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DUALITY BETWEEN LOGICS AND EQUIVALENCE RELATIONS

BY

DANIELE MUNDICI

Abstract. Assuming w is the only measurable cardinal, we prove:

(i) Let ~ be an equivalence relation such that ~ = =z. for some logic L < L*

satisfying Robinson's consistency theorem (with L* arbitrary); then there exists a

strongest logic L+ « L* such that ~ = =/.+ ; in addition, L+ is countably compact

if ~^= .
(ii) Let ~ be an equivalence relation such that ~ = =/." for some logic L°

satisfying Robinson's consistency theorem and whose sentences of any type t are (up

to equivalence) equinumerous with some cardinal kt; then L° is the unique logic L

such that ~ = =;.; furthermore, L° is compact and obeys Craig's interpolation

theorem.

We finally give an algebraic characterization of those equivalence relations ~

which are equal to =/. for some compact logic L obeying Craig's interpolation

theorem and whose sentences are equinumerous with some cardinal.

0. Introduction. This paper is concerned with the following problem: what can we

say about the inverse of the map taking logic L into L-elementary equivalence =¡?.

We shall derive invertibility results in case L satisfies Robinson's consistency

theorem. In studying the interrelations between logics and equivalence relations on

structures, the notion of Robinson's consistency has many applications (see [Mu2]):

on one hand, any logic L in which Stc¿(r) is a set satisfies Robinson's consistency

theorem iff L is compact and satisfies Craig's interpolation theorem, by a result due

to the present author and, independently, to Makowsky and Shelah (see [Mu3] and

[MSI]); on the other hand, Robinson's consistency only depends on =¿ rather than

on L, and =¿ has a simpler structure: in fact, Robinson's consistency has a very

neat algebraic characterization in terms of amalgamation and joint embedding

properties (see [Mu3] and [Mu6]); furthermore, one can relativize this notion to

equivalence relations on smaller classes of structures: thus, for instance, in [Mul] it

is proved that on the class of countable structures of finite type there are just two

nonpathological equivalence relations satisfying Robinson's consistency, namely s

and = ; in the light of the above-mentioned equivalence "Robinson = Craig +

Compactness", this might be also regarded as a partial answer to H. Friedman's

fourth problem in [Fr] of finding proper extensions of first-order logic still satisfying

compactness and interpolation. Concerning Friedman's third problem, too, the

techniques developed in [Mu5] for the study of Robinson's consistency in infinitary

logics yield such results as "no logic L strictly between Lxu and Lxa0 obeys Craig's
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112 DANIELE MUNDICI

interpolation, or Robinson's consistency, unless =L = s (in which case Friedman's

problem is still open)".

With the exception of the result in [Mul], all the above-mentioned results depend

on such special set-theoretical hypotheses as -,0* or -,LM (there is no inner model

with an uncountable measurable cardinal); incidentally, this gives an idea of the

sensitivity of soft model theory for pluralism in set theory. Also the main results of

this paper depend (as far as the author can see) on the following assumption: w is

the only measurable cardinal.

Hoping that the above discussion has convinced some readers that assuming

Robinson's consistency is not an arbitrary restriction, if ~ is an equivalence relation

on the class of all structures, we say that ~ is representable iff ~ = =L, for some

logic L; =/. satisfies Robinson's consistency theorem iff L does; this is faithfully

generalized to the case of an arbitrary equivalence relation ~ , called for short a

Robinson equivalence relation. (See Definition 1.1.)

Our first main result (Theorem 3.1) states that for any representable Robinson

equivalence relation ~ = =/. with L < L* and L* arbitrary, there is a strongest

logic L+ =£ L* such that =/,+ =~ ; in addition, L+ (hence any weaker logic than

L+ still representing ~) is countably compact if s =£ ~ .

Thus, although there is no bijection between representable equivalence relations

and logics, under the Robinson assumption, a bijection exists if one limits oneself to

the strongest logic < L* representing ~ ; notice that the mere existence of a

strongest logic is not a trivial fact, in that our notion of a logic incorporates from the

very start such features as closure under first-order operations, among which is

relativization.

If one considers the case of bounded equivalence relations, i.e. when the equiva-

lence classes of type t form a class having a cardinality (this is the case, e.g.,

~ = =L, for a logic L in which Stc^r) is a set) then the inversion problem is

completely solved. As a matter of fact, our second main result (Theorem 4.2) states

that any bounded representable Robinson equivalence relation ~ is uniquely repre-

sented; also, the unique logic L such that =L = ~ is compact and obeys Craig's

interpolation.

Thus the function Lt-> =l maps logics satisfying compactness and Craig's interpo-

lation one-one onto representable Robinson equivalence relations (under the above-

mentioned "boundedness" restriction).

In Corollary 4.4 we prove that only one logic represents elementary equivalence,

namely first-order logic (notice that if one only considers representations by compact

logics, then the above corollary easily follows from Lindström's theorem (see [Li] or

[Fl]), or even from a "finite cover" argument).

Having solved the uniqueness problem we take up in §5 the problem of the

existence of representations of ~ as =¿ for L a logic satisfying compactness and

Craig's interpolation. For X a union of equivalence classes of ~ , we let span( A") be

the collection of those classes Y which can be obtained from X by repeated

applications of the first-order operations; we also let X E hull(~) iff for all

Y E span(A"), Y is still a union of equivalence classes of ~ ; we call ~ separable iff
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whenever not 9t — 58 there is X E hull(~) separating 31 and 33; we prove that (if u is

the only measurable cardinal) the following are equivalent: (i) ~ is bounded,

separable, Robinson, preserved under reduct, finer than = and coarser than s , and

(ii) ~ = =/. for precisely one logic L; in addition, L is compact, obeys interpolation,

| StcLT | exists, and each sentence in L is of finite type.

The above representation theorem allows one to give an equivalent algebraic

reformulation of Friedman's fourth problem in [Fr], The author is aware that one of

the possible answers to this problem would make his results of §§4 and 5 only

applicable to first-order logic and elementary equivalence. Still, he has decided to

include these results here, hoping that either (i): Friedman's fourth problem has no

such answer, or (ii): if -,(i) holds, still the techniques used in §§4-6 may be of some

help to obtain -,(i) itself, or, at least, (iii): no fact implying both -,(i) and -,(ii) occurs

before July 14, 1989.

1. Preliminaries. Throughout this paper a, ß,... denote ordinals and k, \, ¡i, v,...

denote infinite cardinals; t, t', t" denote sets of sorts and symbols, called types; 91,

33, ®, 90?, 9? denote (many-sorted) structures, whose universes A, B, D, M and A' are

always understood to be sets; Str(r) is the class of all structures of type t (compare

with [Fe]); following [MSS], we let 731 = {33 | 33 ~ 3Í}. A name-changer p: t -» t' is

a one-one function from t onto t' taking relation (resp., function) symbols into

relation (resp., function) symbols of the same arity; for 31 E Str(r), 31 " is the

structure in which each symbol S E t' is interpreted just as p~l(S) is interpreted in

31. We also let t(3í ) be the type of 3f.

A logic L is an ordered pair (StcL,t=L) satisfying the basic axioms of occurrence

[Ba], expansion, renaming, isomorphism and which is closed under the familiar

operations of negation, conjunction, quantification, and contains the atomic sentences

as in [Fe, pp. 155-157]; formulas are sentences with additional constant symbols, as

in [Fe, p. 156], and relativization of formula <p to formula \p(x) is always allowed in

our logics, where \¡/(x) is a boolean combination of atomic formulas, and gives

formula <p(jcW'<x)', whose semantics is the familiar one, as explained in [Fl]. See also

§5.
Notice that all structures and all types are admitted in L, that types need not be

finite, that Stcz(T) need not be a set, that in the sentences of L arbitrarily large sets

of symbols may occur; if <p E Sicl(t), then we merely say that <p is of type t.

For a)? EStr(r),

thz 2R = {<p E Slc^t) | 9JÎ t=L(p} ;

for IC StcL(r),

mod, F = (3Jc EStr(T)|9JULF).

31 =l 33 means that thL 31 = thz 33. K is an elementary class in L of type t iff

(K C Str(T) and) K = mod¿ <p for some tp E StcL(r); a structure 31 is characteriz-

able in L by its theory iff 731 = mod¿th¿3t, i.e. iff the structures which are

L-elementarily equivalent to 3t are precisely those which are isomorphic to 91. = is

elementary equivalence.
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An equivalence relation ~ is representable iff ~ = =L for some logic L; given

logics L' and L" we write L' < L" iff for each type t and <jd' E Stc¿-(r) there exists

<p" E Stc^T) such that modL, <p' = mod,., qp". If L' =£ L" and L" < L' then we

simply write L' = L": as a matter of fact, in this case L' and L" have the same

expressive power (i.e. the same elementary classes) even if they might differ in the

way an elementary class is represented by sentences. When L' < L" we also say that

L" is stronger than L'.

We assume the reader is familiar with compact and countably compact logics and

with logics obeying Craig's interpolation theorem (see [MS] or [MSS]). Generalizing

a definition in [MS] we say that logic L is K-relatively compact (ic-r.c.) iff for any type

t and classes of sentences 2 and T of type t with | 2 | = k, if for each 2' C 2 with

| 2' | < k, T U 2' has a model, then T U 2 has a model.

The familiar notion of logic L satisfying Robinson's consistency theorem (see

[Mul-Mu6]) is faithfully transposed to the case of an equivalence relation via the

following stipulation:

1.1 Definition. Let ~ be an equivalence relation on the class of all structures;

then ~ has the Robinson property (or, ~ is a Robinson equivalence relation) iff

V9JÍ E Str(r'), V9t E Str(r"), if t = t' n t" and W r r ~ 9c r t, then 3® E

Str(r' U t") such that ®ri"'~9K and e£>\r"~3l. Logic L has the Robinson

property (or, L is a Robinson logic) iff L satisfies Robinson's consistency theorem,

i.e., iff =l is a Robinson equivalence relation. (Compare with [Mul].) Notice that r,

t' and t" need not all have the same set of sorts.

The importance of Robinson logics and equivalence relations is evident from

[Mul-Mu6] (but see also [MS, postscriptum] and [MSI]); further nice properties are

given by the results in this paper.

2. The union of Robinson logics.

2.1 Proposition. Let {L¡}ieI be a class of logics; let L = U ie¡L¡ be their union,

i.e. the weakest logic which is stronger than each L¡; then for any t and <p E StcL(T), <p

has the same models as \p, where

( + ) 4> = Qxxx ■ ■ ■ Q„x„B((p\,...,9pi;...;^x,...,<f/p¡)

where each Qz is either 3 or V (depending on z), B is a boolean combination of a finite

number of sentences (depending on <p) of type t U {xx,... ,xn} and any two <p's having

the same upper index belong to the same L¡. Conversely, each \¡/ as given by ( + ) is

equivalent to a sentence in L.

Proof. Clearly, for any ip given by ( + ) above there must be in L some sentence

equivalent to \¡/, as L is closed under the boolean operations and quantification by 3

and V. Thus we have only to show that the class of sentences given by ( + ) is closed

under the boolean operations, existential quantification and relativization; as a

matter of fact, closure under 3 is trivial; closure under boolean operations and

relativization may be proved in a tedious but straightforward way by induction on

the complexity of the prefix in ( + ), upon recalling the usual (high school) gymnas-

tics about pushing quantifiers to the left.    Q.E.D.
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2.2 Proposition. Let L„... ,Lk be Robinson logics with =¿, = ... = =¡.k. Let <p

be given by

<P = (Mi■ ■ ■ Q„xnB(<p\(x),...,<ppt(x);.. .;<p\(x),... ,ykPk(x))

where x = (xx,...,xn), the Qz and B are as in the statement of 2.1, and, for

1 ^r<pj, <p/ E StCL(r U {xx,...,xn}). Then for any 31, 33 E Str(r) with 31 =¿,33

we have that 31 satisfies tp iff ^8 satisfies tp (in L = Lx U ...ULk).

Proof. Deny (absurdum hypothesis); expand 31 to 3i+ by adding new n-ary

relation symbols Ux,...,Up;...;Ux,...,Upk which are interpreted in model 31+ by

(1) 3í+^Vf(í//(x)-<p/(f))

for any y = \,...,k and i = 1,... ,p¡. Then from 31 \=L <p we get

(2) 3t+^ß1x1...ß,,x,,F(^(f),...,^f);...;^(f),...,c//t(x))^

NowletîJc =z.,3t+; then

(3) 2Jc=í73í+    for any y'= 1, ...,k

by hypothesis; hence we get from (1) and (3):

(4) 9Jc^Vf(i//(f)-(p/(f))

for any y = l,...,k and i = 1,... ,py, by (2) and definition of 3JÎ we get

(5) 2» vL Qxxx... Q„x„b(ux\x ),..., Up\(x) ;...; Uxk( x ),..., Up\(x));

and from (5) and (4) we finally have

(6) 2JcnlV.

This shows that modL th¿ 31+ ÇmodL<p (by 2.1 we can safely assume that

tp E Sicl(t)). By a similar argument, if we expand 23, where 33 r-L-,(p, to 33+ by

adding new n-ary relation symbols Vx,...,Vp then we get modL th¿ 33+ Ç

mod¿-,rjp. Now by noting that the common symbols of 3i+ and 33 + are in t, and by

applying Robinson's consistency theorem to Lx, one concludes that 91 and 33 are not

L |-elementarily equivalent, a contradiction.    Q.E.D.

2.3 Proposition. Let {L¡}¡eJ be a class of Robinson logics such that =/,, = =L.for

all i, j E I; let L be their union; then =l = — l¡ for all i E I and, in particular, L is

still a Robinson logic.

Proof. Each sentence in L is given (up to equivalence) by ( + ) in 2.1 ; now no such

sentence can "separate" two structures 31 and 33 with 31 =l: 33, by Proposition 2.2;

this shows that =l= =l,; the fact that L is still a Robinson logic now immediately

follows by noting that this only depends on =/..   Q.E.D.

2.4 Remark. In the following sections we shall study the uniqueness and the

existence problems for representations of equivalence relation ~ as =L, with L a

logic. We shall consider both the infinitary case (§3) and the case when | Stc¿ t |

exists for any t (§§4-6); for this latter case we shall obtain a complete solution of

the representation problem in Theorem 5.5 below.
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3. A general theorem.

3.1 Theorem. (Assuming u> is the only measurable cardinal): Let ~ be a Robinson

equivalence relation which is representable as =/. for L < L* a logic (with L*

arbitrary); then there exists a strongest logic L+ < L* with =/.+ = ~ ; furthermore,

L+ is countably compact (indeed, co-r.c.) if = ¥= ~ .

Proof. The existence of a strongest logic L+ follows from the representability of

~ and from Proposition 2.3, letting L+ = union of the logics L" < L* with

=L" = ~ ; for the proof of the second part of the theorem we prepare:

3.2 Lemma. Let v be an arbitrary but fixed infinite cardinal; let Lbe a Robinson logic

which is not K-r.c. for all k < v; then every single-sorted structure 91 with \ A |< v is

characterizable by its theory in L.

Proof of 3.2. See [Mu5, Corollary 4.2]; alternatively, extend up to v the

constructions given by [Mu2, 2.1, 1.6, 1.2], which can be done in a straightforward

manner. Notice that only relativization to atomic formulas is used in [Mu2] and

[Mu5].

3.3 Lemma. (Assuming w is the only measurable cardinal): if L is a Robinson logic

which is not countably compact, or which is not u-r.c, then every single-sorted structure

is characterizable by its theory in L.

Proof of 3.3. In view of Lemma 3.2 above, it suffices to prove that L is not K-r.c.

for each cardinal k> u.lf not (absurdum hypothesis) let p be the least cardinal such

that L is p-r.c; notice that p > co since otherwise L would also be countably compact

(letting T = 0 in the definition of K-r.c.) thus contradicting our assumptions. By

Lemma 3.2 each ordinal ß < p is characterizable in its theory in type {<} with < a

binary relation symbol. Define a single-sorted type t by

t= {<,cß,Ps,fg}    tor&\lß<n,sE<$(p),ge<i(i,

where l.'P denotes power set and the c's, the F's and the/'s are constant, unary

relation and unary function symbols, respectively. Let 9JÎ E Str(T) be defined by

3»r {<,<>},<„= <m.<.0W

%JltPs(cp)    iff ßE s, for each ß<n,s E <3>(p),

Wtfg(ca) = cp   iff g(a) = ß, for each a, ß<p, g: p -> p.

Let T = thz 9JÍ and 2={c>ca|a<p} with c a new constant symbol; since F is

p-r.c. then T U 2 is consistent; so let 9J?+ r- T U 2 (we drop subscript L since no

confusion may arise). Without loss of generality we also assume that

(1) 2w<t„„aw+7

i.e. 9JÎ is an elementary substructure of 2)?+ . Compare with [MS, 6.4(h)] and [MSI,

2.6].

Let D C i?(p) be given by

(2) dED   iff im+^Pd(c),    fordE 9(n).
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Roughly, the elements of D are the restrictions on p of the subsets of the universe of

9JÎ+ having a "name" in 9JÎ and to which c belongs (in 9Jc + ). One sees that D is a

nonprincipal ultrafilter on p, by using (1) and (2); we propose to show that D is

p-complete, thus contradicting our set-theoretical assumption. If not, D is À-

descendingly incomplete for some \<p (see [CK, Exercise 4.3.10(iii)]), i.e. there

exists a decreasing chain D' = {da}a<x of elements of D such that D a<A da E D,

i.e., without loss of generality, D a<x da= 0. Therefore, we can define h: p -> X by

stipulating that

(3) h(ß) = a   iffßEda\da+x        (ß<n,a<X);

roughly, h(ß) says how long ß remains in (the elements of) D'. Let now f~fh,

Pa = Pd (a < A); these are symbols in t. Then we have:

(4) Va<X,3Kl=Vx(/(x)<ca-^Pa+1(x));

(5) Va<X,3Jl+tVx(f(x)<ca^^Pa+x(x))    (by(l));

(6) Va<X,9Jc+r-/(c)<ca-^Fa+1(c);

(7) Va < A, 9JfM(c) >ca, as ï»c+tFa+1(c)    by (2);

(8) 9Jc+N Vx(x < cx -^ f(c) > x)    (sinceX is characterizable);

(9) Wl+Y-3yVx(x<cx^f(y)>x);

(10) Wt3yVx(x<cx^f(y)>x)    (by(l));

(11) C\da*0.

Thus D is indeed p-complete and p is measurable > co, a contradiction with our

set-theoretical hypothesis. In definitive, we conclude that L is never K-r.c.   Q.E.D.

3.4 Lemma. Let L be a Robinson logic in which each single-sorted structure is

characterizable up to isomorphism by its theory; then each (many-sorted) structure is

characterizable up to isomorphism by its theory in L.

Proof of Lemma 3.4. Deny (absurdum hypothesis); so let 9Jc and 9Î be two

many-sorted structures of type t with 9JÎ =/. 9Î but 9Jc 9*9?. Add a new unary

relation symbol Us for each sort s E t; recall that t is a set; represent 9JÍ as a

one-sorted structure 9Jc" by letting

universe of 9JÏ ' = union of the universes of the sorts of 9JÍ,

Uf1' = universe of sort í in 9JÎ    (for any sort s E r).

For simplicity assume t has no function symbol; let is be the identity map from the

universe of sort s in 9JÍ onto U™'; let i = U jgT is; let the symbols of t be

interpreted in 9JÍ ' according to the canonical relativization induced by i (see [Mo, p.

484] for a similar construction); also assume that each R E t is written R' in 9JÎ': let

t' be the set of primed symbols thus obtained. Roughly, i induces a one-sorted

photograph 9Jc" of the many-sorted structure Tl. Similarly, let 9Í" be a one-sorted

representation of 92 induced by function y, where new unary relation symbols Vs are

used to relativize sort s and each R E t is written as R" in 9c": let t" be the set of
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doubly primed symbols thus obtained. Let p be a name-changer which maps each

R' E t' into R" E t" and maps each Us into Vs; let (SSl'Y be the structure

canonically obtained from 9JÍ' via p; notice that

(1) (9Jc')Ps*9r

as 9Jc s* 9Î ; thus, by hypothesis about L applied to the single-sorted structures 9J? '

and SSI", we get

(2) (WY^lSSI".

Let now 9Í = <9Jc, W, i) and 23 = (9c, 9c", j). Recalling that 9JÍ =L 9c, by the

assumed Robinson consistency theorem for L there exists 25 which is both L-

equivalent to 91 and to 33, hence, in particular (by the basic expansion axiom of

logics),

(3) H\r'=LW   and   ^\t"=lSSI".

Therefore, by the renaming axiom of logics and by (2) we can write

(4) (®tT')PzLí)fT";

hence, by the isomorphism axiom logics, we have

(5) (®tT')Pï®tT".

Now look at 3D p t: ; and y induce two one-sorted representations of 25 \ t which we

write as ;(2)r t) and y'(2)f t), respectively, of type t' and t"; since i and j are

structure-preserving, then we have

(6) (,-(®rT))pSy(2>rT).

In view of the fact that ;(2) \ r) — 2) \ r' and y'(25 (■ t) = 2) [ r", we finally see that

(5) and (6) contradict each other.    Q.E.D.

3.5 End of the proof. Let L+ be the strongest logic such that = ¿.+ = ~ ; if L+ is

not countably compact, then by 3.3 and 3.4 it follows that each structure is

characterizable in L+ by its theory, i.e. = /.+ = s .    Q.E.D.1

3.6 Corollary. (Assuming co is the only measurable cardinal): Let ~ be a

representable Robinson equivalence relation; then the following are equivalent:

(i) ~ characterizes (co, < >, i.e. /(«, < )= {9? | 9c ~ (co, < >};

(ii) ~ characterizes every structure, viz. ~ = s .

Proof, (ii) -» (i) is trivial; to prove the converse, letting L be such that ~ = =¿,

we immediately see that L cannot be co-r.c. (by a familiar argument which can be

found, among others, in [MS]); therefore, by 3.3 and 3.4 we have that = = ~ .

Q.E.D.
3.7 Remark. Compare with [Mu4, Theorem 4], which essentially proves the above

corollary upon restriction to countable structures only.

'Matt Kaufmann has given a simple proof of a many-sorted version of 3.2, thus eliminating 3.4 from

the proof of 3.1. He also posed the problem whether one can find a counterexample to 3.1 if it is no

longer assumed that ~ is Robinson. He finally remarked that from [MSI, 5.8, 5.9] one can see that some

large cardinal hypothesis is actually necessary for Theorem 3.1 above to hold.
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4. A duality theorem. Theorem 3.1 can be further improved if we assume that ~

has not too many equivalence classes of structures of type t; more precisely, we

stipulate:

4.1 Definition. We say that an equivalence relation ~ on the class of all

structures is bounded iff for any type t the collection of the equivalence classes of

structures of type t is equinumerous with some cardinal kt.

In other words, ~ is bounded iff for every type t there is a set Sr E Str(r) such

that V9I E Str(x)333 E ST with 33 ~ 31. Compare with [Na]; notice here that our

notion of a logic incorporates from the start closure under first-order operations,

including relativization.

For bounded equivalence relations we have the following:

4.2 Theorem (Assuming co is the only measurable cardinal): Let ~ be a bounded

Robinson equivalence relation; assume =z/ =~ = =l"', then L' = L" and both are

compact logics obeying Craig's interpolation.

Proof. First notice that since ~ is bounded, then for any type t the collection of

elementary classes of type t in U is equinumerous with a set GT; also, L' satisfies

Robinson's consistency theorem as so does =u. Therefore we can apply the

corollary to the main theorem in [Mu3], to the effect that L' is compact and obeys

Craig's interpolation; the same applies to L"; let L — L' U L"; for each t, in L the

elementary classes of type t are equinumerous with a set HT, by Proposition 2.1, and

=l = =¿-, by Proposition 2.3, so that L satisfies Robinson's consistency theorem as

well; again by applying the corollary to the main theorem in [Mu3], we see that L is

compact; now, since L > L', by a familiar (finite cover) argument found, e.g., in [Fl],

we have that L — L' (notice that here one needs the fact that the collection of

elementary classes in L' of type t is equinumerous with a set, in order to be able to

exploit compactness); similarly, L = L". Notice that in [Mu3] only relativization to

atomic formulas is actually used.   Q.E.D.

4.3 Remarks. The boundedness assumption is clearly necessary: consider, for

instance, Lxao and any logic stronger than it. The assumption that co is the only

measurable cardinal is used for the proof of the results in [Mu3] on which the proof

of 4.2 depends.

By the above theorem we see that the function L h> = /, maps the class of all logics

satisfying Robinson's consistency and having a bounded number of sentences (mod

equivalence) in every type, one-one onto the class of all the representable bounded

Robinson equivalence relations (assuming co is the only measurable cardinal). In the

next section we shall give a necessary and sufficient condition for an equivalence

relation to be representable by some logic L satisfying compactness and Craig's

interpolation.

In this sense, one will be then able to speak of a "duality" between logics and

equivalence relations.

4.4 Corollary. (Assuming co is the only measurable cardinal): There exists just one

logic L such that = ¡, — = , namely first-order logic.
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Proof. = is representable (e.g., via first-order logic Lua); further, = is a

Robinson equivalence relation, by the familiar Robinson's consistency theorem in

first-order logic (see [CK]); finally, = is bounded, as can be immediately seen by

considering that | Stc¿ (t) | = | t U co |. Now apply Theorem 4.2.    Q.E.D.

4.5 Remark. One can see without difficulty that the (generalized downward)

Löwenheim-Skolem theorem together with Lindström's theorem (see [Li] or [Fl])

directly yield that Lww is the only compact logic L such that =L— = (one might

even use a simpler "finite cover" argument). Also notice that the collection of all

unions of classes of elementarily equivalent structures of type t, with t arbitrary,

does not give (the elementary classes of) a logic, since it is not closed under

existential quantification; if one attempts to close this collection under all the

first-order operations, the resulting logic L' has =/.- ¥= = .

5. Characterizing representability. In this section we shall state the characterization

theorem for those equivalence relations ~ which are equal to =¿ for some compact

logic L obeying Craig's interpolation. The proof will be given in the next section. For

our characterization we shall need to construct logic F representing ~ : to get such L

one first studies a system of classes of structures which is closed under all the

first-order operations and which is, in some sense, generated by ~ ; the necessary set

up is given by the following discussion.

A finite-type class X is an ordered pair X = (S, t) where t is a finite type and

S Ç Str(T); we naturally say that X is elementary iff 5 = mod <p for some first-order

sentence tp of type t; we incorporate t in the definition of X so that we can

unambiguously speak of the type of X, for short t(X): actually this becomes critical

only for classes of the form X = ( 0, t ). In any case we shall freely write 9t E X to

mean 91 E S.

For p: t -» p(r) a name-changer, p acts on X yielding pX of type p(t) defined by

91 EpX   iff 91" ' EX.

Given X= (S,t), the negation of X is -,X = (Str(r) \5, t); for Xx= (Sx,tx) and

X2 = (S2, t2), the conjunction Xx A X2 is given by

91 E A', A X2   iff 31 E Str(t, U t2) and 91 r t, E Xx and 91 r t2 E X2.

The disjunction Xx V X2 is defined as -,(-.A", A ->X2), and is a finite-type class of

typer, U t2.

For b a constant symbol and X = (S, t), the projector 3b transforms X into 3bX

of type t \ {b} given by

31 E3bX   iff 91 E Str t \ {b} and 31 has an expansion 31+ E X.

We also let V/3A* be defined as -,36-,X. A prenex function Qxkx... Q„kn, for short

Q ° k, where each Qt is either 3 or V, depending on /', and each k¡ is a constant

symbol, transforms X into Q ° kX given by

QokX=Qxkx(...(QnknX)...).

We now consider relativization: in the single-sorted case, see [Fl], the notion of 31

being T-closed upon restriction to {x\ U(x)} means that in St: (i) U(x) has some
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solution, (ii) each constant of r satisfies U(x), and (iii) the output of each function

symbol/E t satisfies U(x) whenever (each component of) its input does. Also, the

models of the relativization <pu of sentence <p of type t to {x \ U(x)} are the

structures of type t U {U} which are r-closed upon restriction to {x \ U(x)} and

such that 911 {x \ U(x)} is a model of <p. Notice that we incorporate r-closure in the

definition of relativization.

The above is naturally generalized to the many-sorted case as follows: let t be a

finite type with sorts sx,...,s2; let x = x\... ,xz be a sequence of constants,

respectively, of sorts sx,... ,sz; let \p — \px,... ,\p, be a sequence where each <//, is a

boolean combination of atomic sentences and is of type t, containing x'. Then the

class

C{m c StrrU t,\{jc'} U ...Utz\{xz]

of the structures which are r-closed upon restriction to {x\\¡/} is defined by

9Í E C}^ iff the (many-sorted) universel' C A given by

A\ = (a1 EA | 911= ificj1 )},..., A'z = {az EA\%^z(az)}

has the following properties in 91 :

(i) is nonempty on each sort of t, i.e., A\,... ,A'Z ̂  0 ;

(ii) contains (the interpretations of) the constants of t;

(iii) contains the output/(/c) of each/E t whenever the input k (has the right

sorts for/and) has its components in A'.

Obviously, since t is finite, Cj^ is an elementary class. Under the same notation,

for X a finite-type class of type t,

jfflW çStrTUT,\{x'} U...Utz\{;t},

called the relativization of X to {x\ »/<}, is the finite-type class given by

91 E X^iï    iff 8t E Cj^] and 9Í r t | A' E X,

where 9t [ t | A' is the substructure of 9t \ t generated by A'.

Again notice that r-closure is incorporated in relativization. The main properties

of relativization used below are summarized in the following

5.1 Proposition. Let X, t, x — x\.. .,xz; \f= \px,...,\pz, sx,...,sz, t,,...,t, be as

above; then

(i)

(ii)/or p any name-changer, p(X^^) = (p'X)1-^, where p' is the restriction of p to

t, y' = y1.. .yz are new constants of sort p(sx),.. .,p(sz), respectively, <p = <p,,...,rp.

where <py is obtained from if/¡ by writing y' instead of x', and by mapping any other

symbol S o/t, into p(S);

(iii) for h a constant of sort s ¡(I < /' «s z),we have

(ihx)™ = ih'U; a x'rtñ),
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and

(VhX)m = (-ah-,X)ÍS® = C<$ñ A \/h'(y - X'^Ú)

where \p¡ and X' are obtained from i//, and X upon renamings x'V» A' and hv^h',

respectively, for h' a suitable new constant of sort s¡, and r' = T\{h};

(iv)for classes X' and X", respectively, of type r' and t", with r' U t" = t, we have

(X' A X"){^] = C}^ A X'tf+Y A JT'I^H",

(A" V X")m = (-n(-^X' A ^A-"))!^} = Ci**« A (a"^1»' V A"'<*"),

w/iere {x | >//}' (rasp, {x 11^}") is obtained from [x\ \p} by leaving only those i such that

Sj E t' (resp. Si E r").

(v) if y— y\...,yw are constants of sort sx,...,sw, respectively (w > z), and

<p = tp,,... ,<pu. ¡5 a sequence where each <p¡ is a boolean combination of atomic

sentences, of type 7^ containing y', and the sorts o/tUt, U...Ut, are sx,... ,sw, then

(^{-*}){iT?} = _y('Ix) a f wnere f= t\...,tz is a sequence of constants of sort

sx,...,sz, respectively, F is elementary, expressing some closure property, Xj is <p' A iF',

where xpj 's obtained from \pj by renaming x-> h» t' and tpj is obtained from tp by

renamingy* v+ tj,j = 1,... ,z.

Proof. By a tedious but direct application of the definitions.   Q.E.D.

Having defined the first-order operations on classes of structures, we shall now

define the first-order span of class X: intuitively, the latter is the collection of all

finite-type classes one can obtain from X by repeated applications of the first-order

operations; in fact, it is not hard to see that our definition describes the smallest

such system.

5.2 Definition. If X is any finite-type class of type t, then uve first-order span of

X, for short span( X), is the collection of all finite-type classes Y of the form

Y=QokB((pxX){^\...,(prXf^],Ex,...,Ep)

where Q°k — Qxkx.. .Qnkn is a prenex function, B a boolean function, Ex,...,Ep

are elementary classes, each p, is a name-changer with domain t, each x¡ = x),... ,x:

is a sequence of constants, one for each sort of p,(t), and each ^ = \f>jX.. .\piz is a

sequence where ^ -, of type 7¡¡ D {x{}, is a boolean combination of atomic sentences.

Notice that X E span(X). We shall try to sketch now the key ideas to represent an

equivalence relation ~ as =l for some logic L: one naturally looks for L-elementary

classes among finite-type classes X such that VF E span(J*0, T is a union of

equivalence classes of ~ , since, if 9J? ~ SSI then Y cannot separate S)Sl and SSI. One

also needs as many as possible such classes X, so that whenever not 9JÍ ~ SSI some X

actually separates SSR and 31; one then hopes that the system thus obtained is closed

under A and 3. We shall see in our main theorem below that this is indeed the case

for Robinson equivalence relations satisfying some additional regularity conditions.
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Let us now make precise the above discussion:

5.3 Definition. For ~ a bounded equivalence relation (see §4) on the class of all

structures, the hull of ~ , for short hull(~) is defined by

X E hull( ~) iff X is a finite-type class and each Y

in span( X) is a union of equivalence classes of ~ .

Thus, if X E hull(~), A" does not separate SSSl, SSI if SSI [ r(X) ~ SSJl r t(X), i.e. it is not

the case that 9c [ r(X) E X and 9Jf r t(X) E X, and this property is inherited by all

Y E span(A'). Notice that if ~ is finer than = , i.e. 91 ~ 23 implies 91 = 23, then each

elementary class F is automatically in hull(~).

5.4 Definition. A bounded equivalence relation ~ is separable iff for each

(possibly infinite) type t and 9Í, 23 E Str(T), if not 91 — 33 then there exists t0 finite

Ç t and X E hull(~) such that 31 r t0 E Xand 33 r t0 E X.

Thus in a separable equivalence relation any two nonequivalent structures can be

separated by some X in the hull; notice that if ~ is preserved under reduct, i.e.

SSJl ~ SSI implies SDÎ r t ~ 9c r t, then from 9Í r t0 E Xand 33 r t0 E AT with X E hull(~)

one can infer not 91 — 93.

We are now ready to state our main representation theorem for equivalence

relations on structures:

5.5 Theorem. (Assuming co is the only measurable cardinal): For ~ an arbitrary

equivalence relation the following are equivalent:

(a) ~ is bounded, separable, Robinson, preserved under reduct, finer than = and

coarser than s ;

(b) ~ = =hfor some compact logic L obeying Craig's interpolation, with StC/(r)

having a cardinality | StcL(r) | for any t, and each sentence being of finite type;

(c) ~ = =l for precisely one logic L; in addition, L is compact, obeys Craig's

interpolation, | StcL(T) | exists for any r, and each sentence in L is of finite type.

The proof is given in the next section.

6. Proof of the representation theorem. The proof that (c) implies (b) is trivial. We

now prove that (b) implies (a): assume ~ = =/. with L satisfying the hypotheses of

(b); then ~ is bounded, as | StcL t | exists for all t; ~ is Robinson, since the

assumed properties of L are well known to imply that F satisfies Robinson's

consistency theorem; ~ is preserved under reduct, by the expansion axiom satisfied

by L; ~ is finer than elementary equivalence = , since L > LUüJ, and is coarser than

s by the isomorphism axiom satisfied by L. We finally prove that ~ is separable:

as a matter of fact, let 91, 23 E Str(T); assume not—9Í ~ 23, i.e. 91 z¿ 23; then for

some sentence <p E StcL(r) we have 91 t=L <p and 23 t=z -,<p; since <p is of finite type,

then for some finite t0 C t, <p E Sicz(t0) and, by the expansion axiom satisfied by L,

we have that 9íCT0t=¿<p and 23 f r0i=¿-,<p. Now notice that the finite-type class

X = (modz tp, t0) is in hull(~), since for each Y E span( A") there exists a sentence

aY E StcL(T(T)) such that Y = (mod¿ aY, t(Y)); this is a consequence of L being

closed under the first-order operations. Therefore, Y is a union of equivalence classes
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of ~  and AÏEhull(~)) indeed separates 91 and 23, so that ~ is separable as

required. This completes the proof that (b) implies (a).

To prove that (a) implies (c), we first establish the closure properties of hull(~) in

the following Lemmas 6.1-6.7: we assume throughout that ~ satisfies the conditions

in (a).

6.1 Lemma. If X is elementary, then X E hull(~).

Proof. Otherwise (absurdum hypothesis) 3Y E span^) which is not a union of

equivalence classes of ~ , where Y is as in Definition 5.2; notice that each

(PjX)^'^^ is elementary, hence so is Y; therefore F is a union of equivalence classes

of = , hence a union of equivalence classes of ~ , since ~ is finer than = ; we have

thus a contradiction from the hypothesis that X E hull(~).

6.2 Lemma. If X E hull(~) then X is a union of isomorphism classes, i.e. for any SSSl,

SSI with S0l=SSl,Sm EX iffSii E X.

Proof. A" is a union of equivalence classes of ~ and ~ is coarser than s .

6.3 Lemma. If X E hull(~), p is a name-changer and Z = p(X), then Z E hull(~).

Proof. Otherwise (absurdum hypothesis) there exists Y E span(Z) which is not a

union of equivalence classes of ~ , where

Y=QokB((pxZ)^\...,(przf^,Ex,...,Ep)

as in Definition 5.2. Notice that p,Z = p\X for a suitable name-changer p\, so that

Y E span(A'), too, and F is a union of equivalence classes of ~ as X E hull(~).

6.4 Lemma. If X E hull(~), Z = -, X, then Z E hull(~).

Proof. Otherwise (absurdum hypothesis) 3 Y E span(Z) which is not a union of

equivalence classes of ~ , where

Y=QokB((pxzf^],...,(prZ){^\Ex,...,Ep)

as in Definition 5.2; we have

(p,Z)'^' = (.p,A-)!^»=F,A^((p,A')(*»)

with F, elementary, by 5.1(i), so that YE s\oan(X), too, hence F is a union of

equivalence classes of ~ since X E hull(~).

6.5 Lemma. Assume that X E hull(~) and X is of finite type r; let y = y\... ,yz,

respectively, of sort sx,... ,sz, the latter being precisely the sorts ofr,let(p = (px,...,(pz

be a sequence where each <p, is a boolean combination of atomic sentences, of type

t, D {y'}; assume Z = X{^; then Z E hull(~).

Proof. Otherwise (absurdum hypothesis) 3 Y E span(Z) which is not a union of

equivalence classes of ~ , where

Y=QokB((pxZ){^],...,(prZf^,Ex,...,Ep)
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as in Definition 5.2; now we can write

(p,.Z){^} = {pt(X&*)fM

= ((p;jr)un?î){SÎ,l*'î    for suitable/, ?, by 5.1(h)

= (p'iX){'&,) A F,     for some F,, i*X;, as in 5.1 (v),

which shows that Y E span( A-), too, hence F is a union of equivalence classes of ~

as X E hull(~).

6.6 Lemma. If X,Y E hull(~), Z = X A F, /Am Z E hull(~).

Proof. Otherwise (absurdum hypothesis) some F E span(Z) of the form

E=Q°kB((pxZ){^\...,(przf^,Ex,...,Ep)

is not a union of equivalence classes of ~ , hence for some SSSl and SSI with 99? ~ SSI we

have 99? E F and 9Î g F. Now,

(piZ)wl*') = (p'iX A p'.'Y)™    for suitable renamings p', p"

= C, /\{p',X)iS**,Y A (p;T)(*'}"    by 5.1(iv)

= c, a /c; A R'/

with C,, 7Í,' and AT," E hull(~) by Lemmas 6.1, 6.3 and 6.5; therefore F can be

written in the form

(1) E=QokB'(Hx,...,Hm),       //,,...,//„, Ehull(~),

for some m E co and Hx,...,Hm finite-type classes, where B' is a new boolean

function. Add to t(9J?) m new «-ary relation symbols Uxk,.. .,Umk where k =

kx,...,kn and let Fj be given by

(2) F, = yfk((U,kAHl)\/(-,UlkA-,Hi)),       i=\,...,m,

where U¡k denotes the elementary class determined by modL   U¡k.

Notice that I] E span(//¿), hence by (1) F¡ is a union of equivalence classes of ~ ;

if we let

(3) F=F,A...AF„,

then F, too, is a union of equivalence classes of ~ by the assumed preservation

under reduct of ~ . Expand SSSl to 9Jc+ E Str t(F) so that

(4) 9Jc+EF;

the above (definitional) expansion exists by the definition of the U 's. Notice that

(5) Wl+tr(W) EE;

hence (l)-(5) are to the effect that

(6) SM+ EQ°kB'(uxk,...,Umk).
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Let 9t be arbitrary, with 9Í ~ 9J?+ ; then the fact that ~ is finer than = , together

with (6) implies

(7) %EQokB'(Uxk,...,Umk);

as a matter of fact, the class in (6) or (7) is elementary. Since F is a union of

equivalence classes of ~ , by (4) we also have

(8) 91 E F.

Hence, by (1), (2), (3), (7) and (8) we have

(9) 9irr(99?)EF.

By similarly expanding SSI E E via relation symbols Vx,...,Vm one gets, for any

23 ~ 9?+ , where 9?+ is the expanded structure thus obtained,

(10) 33rT(9?)<2F.

Hence, there is no 25 such that 25 r t(9J?+ ) ~ 9J?+ and 25 r r(SSl + ) ~ 9?+ , since

otherwise 2)f t(9J?) is both in F and in -,F by (9) and (10), which is impossible.

Applying now the assumed Robinson property of ~ , we obtain that not 9J? ~ 9?,

thus contradicting our assumption about 9J? and 9?.

6.7 Lemma. If X E hull(~), h is a constant and Z = 3hX, then Z E hull(~).

Proof. Otherwise (absurdum hypothesis) some F E span(Z) of the form

E = Qo kß((pxzf^,..., (prZf^], Ex,...,Ep)

is not a union of equivalence classes of ~ , hence there are structures 9J? and 9? with

9J? ~ 9? such that 9J? E F and SSI ̂ E. Let s, be the sort of h, where 1 « t < z and

sx,...,sz are the sorts of t = t(X). We can write

(p,Z)[X^] = (Pi3hX){^] = (3hpiX)[^],

assuming without loss of generality that h E p,-(T)> where p, maps h into h and is

otherwise equal to p¡.

Therefore we can write

(p.zf^ =3h'(VtA(p>xf^)    by5.1(iii)

= 3h'Kt

for a suitable K¡ E hull(~), by Lemmas 6.3, 6.6 and 6.5. Hence F can be written as

(1) E=Q°kB'(3h'Kx,...,3h'Kr,Ex,...,Ep),       Kx,...,Kr E hull(~),

where we assume without loss of generality that h' ¥=kx,...,kn. Add to t(9J?) r

H-ary relation symbols Uxk,...,Urk and let F¡ be given by (recall 6.6 above for the

meaning of U¡k as a fini te-type class):

(2) Fl = Vk((U,k/\3h'Kl)v(-,UlkAVh'-,Kl)),       i=\,...,r,

i.e.,

(3) F, = Vk3h'Vh"((UikAKi) V (-,U¡k A-,K','))
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where K" is obtained from K¡ via some renaming which sends h' into a new constant

h"; notice that F¡ E span(A",), hence, by (1), F¡ is a union of equivalence classes of

~ . Let

(4) F=F,A...AFr;

we see that F, too, is a union of equivalence classes of ~ , by ~ being preserved

under reduct. Expand 99? to 9J?+ E Str(r(F)) so that

(5) 99?+ E F.

Notice that

(6) 9J?+rx(9J?) EF,

hence, by (l)-(6) we have

(7) SSSl+ EQokB{uxk,...,Urk,Ex,...,Ep).

Let 91 be an arbitrary structure such that 91 ~ 9J?+ ; then by ~ being finer than = ,

(7) implies

(8) SHEQokB(uxk,...,Urk,Ex,...,Ep).

Since F does not separate any two —equivalent structures, then by (5) we also have

(9) 9t E F.

Therefore, by (l)-(4), (8) and (9),

(10) 9lrT(9J?)EF.

By similarly expanding 9? £ E to 9?+ via relation symbols Vx,...,Vr one gets, for

any33~9?+,

(11) 23rT(9?)EF.

Hence, there exists no 25 such that 2) r t(9J?+ ) ~ 99?+ and 2) [ t(9?+ ) ~ 9?+ since

otherwise, 25rr(9J?) EF and E —,E by (10) and (11), which is impossible. By

applying now the assumed Robinson property of ~ , we finally have that not

99? ~ 9?, a contradiction.

6.8 End of the proof of the theorem. Having proved that hull(~) is closed

under the first-order operations, we define L = (Stc¿, t=¿) as follows:

( + ) <p E StcL(r)    iff cp E hull(~) and has typei-(<p) C t,

and, for 31 E Str(-r),

(++) 3l>L<p   iffcp E Sicl(t)    and    9lrT(<p)E<p.

We have the following.

Claim 1. L is a logic.

Proof. Directly from the above definition, together with our assumptions about

~ and Lemmas 6.1-6.7; notice that we have not used separability and the special

set-theoretical assumption.
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Claim 2. =l = ~ .

Proof. First observe that =¿ is coarser than ~ ; as a matter of fact, if

3Í ~ 33 E Str(r), then by preservation under reduct 2Í r t0 ~ 93 r t0 for all finite

t0 Ç t, hence nolE hull(~) can separate 91 and 23, hence 91 =l 23. Therefore, if

= l ¥=~ (absurdum hypothesis), then there are 99?, 9? such that 99? =z. 9? and not

99? ~ SSI; since ~ is separable, there is t0 finite C t and Y E hull(~) of type t0 such

that 99? r t0 E F and 9? r t0 E F. Notice that Y E StcL(T0) and 99? ¥L Y and 9? \=L-,Y,

whence 99? z¿3!,a contradiction.

Claim 3. L is compact, obeys Craig's interpolation, | StcL t | exists for any t, and

each sentence in L is of finite type.

Proof. The last two conclusions easily follow from ~ being bounded and from

the definition of L; L is a Robinson logic by Claim 2, since ~ is Robinson; now,

from the corollary to the main result in [Mu3], L is compact and obeys Craig's

interpolation theorem. Notice that in [Mu3] only relativization to atomic sentences is

used, so that the results therein may be safely applied to the logics considered in this

paper, where (many-sorted) relativization is to boolean combinations of atomic

sentences.

Claim 4. L is the unique logic such that =L = ~ .

Proof. Let L" be a logic such that =¿- = ~ = =L; then the desired conclusion

follows from Theorem 4.2 above.

The proof of Claim 4 concludes the proof of our representation theorem.   Q.E.D.

6.9 Remark. The assumption that co is the only measurable cardinal is needed for

the proof (of the results in [Mu3] implying) that (a) => (c) in 5.5.

As Matt Kaufmann pointed out, in view of a theorem of Friedman [MSI, 4.1] one

can delete the hypothesis that each sentence is of finite type in the proof that

(b) =* (a) in 5.5.

6.10 Remarks. Notice that if one drops the separability assumption on ~ , one

still gets from ~ a logic L via definitions ( + ) and (+ +) in 6.9 above, and L is the

strongest logic with =l coarser than ~ , and in which every sentence is of finite

type. Also notice that the unique logic L given by our representation theorem has

many other properties in common with first-order logic, e.g., all the familiar

interpolation and definability properties, joint embedding, amalgamation, and L has

a Löwenheim number (see [Mu3]); in addition for each sentence <p in L there is a

smallest finite type t such that tp E Sicl(t), so that L automatically satisfies

Barwise's "finite occurrence" axiom (see [Ba, pp. 234, 254]). If one restricts attention

to logics satisfying such axiom and whose sentences of any given type are

equinumerous with a set then (assuming co is the only measurable cardinal) Fried-

man's fourth problem in [Fr] can be given the following equivalent algebraic

reformulation:

"Find a bounded separable Robinson equivalence

relation which is preserved under reduct, strictly finer

than = and coarser than s ."

The author wishes to express his gratitude to Matt Kaufmann.
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