out by the m

equations d,F = 0 (/ = 0, . . . , m - 1). Furthermore, we have dob = b and db =

(dxb) dx for all b in B, and 3,3,. = (/ + 1)3, ([EGA IV4, 16.11.2.2]). Recalling the

standard exact sequence [EGA IV4, 16.4.21.1] NJ/X —> (&x/s)j -* 0}/5 -» 0, we see

that the ramification locus of J/S is cut out in J by the equations 3,3,F = 0

(/ = 0, . . ., m — 1). These are equivalent to 3,/" = 0 (/ = 0, . . . , m — 1) together

with mdmF = 0, whence the assertion is proved.    □

(10.3) Corollary. (1) // char k\mx . . . mt then the ramification locus of

J(m; D)/S is J(m; D). (2) If char k \mx . . . m, then that ramification locus is

contained in the union of the closed subsets J(mx, . . . , m, + 1, . . . , m,; D) and the

diagonals.

Proof. The map J(m; D)—>S factors as

J(m; /))-* . . . -+J(m2; D(mx))^*J(mx; £>)-ls.

Now, arguing as in the proof of (4.4.3)(5), if tt denotes a permutation of {1, . . ., /},

then J(m; D) is isomorphic to J(iTm; D) over S, where Trm := m„„ . . . , mwl. Thus,

if char /c|m, for some /, we may as well assume / = t. By the proposition, /, is

everywhere ramified, whence so is/, . . ./.

To prove the 2nd assertion, let x be a point of J(m; D) off the above-mentioned

union. Thus, x = (xx, . . . , xj), where the x, are distinct points of A lying over the

same point s in S, with Ds = 2, mhxh + £>', for some D' > 0 and no x, ED'.

Consequently, each/ unramified at (*,, . . ., xj), whence/, . . ./ is unramified at

x.   □

(10.4) Problem. Comes in char 2 have just one tangent line through a general

point; smooth plane cubics have, in general, just 3 inflexional tangent lines. Is the

number of bitangent lines to a general quartic in char 2 equal to 14 = (28/2) or 7?

A similar question applies to example (5.1) in char 5. Is there a general rule for

deciding the value of the exponent e in (10.1)?
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