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CONTINUOUS MEASURES AND LACUNARITY

ON HYPERGROUPS

BY

RICHARD C. VREM

Abstract. The relationship between measures on a compact hypergroup K whose

Fourier-Stieltjes transforms vanish at infinity and the space MC(K) oí continuous

measures is studied. Examples are provided of measures ¡i with ¡i vanishing at

infinity and /x e MC(K). Sufficient conditions are given for il e c0(K) to imply

H E MC(K). An investigation of Helson sets on compact abelian hypergroups is

initiated and the study of Sidon sets on compact abelian hypergroups is continued.

A class of compact abelian hypergroups is shown to have no infinite Helson sets

and no infinite Sidon sets. This result generalizes results of D. L. Ragozin and D.

Rider on central Sidon sets for compact connected Lie groups.

1. Introduction. The question of existence in a compact group of infinite central

lacunary sets has been studied by J. F. Price [7], D. L. Ragozin [8], D. Rider [9] and

A. H. Dooley [2, 3], among others. In this paper, the framework of compact

hypergroups (see R. Vrem [13] for the connection between hypergroups and central

lacunarity on compact groups) is used to study this question in more generality.

In §2 the relationship between continuous measures and those measures whose

Fourier-Stieltjes transforms vanish at infinity is investigated. Sufficient conditions

are given in order for a measure's transform vanishing at infinity to imply the

measure is continuous as well as examples to show this implication need not always

hold. Sidonicity on compact abelian hypergroups is the subject of §3. A sufficient

condition for a hypergroup to contain an infinite Sidon set is given and a result of

Ross [10] is used to determine a class of hypergroups which have no infinite Sidon

sets. §4 initiates a study of Helson sets on compact abelian hypergroups. The

standard equivalent properties of Helson sets are established. It is shown that no

infinite subhypergroup can be a Helson set and that no nonzero measure with

infinite support can be supported on a Helson set. Finally, in §5 examples are

considered. In particular, results of D. L. Ragozin [8] and D. Rider [9] on central

Sidon sets for compact connected semisimple Lie groups are generalized as well as

a result of C. F. Dunkl and D. E. Ramirez [4] on Helson sets.

The reader is referred to R. Vrem [13, 14] or R. Jewett [6] for any unexplained

notation. M(K) will denote the space of all finite regular Borel measures on the

hypergroup K, 8X is the point mass at x, x i-» xv is the involution on K and IA

denotes the indicator function of A.

Received by the editors January 5, 1981 and, in revised form, March 5, 1981.

1980 Mathematics Subject Classification Primary 43A05, 43A46; Secondary 43A75.

© 1982 American Mathematical Society

0002-9947/82/0000-0772/S03.00

549



550 R. C. VREM

2. Continuous measures. Throughout this section we assume A is a compact (not

necessarily abelian) hypergroup with dual object K and normalized Haar measure

m. A measure p G M(K) is continuous if p({x}) = 0 for all x E K. We denote the

set of all continuous Borel measures on K by MC(K). We begin with a lemma

(compare with [5, 34.23]).

Lemma 2.1. Let K be a compact hypergroup with V any neighborhood of e and Vx a

symmetric neighborhood of e such that Vx * Vx G V. Let F be a compact set such that

F GVX andm(F) >\m(Vx). If g = m(F)-xIv¡ * IF then

(ï) g E A(K) (the space of all continuous functions on K with absolutely convergent

Fourier series);

(ii) g(x) = 1 for all x is some neighborhood of e;

(hi) g(x) = 0forallx G K- V;

(iv)||g||,<2.

Proof. Since g is the convolution of two L2(K) functions it is in A(K) by [14,

4.9]. Using [6, 5.5 and 7.2] we have

(1) g(x) = m(FYx [ IF(y)Iy¡(x *y°) dm(y).
J K

There exists a symmetric neighborhood V2 of e such that V2 * F2 G Vx. The last

containment and (1) show that g(x) = 1 for all x E V2. Clearly, g vanishes off

Vx * F G F which establishes (hi). Using [14, 4.8] it follows that

||g||, <m(F)-1||7KJ|2||7F||2<2.

The next lemma gives a technical condition satisfied by measures whose

Fourier-Stieltjes transforms vanish at infinity.

Lemma 2.2. Let K be a compact hypergroup and suppose p G M(K) with ß G

&0(K). Let % be an open basis of neighborhoods of e directed by reverse set inclusion.

For each V E % select a gv as in Lemma 2.1. Then using the inner product of [5,

28.28] for p E M(K) we have

lim (fi, (gy * p)'> =   2    |M({*})|2«* * M{*})-
v xeK

Proof. If p G M(K) then the inequality ||gKp||, < || gK|lill Pll«, shows that

gv* pG A(K). It follows from [12, 4.25] that

(p,(gy* p)~) = f   gv* p dp= f gydp* *p.
JK JK

The regularity of p * p gives

(2) hm  f gy t/p * p* = p * p*({e}) = f   f 8X* 8y({e}) dp(x) dp*(y).
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However, e G supp 8X * 8y if and only if y = x" so we have

p * P*({e}) = f 8X* M{«})MW) dp(x)
(3) J*

=  2   8x*8A{e})\p({x})\2.
Jt6i

Combining equations (2) and (3) we have the desired equality.

The following theorem generalizes [5, 34.45(b)].

Theorem 2.3. Let K be a compact hypergroup with the property that 8X * 8x*({e})

> 0 for all x G K. If p G M(K) with fi £ &0(K) then p is a continuous measure.

Proof. The proof that lim^ (fi, (gv * p)*> = 0 follows from Lemma 2.1 and an

argument similar to that found in [5, 34.45(b)]. Lemma 2.2 together with the

condition that 8X * 8xv({e}) > 0 establish the theorem.

Some hypothesis like 8X * 8x*({e}) > 0 for all x E K is needed in order for

Theorem 2.3 to hold. For example, let K be an infinite compact hypergroup with

an isolated point x (see Example 2.6 below). If m is normalized Haar measure on K

it is immediate that m G &0(K) (use orthogonality relations [14, 2.6]) but m({x})

=£ 0. Further examples of measures which are not continuous but whose transforms

are in c0(K) can be found among the abelian hypergroups which are n-fold

absolutely continuous (see [10, 6.12-6.14 and 6.17]).

Example 2.4. If K is an abelian hypergroup which is n-fold absolutely continu-

ous (i.e., 8X * • • • * 8X G Ma(K) for all x¡ G K — Z) then the n-fold product of x

with itself 8X * • • • * 8X satisfies (8X * • ■ ■ * 8X)~ G c0(K) and hence (8X)~ E c0(K),

i.e. each point mass of K — Z has a transform in c0(K).

The next theorem illustrates that the phenomenon found in Example 2.4 is not

atypical.

Theorem 2.5. Suppose K is a compact abelian hypergroup. There exists a measure

¡i G M(K) — MC(K) with fi G c0(K) if and only if there is an x G K with

(8x)'Gc0(K).

Proof. Sufficiency is clear. If p E M(K) — MC(K) with fi G c0(K) then there is

an x E K with p({x}) ^ 0. If e > 0 is any positive number then since fi G c0(K)

there is a finite subset S G K with | p(x)| < e| p({x})| for all x E K ' — S. It follows

that

e2 P({*})|2 > |P(X)|2 = f xdp*p*= [   f x(s)x(t) dp(s) dp*(t)
'K JK JK

|2| ..tí „11|2= lx(*)l I p({*})r + c (a positive number)

and hence |x(*)| < e for all x G A - S. This shows that (5x)"Ec0(A).

Other pathologies relating to MC(K) can occur for compact abelian hypergroups.

It is easy to see that MC(K) is always a closed subspace of M(K) for any locally

compact hypergroup K and if A is a group then MC(K) is an ideal in M(K).

However, the next example shows that MC(K) need not be an ideal in M(K) if A is

a hypergroup.
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Example 2.6. Let 77 = (x, e} be the two-point hypergroup with convolution

given by 8X * 8X = \ 8e + \- 8X. Using [6, 10.5] we form the join of 77 and G (any

nondiscrete compact abelian group). Now K = 77 V G is clearly a compact

abelian hypergroup. Let p be any nonzero continuous measure supported on

K — {x} = G. Next we consider 8X * p and show that it is not continuous. Using

the fact that 8X * 8, = 8X for all t G K — {x} we have

«* * tf{*}) = f hx}(* * ') MO = f      'w(* * 0 dp(t)
JK K~{x)

= p(K - {x}) > 0,

i.e. 8X * p E MC(K) and hence MC(K) is not an ideal in M(K).

3. Sidon sets. In this section the question of which compact abelian hypergroups

admit infinite Sidon sets is discussed. For general results regarding Sidon sets on

compact hypergroups the reader is referred to [13]. The first theorem gives a

sufficient condition for a compact abehan hypergroup to admit an infinite Sidon

set.

Theorem 3.1. If K is a compact abelian hypergroup with an infinite maximal

subgroup Z, then K admits an infinite Sidon set.

Proof. Let X: A —> Z be the restriction map. By [10, 3.6] A is a continuous map

of K onto Z. Since Z is an infinite compact abelian group it has an infinite Sidon

set, say S G Z. Let Zx = {<¡> G K: \(<b) = x} for x G Z and consider S G K

found by selecting an element of Zx for each x E S. For each 3> E lx(S) there is a

p G M(Z) such that fi = dj>. Extending p to p on K by setting fi = 0 on K — Z we

clearly have fi = fi = 4». Thus S is Sidon by [13, 2.2].

The next theorem uses the «-fold absolutely continuous hypergroups introduced

by Ross in [10] to give a class of hypergroups which admit no infinite Sidon sets.

Theorem 3.2. If K is a compact abelian hypergroup which is n-fold absolutely

continuous, with Z finite and K a hypergroup, then K admits no infinite Sidon sets.

Proof. First we show that we may assume m(Z) = 0. For if not, there exists

x £ Z with m({x}) > 0. Since x £ Z (a group) it is easy to see that this would

force m({e}) > 0. [6, 7.IB] would then show that K is finite and hence admits no

infinite Sidon sets.

Thus we may assume m(Z) = 0 so that the conditions of [10, 6.7] are satisfied. If

S is any infinite subset of K then c0(S) has infinite codimension in lx(S). Let

Mh(K) = {p G M(K): \p\(Z) = 0} and use [10, 6.7] to conclude (Mh(K))' =

c0(K). But M(K) = M(Z) © Mh(K) by [10, 6.4] and Z is finite so that MS(K)' =

c0(S) + f.d. space. Hence MS(K)'^ lM(S) which implies S is not a Sidon set.

For examples of this phenomenon see Examples 5.1 and 5.2.

4. Helson sets. Let A be a compact abelian hypergroup with A (K) the space of

LX(K) functions with absolutely convergent Fourier series. We call a closed subset

F of A a Helson set if A(F) = C(F). The following theorem establishes a number

of conditions which are equivalent to being a Helson set (compare with [5, 41.12]).
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Theorem 4,1. The following are equivalent for a closed subset F of K,

(i) F is a Helson set;

(ii) the set {fi: p E M(F)} is a closed subspace of lx(K);

(hi) there is a constant c > 0 such that \\ p\\ < c\\ fi\\xfor all p G M(F);

(iv) there is a constant c > 0 such that ||gH^^ < c|| g\\C(F)for °H 8 G A(F).

Moreover, (hi) holds with a given value of c if and only if (iv) holds with the same

value of c. In fact, c is usually denoted by a(F) and called the Helson constant of F.

Proof. The proof will follow easily from the general Banach space result [5, E.9]

with F = lx(K), E* = lx(K), E' = C(F), E'* = M(F) and T the inverse Fourier

transform once we establish that T* is injective. If p £ M(F) then 7*p = p ° T,

i.e.

(O f fdp=   2   f(x)(T*p)(x)

for all/ E A(F). Applying [6, 12.2C] along with Fubini yields

(2) ffdp=[  2 /(x)xW dp(x) =  2  /(X)P(X).
F F ^i-

X^K

Using equations (1) and (2) along with the uniqueness of the Fourier transform it

follows that T* is injective.

The next theorem shows that no infinite subhypergroup of a compact abelian

hypergroup can be a Helson set.

Theorem 4.2. Suppose A0 is a subhypergroup of the compact abelian hypergroup K.

If K0 is a Helson set then it is finite.

Proof. Since K0 is a Helson set it follows that AK = C(K0). Now A(K0) G

C(K0) = AKo(K) G A(K¿) so that A(K0) = C(K0) and hence K0 is finite by [13,

2.11].

The next result shows that a measure whose Fourier-Stieltjes transform vanishes

at infinity cannot be supported on a Helson set (compare with [5, 41.18] and [11,

5.6.10]).

Theorem 4.3. Suppose that F is a Helson set in the compact abelian, nondiscrete

hypergroup K with K also a hypergroup. If p G M(F) and supp(p) is infinite then

fi e c0(k).

Proof. Let M0 be the set of all p G M(K) such that fi G c0(Â). By Theorem 4.1,

the mapping p\-> fi carries M0 onto a closed linear subspace of c0(A) and the

inverse of the mapping p h^ fi is also continuous. A standard apphcation of the

Hahn-Banach theorem shows that if F is a bounded hnear functional on Mq, then

there is a <j> E LX(K) such that

e(p)= 2 p(xMx)
xelt



554 R. C. VREM

for ail p E A/0. By [6, 12.1]

2   ¿(x)<Hx) = f f(x) dp(x),
r-   ïr J  Kxe/s:

where / E C(F) and f* = <K/*(*) = /(xu)). Thus L(p) = fFfdp for ail p G M0.

If g G B°°(F) then there is an/ £ C(F) such that

f gdp= f f dp
JF JF

for ail p E Af0. An easy computation with xp (x G ^) an<l the uniqueness of the

Fourier-Stieltjes transform shows that

(3) gp = fp
for all p E M0.

Now we assume M0 contains a nonzero measure p G M(F). First we show that

we may assume that p is a nonnegative measure. If not, we consider | p\ = gp

where g is selected as in [5, 14.12]. From equation (1) there is a function

/ E C(F) = A(F) such that gp = fp. For each x £ K we compute

|p|"(x) = f x(')/(0 dp(t) = [ x(t) 2 /(*W*M*) ¿WO

=     2    f(*)ß(x*H*)=f*ß(x),

where tt denotes Haar measure on A and the last convolution is over K. Since

fi G cQ(K), [6, 4.2E] implies | p|"Ec0(A) and hence | p\ E M0.

Thus we may assume /t is nonnegative and since fi G c0(A), for each e > 0,

(X E A:   | p(x)| > e)  is finite.  Hence A = {x G K:  \ fi(x)\ ^0}  is a countable

subset of K. Then D = A \j A (where A = {x~- X e ^}) is a countable subset of K

which   contains    1.   But   A   is   discrete   so   P =  U"., Ö"   (where   D" =

D * D *  • ■ ■   * D, «-times) is a countable subhypergroup of K.

In the notation of [10, 3.2], P± = {y G K: x(y) = 1 for all x £ F} is a compact

subhypergroup of K, which we denote by A0. Let \ be normalized Haar measure

on A0. Clearly, \fi = fi so that p = \ * p. If y E K0 then 8y*p = 8y*X0*p = p

and hence by [6, 3.2G], S = supp^ * p) = {y} * S. This gives K0 * S = S which

implies S is a union of cosets of K0. Suppose / E C(K¿) and y G S. Now

suppjÇ G S and hence fy G AS(K). But fy(x) = x(y)f(x) for each x £ Â giving

/ E AK (K), i.e. K0 is a Helson set. Theorem 4.2 implies K0 is finite. Theorem 3.2 of

[1] implies K0 = Fx is in one-to-one correspondence with (K/P)~. Thus K/P is

finite which implies K is countable.

If 77x„ = {x £ A: \x(x) - l\ < l/n} then the sets 77x„ form a countable

collection of neighborhoods of e with the property

H    Hx,n = {e)
xe*
n£Z*
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since K separates points of K. By [13, A.3] we have K is metrizable. Since

S = supp p is a closed infinite subset of a compact metric space there is a sequence

{x„}5f=1 of distinct elements of S such that lim„_>00 x„ = x0. A standard argument

can now be used to construct disjoint, nonvoid relatively open subsets U and V of

S such that x0 E U ~ n V ~ ■ Using equation (3), there exists / E C(F) such that

Ivp = fp,

i.e. fix) = Iu(x) for p-almost all x G S. Thus fix) =1 for all x E U~ and

fix) = 0 for all x E V ~ which contradicts the existence of such a p.

Corollary 4.4. Under the hypothesis of Theorem 4.3 every infinite Helson set has

m-measure 0.

Proof. Apply Theorem 4.3 to the measure p given by dp = IF dm. Since all

finite sets are Helson sets, there are Helson subsets of nondiscrete compact abelian

hypergroups, which have m-measure greater than 0. Indeed, such an example is

provided by F = {x} in Example 2.6. In fact, Example 2.6 can be used to show

that the union of two Helson sets need not be a Helson set. In particular, let F be

an infinite Helson set in G and consider {x} u F. Now {x} u F cannot be a

Helson set by Corollary 4.4.

Next we establish a result for Helson sets which is analogous to Theorem 3.2.

Theorem 4.5. If K is a compact abelian hypergroup which is n-fold absolutely

continuous, with Z finite and K a hypergroup, then K admits no infinite Helson sets.

Proof. As in the proof of Theorem 3.2 we may assume m(Z) = 0. Let F be a

Helson subset of K. If p G M(F) (p=£0) then by [10, 6.4] we have p = po + ph

where p0 £ M(Z) and ph G Mh(K). Now by [10, 6.7] it follows that fih G c0(K)

and hence Theorem 4.3 implies supp( ph) is finite. Since supp( Pq) is finite we have

every measure on F has finite support, i.e. F is finite.

5. Examples. In this section we consider two examples discussed by Ross in [10,

6.13,6.17].

Example 5.1. Let G be a compact group A^, of p-adic integers and let B be the

group of units in Ap acting multiplicatively on A . GB is a compact abelian

hypergroup which is identified with the set {0, 1, 2, . . . , oo) and is studied by

Dunkl and Ramirez [4]. The hypotheses of Theorems 3.2 and 4.5 apply to GB and

hence GB admits no infinite Sidon sets and no infinite Helson sets. This result

appears in [4, 10.4] for a family of countable compact abelian hypergroups. In fact,

Theorems 3.2 and 4.5 of this paper apply equally well to the entire family discussed

in [4].

Example 5.2. Let G, be the space of conjugacy classes of a compact connected

simple Lie group G. Results in [8] show that G, satisfies the hypotheses of

Theorems 3.2 and 4.5. Thus G¡ admits no infinite Sidon sets or infinite Helson sets.

Ragozin [8] and Rider [9] have shown that G admits no infinite central Sidon sets

(and hence G admits no infinite Sidon sets). Using [13, 3.1] it follows that G

admitting no infinite central Sidon sets is equivalent to G¡ admitting no infinite

Sidon sets.

The author would like to thank the referee for his useful comments.
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