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OF THE FINITE CLASSICAL GROUPS

BY

WILLIAM M. KANTOR AND ROBERT A. LIEBLER1

Abstract. The permutation representations in the title are all determined, and no

surprises are found to occur.

1. Introduction. A group G has rank 3 in its permutation representation on the

cosets of a subgroup K if there are exactly 3 ( K, K )-double-cosets; that is, if K has

exactly 3 orbits on the set G/K of Ä-cosets. Such permutation representations have

been studied a great deal during the past 15 years; classical groups have been

intensively studied for more than a century. The purpose of this paper is to relate

these two areas, by proving the following results.

Theorem 1.1. Let M be one of the groups

Sp(2m-2,q),   Tl±(2m,q),    ü(2m-l,q)    or   SU(m,q)

for m>3 and q a prime power. Let M <G with G/Z(M) < Aut(M/Z(M)).

Assume that G acts as a primitive rank 3 permutation group on the set X of cosets of a

subgroup K of G. Then (at least) one of the following holds up to conjugacy under

Aut(M/Z(M)).

(i) X is an M-orbit of singular (or Isotropie) points.

(ii) X is an M-orbit of maximal totally singular (or isotropic) subspaces and

M = Sp(4, q), SU(4, q), SU(5, q), Q~ (6, q), S2+ (8, q) or 12+ (10, q).

(iii) X is any M-orbit of nonsingular points and M — SU(m,2), ñ±(2w,2),

S2i(2w,3)o/-ß(2w - 1,3).

(iv) X is either orbit of nonsingular hyperplanes of M — Q(2m — 1,4) or Q(2m — 1,8)

(where G = ß(2w — 1, 8) • 3 in the latter case).

(v) M = SU(3,3), K n M = PSL(3,2) (Mitchell [40], Suzuki [56]).

(vi) M = 51/(3,5), K n M = 3 ■A1 (Mitchell'[40], Higman [24]).

(vii) M = 5(7(4,3), K n M = 4  PSL(3,4) (Hartley [21], McLaughlin [38]).

(viii) M = Sp(6,2), K = G2(2) (Edge [15], Frame [19]).

(ix) M = ß(7,3), K n M = G2(3).

(x) M = 5/7(6,2), K n M = 3 • PSU(4,3) -2 (Fischer [17]).
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Theorem 1.2. Let M = PSL(n, q) < G < Aut M. Assume that G acts as a primitive

rank 3 permutation group on the set X of cosets of a subgroup K of G. Then (at least)

one of the following occurs up to conjugacy under Aut M.

(i) X is the set of lines for M,n> 4.

(li) M = PSL(2,4) = PSL(2,5), | X \ = (\),

M = PSL(2,9)=A6,\X\=(62),
M= PSL(4,2)=Ai,\X\= (I), or

G = PTL(2,%),\X\=(92).
(iii) M = PSL(3,4), M n K = A6.

(iv) M = PSL(4,3),Mf)K= PSp(4,3).

The reader is cautioned that isomorphisms between, and automorphisms of, the

various groups allow many different ways of viewing some of these cases. Specifically,

the isomorphisms PSp(4, q) = £2(5, q), PSU(4, q) = PSl' (6, q),

PSL(4, q) = Pti+ (6, q) and PSU(4,2) s PSp(4,3) lead to numerous representations

under (l.li). Similarly, a triality automorphism of /)ß+(8, q) can be applied to

(1.1 iii) and a polarity automorphism can be applied to (1.2i).

The 2-transitive representations for G have been determined by Curtis, Kantor

and Seitz [9]; from this result, the imprimitive rank 3 representations of G can be

obtained (see §11). Our approach is similar to theirs, especially their note "Added in

proof". Both arguments rely heavily on the degrees of the nonprincipal irreducible

constituents of lg, where B is a Borel subgroup (and G is semilinear on the natural

module V for M). All such degrees are divisible by p, with only 3 exceptions for

G = Sp(2n, 2). This fact, which follows from Hoefsmit [26], was not available in [9];

on the other hand, 2-transitivity permitted counting arguments in [9] which have no

parallels here. (Only if G — Sp(6,2) or Sp(8,2) are we able to use the standard

rationality conditions for the parameters of a rank 3 group.) When combined with a

result of Seitz [50], this divisibility implies that l£ and 1% have exactly one

nonprincipal constituent x in common. In almost all cases, this fact by itself is

strong enough to determine K. (A more general classification based upon this idea is

found in (11.1).) Computations within the Weyl group yield strong transitivity

properties for the action of K on V. Now a method of Perin [46] applies and K can

be determined. The analogues of (1.1) and (1.2) for the remaining Chevalley groups

seem blocked by the problem of finding all subgroups transitive (or almost transitive)

on one or more classes of parabolic subgroups.

The only other results of this type are the beautiful theorem of Seitz [51] which

proves the same result for q large relative to m, and the determination by Bannai [2]

(resp., Cohen [5]) of all representations of rank at most 5 of An and Sn (resp., of rank

3 of all complex reflection groups). It seems quite difficult to extend our arguments

to higher rank representations.

The paper is organized as follows. In §2 we present some notation and numerous

preliminary results. Characters of the Weyl groups of type Bn and Dn are discussed in

§3, and applied to G in §4; this is where some of Hoefsmit's results are described.

Highly transitive subgroups of G are crucial to our approach. These are studied

for small dimensions in §5, and for large dimensions in §6 (using Perin's method).



RANK 3 PERMUTATION REPRESENTATIONS 3

We obtain a number of extensions of Seitz's flag-transitive theorem. For example,

subgroups transitive on points, lines and planes (if planes exist) are all determined;

mere transitivity on lines suffices for unitary geometries of dimension at least 8. On

the other hand, §§5 and 6 contain many technical results with hypotheses tailored to

the proof of (1.1). The proofs tend to be involved and unpleasant, due in part to

several interesting (and annoying) exceptions. These exceptions, which arise in §5,

are carried over to §6, where reductions are made to small dimensional situations.

The proof of (1.1) occupies §§7-9. The basic ideas in the proof of (1.1) can be

clearly seen in §§7-8. In particular, the precision with which the Pigeon-Hole

Principle applies is evident in (8.1). In §9 we deal with two exceptional and tedious

cases: Sp(2n,2), where lg contains two nonprincipal characters of odd degree; and

the possibility of graph automorphisms arising in the case of PQ+ (8, q).

The proof of (1.2) appears in §10. This result is much simpler than (1.1), and its

proof is relatively self-contained. The reader may wish to start the paper with that

section.

One of the features of our proofs of (1.1) and (1.2) is that the rank 3 hypothesis is

not fully used. Consequently, other subgroups of classical groups are able to occur

which, from our point of view, behave very much like stabilizers in rank 3

representations. This is discussed in §11, where more general technical results are

indicated (a generalization of much of (1.2) having already been proved in (10.1)). In

§11 we have also listed the known examples of rank 3 representations of other

Chevalley groups.

Finally, §12 represents a change of topic, though not of method. In [25], Higman

and McLaughlin studied subgroups K of TSp(V) or TU(V) which are rank 3 on the

set of points of V. A complete determination was made by Perin [46], except in the

case 5/7(2«, 2). (For a stronger unitary result, see our (6.1).) The orthogonal case was

examined by Stark [54] for odd characteristic and small dimensions. By imitating

Perin [46] and some portions of §6, we will prove the following result.

Theorem 1.3. Suppose that K< TO±(d,q), d>5, and that K has rank 3 on

points. If d is odd, assume that q is odd. Then K^ $l± (d, q).

We are indebted to Dr. Jan Saxl for his invaluable assistance with parts of §3. We

are also grateful to Professor Harriet Pollatsek for a number of helpful remarks.

Finally, we are very grateful to the referee for his diligence and his many

constructive suggestions and comments.

2. Preliminaries.

A. Notation. Let V be a finite vector space of characteristic p equipped with a

symplectic, unitary, or orthogonal geometry. The corresponding Chevalley (or

twisted) group Chev(F) is Sp(V), SU(V), or ß* (V) (or just ß(F) if dim Fis odd).

Note that Chev(F) may have a nontrivial center.

The group of semisimilarities of F will be denoted by T(V) — TSp(V), TU(V) or

TO~(V). This is the group of semilinear transformations g of V such that

f(ug, vg) = cf(u, v)° (or f(ug) = cf(u)a) for some scalar c, some field automorphism

a, and all u, v E V; here, / is the sesquilinear (or quadratic) form on  V. (See
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Dieudonné [13, 1.10, 1.16].) Modulo scalars, T(V) is the automorphism group of

Chev(F) in almost all cases. The only exceptions occur for Sp(4,2e) and ß+ (8, q)

(Carter [3, Chapter 12]).

Chev(F) is generated by "long root elements": nontrivial transvections in the

symplectic and unitary cases; in the orthogonal cases (with dim V > 4), elements of

order p having Lx as an eigenspace, for some totally singular line L. For more

information, see [13], [3] or [33].

There is a natural isomorphism Sp(2n,q) == ß(2« + l,q) for q even. We will

therefore only have to consider whichever one of these groups is most convenient in

a given situation, usually without even mentioning the other group. We will

frequently make use of the isomorphisms ß(5, q) = PSp(4, q),

PQ,+ (6, q) = PSL(4, q) and Ptt   (6, q) ~ PSU(4, q).

Totally singular (or isotropic) i-spaces will simply be called "i-spaces". All other

subspaces will be modified by suitable adjectives. Points, lines and planes are, of

course, just 1-spaces, 2-spaces and 3-spaces. The letters x, y, z will be reserved for

points, L for lines, and E for planes. By abuse of language, we will write x E S in

place of x C 5.

The maximum dimension of an i-space will be denoted by n.

An (/, j)-flag consists of an /'-space and a y'-space containing it; also, in the

ß+(2«,<7) case, there are (n, «)-flags, consisting of two «-spaces meeting in an

n — 1-space. A flag for Sp(V), SU(V) and 0± (V) is a nested sequence of /-spaces,

one for each i— 1,...,«; a flag for Q,+ (2n,q) is a sequence (Vx,..., Vn_2, Vn, V'n)

consisting of nested /-spaces for i — I,... ,n — 2, along with two «-spaces

Vn, V'n Z) Fn_2 meeting in an n — 1-space.

Throughout §§2-9, G will denote a group lying between Chev(F) and T(V), while K

will be a subgroup of G.

If W E V, then Kw and CK(W) are the set-wise and vector-wise stabilizers of W

in K; the semilinear group induced by Kw on W is denoted K^ ~ KW/CK(W).

Also, WK is the orbit of W under K; [V, K] = [K, V] = {vk - v \ k E K}; K' is the

commutator subgroup of A', K(x) is the last term of the commutator series for K,

Z(K) is the center of K, and O (K) is the largest normal /»-subgroup of K. If H is a

group, « H is an extension of H by a group of order «, while H « is H with an

automorphism of order « adjoined.

B. 5o«ie subgroups of classical groups. We will require a number of properties of

classical groups related to generation and transitivity. We will also make very

frequent use of the structure of the most obvious parabolic subgroups [9, §3]:

Lemma 2.1. Let x be a point, and set Q = Op(Gx), so that Q centralizes xL/x. Let

Qx be the group of transvections in Q.

(i) The representations of CG(x) (resp., Gx) on Q/Qx and xL/x are isomorphic

(resp., projectively isomorphic), via gQx -» [V, gQx]/x.

(ii) In the orthogonal case, singular vectors in x± /x correspond to long root elements

in Q; nonsingular vectors correspond to nontrivial elements g E Q having

rad[V,g]^[V,g].
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(iii) // V is unitary, or symplectic of odd characteristic, then Q' = Qx — $(0), and

the commutator function on Q X Q induces a nondegenerate alternating bilinear form

on Q/Qx.

Lemma 2.2. Suppose that K is a subgroup ofT(V) containing a Sylow p-subgroup of

Chev(F). Then either K > Chev(F), or K stabilizes some totally singular subspace.

Proof. This is due to Tits (see Seitz [51, (4.6)]).

The preceding lemma is, in effect, concerned with subgroups of Chevalley groups

generated by root groups, even in the infinite case. We will require much more

detailed information concerning groups generated by long root groups.

Lemma 2.3. Let K be a subgroup ofT(V) which is primitive (as a linear group) on

F/radF, where V does not have type ß+(4, q). Assume that the subgroup K*

generated by all long root elements of K is nontrivial. Then either (i) K* = (tK*) for

some long root element t, or (ii) V has type ß(5, q) with q even, and there is a

nonsingular K-invariant hyperplane on which K* induces ß+ (4, q).

Proof. Clearly Op(K*) = 1. By Cooperstein [7, (3.8)], there are subgroups

Kx,...,Kr of K* such that K* = Kx ■ ■ ■ Kr, [K¡, Kj] = 1 for / +j, K¡ = (t?>) for

some long root element t¡, and U K¡ contains all long root elements of K. We must

show that r = 1 unless (ii) holds.

Suppose that r > 1, and consider^, = [V, t¡\.

If V is symplectic or unitary, then Ax and A2 are points which are perpendicular

since [?,, t2] = 1. Thus, the subspaces [V, K¡] are pairwise orthogonal. Since V is

spanned by these subspaces, while K permutes these subspaces, K cannot be

primitive.

If V is orthogonal, then Ax and A2 are lines. This time, [tx, t2] = 1 implies that

either A2 E A^ or Ax n A2¥= 0. Consider the latter possibility. Since Op(K¡) = 1,

W = (Ax, As) is a nonsingular 4-space for some g E Kx. Since Axx n^f = 0, it

follows that, if « E G, then Wh = W or Wh C WL. Then V= (W,rad V) by the

primitivity of K.

Consequently, if we exclude case (ii), then the subspaces [K¡, V] are again pairwise

orthogonal and we obtain the same contradiction as before.

Theorem 2.4. Suppose that « > 2, V is not of type ß+ (4, q), and K is a subgroup of

T(V) which is point-transitive and contains a long root element. Then one of the

following holds:

(i) K > Chev(F);

(ii)A-c> G2(q)andT(V) = TO(l,q);

(iii) K r> N with -1 6 Z(N) and N/(-l) conjugate in Aut Pß+ (8, q) to one of the

usual subgroups Pß(7, q);

(iv) K > SU(m, q) and T(V) = TOe(2m, q) (with e = + iff m is even); or

(v) 03(K) ^ Z(K) and K has an extraspecial subgroup of order 33, where

K < TO~ (6,2).
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Proof. This follows from (2.3) and a check of the lists in [33].

Remarks. That the groups in (iii) are point-transitive follows from the fact that

the usual subgroup ß(7, q) is transitive on each class of 4-spaces of V. Aut Piï+ (8, q)

will enter into our arguments in a number of other situations.

There will also be other occasions when [33] will be quoted. Unfortunately, the

lists in that paper are too long to reproduce here. Another use of [33] is the following

lemma (compare Stark [53]).

Lemma 2.5. Let K be a primitive subgroup of TO ± (m, q), where q is odd and m > 5.

Let x be a point, and bx,b2 E x1- with dim(x, bx, b2)= 3. Assume that

| CK((x, b¡)±)\= q for i = 1,2. Then either K > tt± (m,q) or K>2 ■ ß(7, q), inside

TO+(8,q).

Proof. Write A(x) = CK(x) n CK(x±/x), V(x) = [V, A(x)] and ß = xK. Note

that V= <ß>.

If K contains long root elements, then (2.3) and [33] provide a short list of

possibilities. Since | CK((x, bx)±)\= q, the only ones that occur are those stated in

the lemma.

From now on, we will assume that K contains no long root elements. By (2.1),

V(x)/x is an anisotropic 2-space and | A(x) | = q1.

Let y E ß - xx . If 0 ^ b E V(x) D yx , there is a nonzero vector d E V(y) n xx

such that exactly one of (b, b), (d, d) is a square in GF(q). Then (b, d) is

nonsingular, and hence so is W = (x, y)® (b, d). Write

Kx = {cK((x,b)±),CK((y,d)±)}.

Then Kxw is generated by nonconjugate groups of order q, and hence is Ti(W). Also,

Kx centralizes W1-. Since K has no long root elements, W must have type ß~ (4, q).

Moreover, V(x') C W and dim V(x) C\ V(x') 3s 2 for each point x' of W (since a

Sylow/^-subgroup of Kx has order q2).

By primitivity, there is a point z E ß — (W U W±). We may assume that zfr1.

As above, dimF(x) n V(z) = 2. Thus, Z = (W,V(z)) has dimension 5. Clearly,

H = (A(x), A(y), A(z)) acts on Z, while centralizing Zx .

By Mitchell [41], Z cannot be nonsingular. (This also follows readily from the fact

that Kx would be transitive on the lines of Z.) Set r = rad Z and T — Op(CH(Z/r)).

Both Kx and (A(x), A(z)) induce ß~(4, q) on Z/r, and they fix different

hyperplanes of Z. Thus, T =hl. Here, T consists of transvections of Z with direction

r. Since Kx acts on T, we must have \T\= q4. But now some element of T fixes x

while moving V(x). This contradiction proves the lemma.

Theorem 2.6. Suppose that « > 2 and that V is not of type ß+ (4, q). Let K be a

flag-transitive subgroup of T(V) which does not contain Chev(F). Then one of the

following holds:

(i) KisA-j or 57, inside 0+ (6,2);

(ii) K is A6, inside Sp(4,2);

(iii) K is a semidirect product of an extraspecial group of order 32 with As, S5 or a

Frobenius group of order 20, inside TSp(4,3);
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(iv) K has a normal subgroup which is a semidirect product of an elementary abelian

group of order 16 with A5, S5 or a Frobenius group of order 20, inside TO(5,3);

(v) K r> 2  P5L(3,4) • 2, inside TO   (6,3); or

(vi) A"r>4 -P5L(3,4) -2, inside TU(4,3).

Proof. Seitz [50]. (Note that (iii) and (iv) are related via the isomorphism

PSp(4, 3) ~ ß(5, 3), while (v) and (vi) are related via the isomorphism

P&- (6,3) = PSU(4,3).)

Lemma 2.7. Let K « PTL(3, q).

(i) // K is point-transitive on PG(2, q), then K > PSL(3, q) or K has a normal

irreducible cyclic subgroup of order dividing q2 + q + 1.

(ii) // K has 2 point-orbits and 3 flag-orbits, then K fixes a point or line, or else K is

A6or S6 stabilizing a hyperoval of PG(2,4).

(iii) // K has 3 point-orbits and at most 6 flag orbits, then K has 6 flag-orbits and

fixes a point or a line, or an oval or its dual.

(iv) If L, L' are lines and both K[ and Kjf, are transitive, then L' E LK.

Proof. Mitchell [40] and Hartley [22].

Lemma 2.8. Let K =s PTU(3, q).

(a) If K is transitive on Isotropie points, then one of the fallowing holds:

(i) K > PSU(3, q);

(ii) K < PTU(3,2);
(iii) K' is PSL(3,2) inside PTU(3,3); or

(iv) K' is A1 inside PTU(3,5).

(b) If K has 2 orbits on Isotropie points, then one of the following holds:

(i) K fixes a line;

(ii) K < PTO(3, q);
(iii) K n PSU(3, q) is inside one of the groups appearing in (a iii) or (a iv); or

(iv) K lies in the normalizer of a Sylow 1-subgroup of PTU(3,5).

Proof. Mitchell [40] and Hartley [22].

C. Some elementary geometric lemmas.

Lemma 2.9. Let il be a nonempty set of points ofPG(d, q),d^ 2, such that each line

meets ß in 0 or k points, where 1 < k < q + 1. Then

(i) k | q; and

(ii) If d> 2, then ß is the complement of a hyperplane.

Proof. If Wis an /-space, then | W n ß | is 0 or

»i=l + (*-l)(í'-Í)/(í-l).

In order to prove (i), assume that d = 2, pick a point x?i!, and note that there are

| ß \/k lines on x meeting ß.

Now suppose that d > 2. If every hyperplane met ß, then ß and the hyperplanes

would form a symmetric design with more blocks than points. Thus, some d — 2-space

W misses ß. There are then nd/nd_x hyperplanes containing W and meeting ß. But
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nd/nd_, is an integer only if k = q, in which case ndis the number of points outside

of a hyperplane missing ß.

Lemma 2.10. Let V be a symplectic, unitary or orthogonal space with « > 3. Let ß be

a nonempty set of points such that every line meets ß in 0 or q points. Then ß is the set

of all points not in some hyperplane.

Proof. If fi' denotes the set of points not in ß, then every line meeting ß' twice

must have all its points in ß'. Such a line exists: a plane E meeting ß has

| E n ß | = 1 + (q + 1)((7 — 1) = q2, so that E D ß is the complement of a line.

If (ß')^= V, then ß contains all points not in (ß'>, and our assertion follows

readily. If <ß'>= V, then ß = 0 by Tits [58, (8.10)], which is absurd.

(N.B.-Hypotheses (A) and (B) of [58, (8.10)] assert that the sesquilinear form on Fis

trace-valued, which is always the case for finite fields.)

Combining (2.9) and (2.10) produces the following curious consequence.

Corollary 2.11. Let SI be a nonempty set of points of a finite symplectic, unitary or

orthogonal space V. Assume that V contains totally isotropic (or totally singular)

4-spaces. If every line meets ß in 0 or k points, for some constant k > 1, then ß consists

either of all points, or of all points off of some hyperplane.

A group K < G is called (/, jftransitive if it is transitive on the set of (/, y )-flags.

Lemma 2.12. Suppose that K < T(V) is transitive on the sets S, and S. of i-spaces

and j-spaces. If W E §>., then all orbits of Kw on S, have length divisible by

| %¡ |/(| S, I, | S-|). (In particular, if i<j and \ S,-1/(| S,. |, | §, |) is the number of

i-spaces in aj-space, then K is (/, j)-transitive.)

Proof. Let U be any /-space. Then {(Uk, Wk) \ k E K) has size

|S,.|| WK"\ = \%j\\UK"\.

Lemma 2.13. Let ß be a set of points, and %k, St_, collections of k-spaces (resp.,

k — l-spaces) contained in ß. Assume that every k-space on a member of%k_x is in Sk.

Then ß consists of all points. (If V has type ß+ (2k, q), modify the hypothesis so that

all k-spaces considered have a fixed type.)

Proof. The elementary connectedness argument is omitted.

D. Cohomology. We will also require some results concerning the first cohomology

groups of classical groups. These are collected in the next theorem.

Theorem 2.14. (i) For a classical group K = Chev(F), set d(K) = dim HX(K, V).

Then d(K) = 0, except in the following cases: d(K) = 1 far K= ß(3,5), ß(5,3),
S 17(4, 2), ß+ (6, 2), 5Í7(2, 2'), Sp(2n, T), and ß(2« + 1, 2'), except that

d(SU(2,2)) = d(Sp(2,2)) = 0 and ¿(8(5,2)) = 2; and d(Q~ (4,3)) = 2.

(ii) d(SL(V)) = dim H](SL(V), V) is Ofar dim V > 2, except that d(SL(3,2)) = 1.

(iii) d(K) = 0far each of'(2.6 i, iii-vi) and (2.8 ii-iv), while d(K) = 1 for (2.6 ii).

Proof. Parts (i) and (ii) are a summary of results of Higman [23], Pollatsek

[47]-[49], Cline, Parshall and Scott [4], Jones [29], McLaughlin [39], Fischer [17,
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(16.1.10)], and Finkelstein [16, p. 82] (cf. Jones and Parshall [30]). The cases

SU(m, q) and ß~ (2m, q) with q < 3 (due to McLaughlin and to Pollatsek) are not

in print, and will be dealt with here.

Our approach is very elementary, cocycles remaining invisible throughout. It is

based primarily upon the following two elementary observations, which are simple

consequences of the interpretation of first cohomology in terms of conjugacy classes

of complements.

(a) Let D < GL(V), and assume that D has a normal r-subgroup R ¥= 1 (where

r^p). If W= Cy(R) is zero, or if CD(W) = Op(CD(W)) and p\\Dw\, then

H\D,V) = 0.
(ß) If K=(B,C) with H\B n C, V) = H\B, V) = HX(C, V) = 0 and

CV(B n C) = 0, then HX(K, V) = 0.

Proof of (a). If DV = DXV^ RV and DxC\V=l, we may assume that

DC\DX^ R. Then DW = NDV(R) = DXW, and D = Dx if \W\= I. If | W\> 1

then CD(W) = Op(CDW(W)) = CD(W), so that (D/CD(W))W= (DX/CD(W))W.

Thus, Dw = D/CD(W) and DX/CD(W) are conjugate under W.

Proof of (ß). Let F be a hyperplane of a space U, and embed K into GL(U) so

as to fix a vector u £ V. Set T = Op(GL(U)v). Then D acts on T as it does on V.

Let KT = KXT with KxC\T=l. Let Bx, C, < Kx correspond to B, C. By hypothesis,

there is a unique 1-space (ux) of Ucentralized by Bx n Cx. Using T, we may assume

that ux = u. There is also a unique 1-space centralized by Bx (resp., Cx). Thus,

(Bx, Cx)— Kx centralizes u, so Kx = CKT(u) = K.

Remarks. Assertion (ß) is due to Alperin and Gorenstein [1], where an entirely

different proof is given. (Their more general result is also immediate, using the above

argument.) Yet another elementary proof can be obtained by translating the above

one into statements concerning cocycles. Note that U and T were introduced in

order to avoid using the elementary fact that HX(K, V) = ExtGf( )K(GF(q), V).

We will use (a) and (/?) in several examples, primarily those not already in print.

We may assume that (a) does not apply with D — K (and in particular that

Z(K) — 1). This handles (2.6 iii—vi) and (2.8 ii, iv). Of course, in situations in which

d( K ) > 0, ad hoc methods will be needed. Note that d(K) can be proved to be

nonzero by exhibiting an indecomposable /^-module containing the AT-submodule V

as a hyperplane.

Example 1. PSL(2,1) < 517(3,3). Use B ^ C = S4 with B D C = Dsin(ß).

Example 2. K = SU(m, q), m > 3, excluding SU(4,2) (McLaughlin [39]). Let b

and c be perpendicular 1-spaces, and set B = Kh and C = Kc. Note that

l^Z(B)<C and CV(Z(B)Z(C)) = 0, so Hx(BC\C,V) = 0 by (a). Since

B ¥= 5Í7(3,2), either CV(Z(B)) = 0 or CB(b) = Op(CB(b)). Thus, HX(B, V) = 0 by

(a), and (ß) applies.

Now consider the case K = SU(4,2) = ß(5,3). Let B and C be maximal parabolic

subgroups of ß(5,3) such that K = (B, C), B n C contains a Sylow 3-subgroup of

K, and B/03(B) s 5L(2,3). Then C acts monomially on V, so that Hl(C, V) = 0

by (a). Suppose that KV = A^Kwith Kx n V = 1. We may assume that KD Kx^ C.

If R = 03(B), then Kx = (C, NK¡(R)). But NKV(R)/R has at most 4 subgroups
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= 5L(2,3), since B = NK(R) is the stabilizer of a nonsingular 1-space of V. Thus,

d(K) < 1. That d(K) - 1 is due to Fischer [17, (16.1.10)], and is discussed in [33,

§2] and Case 4 of the proof of (2.16).

Example 3. K — ß(3, q). If q > 5 and q is odd, use B =A4 and C dihedral of

order q ± 1, with | B n C | = 4. If q = 3, (a) applies. Higman [23] and Pollatsek [47]

proved that d(ti(3, q)) — 1 for q even.

Consider K = ß(3,5). First use the standard permutation module for A5 over

GF(5) in order to find that d(K)¥=0. Then suppose that KV=KXV with

AT, Pi V = 1. By (a), we may assume that K n Kx> B = A4. Let T E Syl3(B), and

note that Kx = (B, NK(T)). Since | CV(T) \~ 5, NKV(T) has exactly 5 subgroups

53, so there are at most 5 choices for NK(T). Thus, d(K) =£ 1.

Example 4. K = ß~ (4, q). Set B = Kh for a nonsingular 1-space b. If q is odd and

q s* 5, let C be a dihedral group of order q2 — 1, chosen so that

\B n C\=2(q± l) = 0(mod8).Thenif = (B, C) (since<? > 5), and HX(B, V) = 0

by Example 3, while HX(B n C, F) = 0 by (a). Also, ß n C is not inside

CK(b) = ß(3, q), and hence CK(ß n C) = 0. Hence, (ß) applies.

If g is even and q > 2, then dim //'(#, K/6) = 1 (Example 3), while B acts

indecomposably on V. Thus, HX(B, V) = 0. Let KV = KXV with AT, n V= 1. We

may assume that K C\ Kx^ B. Let /l be a dihedral subgroup of 5 of order 2(q — 1).

Then Kx = (B, A, CK(A')), where (^4, CK(A')) is dihedral of order

2(<72 - 1). Here, (A, CK'V(A')) = b X (A, CK(A')) has exactly q such dihedral

subgroups, and these are conjugate under b. Since b centralizes B, it follows that K

and Kx are also conjugate under b. Thus, ¿/(AT) = 0 (Jones [29]).

Next, consider the case q = 3. If KV — KXV with Kx n F = 1, we may assume

that K n Kx> D with | Z) |= 10. Let / be an involution of D. Then Kx = (D, g)

with g2 = t. But | tv\= 9, so that CKV(t) has only 9 subgroups of order 4. Thus, at

most 9 classes of complements exist. Using generators and relations, Finkelstein [16,

p. 82] showed that 9 classes actually occur. An alternative procedure is as follows.

Let W be the 6-dimensional permutation module for 56 over GF(3), equipped with

the usual inner product. If w is its 56-invariant 1-space, then 56 has a unique orbit of

length 6 on W/w. Thus, Aut 56 cannot act on W/w, but it certainly acts on

Hl(A6, w±/w). Consequently, dim 7/'(ß" (4,3), w^/w) > 1.

Finally, consider K = ß " (4,2). Let KV = K, V with Kx n V = 1. We may assume

that KCtKx contains (s,t)=DXQ with s2 = t2 = 1. Then K=(r,s,t) for a

uniquely determined involution r E CK(t) such that | rs |= 3. Thus, Kx = (rx, s, t)

with r2 = I, rx E CK(t), \rxs\= 3, and rrx E V. Since | rrx |= 2, /r, G Cy((r, t)).

Suppose that r ¥= rx. Then v — rrx is uniquely determined (since dimCK((r, /)) = 1),

and is singular. But (srx)3 = (srv)3 — v + vsr + v(sr). Since \sr\= 3 and sr moves v,

the singular vectors v, vsr and v{sr) are linearly independent. Thus, | î^ | ̂  3. This

contradiction shows that Kx = K, as desired.

Example 5. K = ß+ (4, q). If </ is odd, then -1 E Z(K) and (a) applies. If q — 2,

(a) also applies. If q is even and q > 2, the corresponding argument in Example 4

applies.
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Example 6. K = ß (2m, q), m>3. Let B and C be the stabilizers of two

perpendicular anisotropic 2-spaces. By (a), Example 4, or induction, (ß) applies to

(B,C). Here, (B,C)= K except when AT=ß~(6,3) or ß~(6,2). Note that

-1 G ß- (6,3) (since -1 G ß   (2,3)), so that (a) applies here.

Finally, if K — ß~ (6,2) = ß(5,3), let B0 and C0 be maximal parabolic subgroups

of ß(5,3) containing a Sylow 3-subgroup of ß(5,3). Then (ß) applies to

<50,C0>=A:,by(a).

Example 7. K is A6, inside Sp(4,2) or ß(5,2). Using the standard 6-dimensional

permutation module for K over GF(2), we find that d( K ) ¥= 0.

Let KV = KXV with Kx n V - 1. By Example 4, we may assume that KC\ Kx

contains ^5=ß"(4,2). Let T E Syl3(B). Then Kx = (B, NKi(T)). However,

NKV(T) has exactly two Sylow 3-subgroups containing NB(T). Thus, d(K) < 1, as

required.

Example 8. K is A1 or 57, inside 0+ (V) = 0+ (6,2). Here, d(K) = 0 (proved for

57 in Pollatsek [47]). For, let KV = KXV with Kx n V= 1. We may assume that

K H Kx contains a Frobenius group B of order 21. Let T E Syl3B. Then

AT, = (B, CK(T)).  But QK(r) = CK(T) X CK(T). Thus,  CK(T) = CK(T) and

a:, = k.
Remark. We have concentrated on low dimensional examples. The higher

dimensional ones can be readily handled inductively, as in Examples 2 and 6.

Proposition 2.15. Let H < TL(W) = TL(n,q), « s= 3. Suppose that H is not

flag-transitive, but that Hx is point-transitive on W/x for some point x. Then one of the

following holds:

(i) H fixes a point or hyperplane; or

(ii) H is 3 -A6 or 3 -56 inside TL(3,4), fixing a hyperoval.

Proof. Clearly, ß = xH does not consist of all points, and we may assume that

| ß |> 1. If « = 3, use Mitchell [40] and Hartley [22]. If n > 4, then (2.9) yields (i).

The next result is similar, but more interesting.

Theorem 2.16. Let K < T(V), where V has rank « > 3 but does not have type

ß+ (6, q). Let x be a point moved by K, and assume that Kx is flag-transitive on x^/x.

Then one of the following holds.

(i) K fixes a nondegenerate hyperplane or a nonsingular 2-space.

(ii) A: ç> 3 • PSU(4,3), inside TU(6,2).

(iii) K is A$ or 58 inside 0+ (8,2), and fixes a point other than x.

(iv) K is A9 or 59 inside 0+ (8,2).

(v) K > ß   (6,2), inside TO(l, 3), where K fixes a point other than x.

(vi) A"> Sp(6,2), inside TO(l,3).

Remark. Some interpretation is required for (i) when V is of type Sp(2n,2') or

ß(2« + 1,2'). Namely, fixing a nonsingular 2-space of the former must be regarded

as essentially the same as fixing a nondegenerate 3-space of the latter, while fixing an
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orthogonal subgeometry 0±(2n,2') of the former must be identified with fixing a

nonsingular hyperplane of the latter.

Proof. We may assume that (i) does not hold and that K contains no long root

elements ((2.3) and [33]). Let Q = Op(T(V)x) and let Qx be the group of transvections

in Q (as in (2.1)). Then K D g, = 1.

In fact, K n Q = 1. For otherwise, Q = (K C\ Q)QX by (2.1) and the irreducibility

of Kx on xx/x. If Q' ¥= 1, then Qx- Q'= $(Q) implies that Kx n Q = Q > Qx.

Thus, Q' — 1, and similarly, Qx ¥= 1, so we are in the case Sp(2m, q) with q even.

But here, Kx acts indecomposably on Q (by (2.6)), so that again Kx D Q = Q.

Clearly, Kx /x is as in (2.6) or contains Chev(jcx/.x). In the latter case, Kx has a

normal subgroup D = Che\(x±/x). If HX(D, x^/x) = 0, then HX(D, Q/Qx) = 0

by (2.1), so DQX is unique up to conjugacy in Chev(F), and hence so is (DQX)' = D;

in this case, Kx has a subgroup which centralizes a nonsingular 2-space containing x

and induces Chev(xx/x) on x±/x, so that Kx contains long root groups.

Consequently, we are only left with the possibilities that either HX(D, x±/x) ¥= 0 or

that Kx /x is one of the exceptional cases occurring in (2.6). By (2.14), V must have

type Sp(2m, q) with q even, Sp(6,3), ß(7,3), ß+ (8,2), SU(6,2), ß   (8,3) or SU(6,3).

We will consider these possibilities separately. Set ß = xK.

Each line meets ß in 0 or k points, for some constant k. If £ is a plane meeting ß

more than once, then (2.9) applies to Kg. Thus, by (2.10), if k > 1 then V has type

SU(6,2) and E n ß is a hyperoval of E (which is precisely what happens in (ii)).

Case 1. K *¿ Sp(2n,2), « > 3, q even, excluding Sp(6,2). By (2.14),

dim HX(D,Q)= 1. By [33, §2, Example RL1], each complement to Q in DQ

contains long root elements.

Case 2. Kx is A-,, 57, A$ or 58, inside 0+ (8,2). Here, k — 1, so that x1- n ß — {x}.

Let Kx > A = A-,. According to (2.14 iii), there is essentially just one possibility for

A. Thus, there is a basis {e¡) of pairwise nonperpendicular nonsingular vectors of V

such that (identifying each point with the corresponding vector) x = 2e¡ and A

permutes the basis, fixing e8. The point-orbits of A have lengths 1, 1, 7, 21, 35, 35,

35. Since k = 1 it follows easily that | ß |< 9. Then ß is preserved by the transvection

t with direction e, + e2, and (K, t) must be 58 or 59. Thus, (iii) or (iv) holds.

Case 3. KxisA6orS6, inside 0(1,2). Let Kx > A = A6. Once again, x1- nß = {x}.

By (2.14 iii), there are two possibilities for the action of A on V.

Suppose first that Cy(A) is a nondegenerate 3-space. Then the point-orbits of A

have lengths 1, 1, 1, 15, 15, 15, 15 (as is most easily seen by regarding A as being

inside Sp(6,2)). Since each nontrivial orbit contains a pair of perpendicular points,

| ß | =£ 3. Thus, (i) holds when V is replaced by F/rad V.

Thus, dimCK(^4) = 2 and F has a basis {e¡} of pairwise nonperpendicular

singular vectors which A permutes while fixing x = e7. This time, x1nil= {x}

implies that |ß|= 7 and that K is A7 or 57. But K then fixes the nonsingular

hyperplane {2a,e, | 2a, = 0}.

Case 4. K < TU(6,2). Here, Kxr> H = 5/7(4,2), where H does not fix a

nonsingular 2-space. By Fischer [17, (16.1.10)], H is uniquely determined up to
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conjugacy in TU(6,2) (compare (2.14 i)), and there is a transvection / E SU(6,2)X

normalizing but not centralizing H. Set z = [V, t] and K+ = (H, K„ t) > (H, Kz).

If K+ is irreducible on V, then [33] applies. In this case, K+ r\SU(6,2) =

3 PSU(4, 3) -2, so that K > 3 PSU(4,3). The latter group has only two orbits on

points: one of length 126 containing z, and one of length 567 (Fischer [17,

(16.1.16)]). Consequently (A"</>) n SU(V) = 3  PSU(4,3) -2, and (2.16 ii) holds.

If K+ is reducible on V, then K+ must fix x (since H fixes only two proper

subspaces of V, namely, x and xx). Thus, Kz < Kx. Let E be any plane containing

(x, z). Then K§ contains A6, so that K, cannot fix x, and this situation cannot

occur.

Case 5. K < TO' (8,3). Here Kxt>H=2 PSL(3,4), so that | Z(KX) | = 2. Then

Kx fixes a hyperbolic line containing x, and hence also a second point y. Note that H

is transitive on each class of nonsingular points in (x, y)x . (For, ß~ (6,3) has rank

3 on each class of nonsingular points, as well as on the conjugates of H, and it is

easy to check the degrees of the irreducible constituents of the permutation

characters.) Thus, each //-orbit of points not in (x, y)U (x, y)x has length 56 or

126. It is now easy to check that x1Dß= {x} forces ß to be {x, y), so that (i)

holds.

Case 6. K < TU(6,3). Here, Kx& H = 4 -P5L(3,4), and Kx fixes a hyperbolic

line T containing x. Moreover, H centralizes T and is point-transitive on T1-. Since

K moves T, ß must contain a point of the form (u + v) with u E T, v E T1- and

(u, u) + (v, v) = 0. Let (a) be a point in rx no1. Then a Sylow 3-subgroup P of

Ha fixes (a, v). Also, P moves v (as otherwise, P would act on T1- Dv1, and hence

would have an element inducing a transvection on V). Thus, ß contains

(u + v + aa) for some scalar a =£ 0. Since (u + v, u + v + aa) = 0, this contradicts

the fact that k = 1.

Case 1. K<TSp(6,3). Here, Kx> H with 02(H) extraspecial of order 25 and

\H/02(H)\= 5. Once again, Kx fixes a nonsingular 2-space T on jc. Then H

centralizes T and is transitive on Tx . Thus, since k = 1, (i) holds.

Our last case is the most interesting one, since it leads to (2.16 v, vi).

Case 8. A" < r<?(7,3). Here, Kx> H with A = 02(H) elementary abelian of order

24 and | H/A \ = 5. Then H fixes a point y ¥= x. There is an orthogonal basis {b¡} of

(x, y)x such that H permutes the 1-spaces (b¡). We may assume that (b¡, b¡) = 1

for all /. Fix dj E (x, y) with (djt dj) —j forj = ±1.

Recall that /níí= {x}. Using {b¡}, it is easy to check that H has only 3

point-orbits outside of (x, y) which might belong to ß, namely

B = {(d_x±bi)\l<i<5)    and   F, = j ldx + ̂ ttbt \|'fi e, = À forja = ±1.

Here, \B\= 10 while \Fß\= 16. Thus, |ß| is 11, 12, 17, 18, 27 or 28 (since

(dx + Sf b„ dx+ bx + b2- b3- b4 - b5) = 0 and xx Hß = {x}). The third of

these fails to divide | rO(7,3) |, while the first leads to a nonexistent group of degree

11.
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Suppose that | ß | = 12. Then Kx cannot induce ß(5,3) on xx/x, so that Kx > A.

Consequently, K acts imprimitively on ß, with 6 blocks of size 2 which K permutes

2-transitively. However, the 2-space spanned by a block is (x, y) or

(d_x + b¡, d_x — b¡), and hence contains d._x. Thus, K fixes (d_x), and (i) holds.

(N.B.-This case actually occurs.)

Assume that |ß|= 18. Once again KxoA and K acts imprimitively on ß.

However, Kx acts primitively on F^, so that this situation cannot occur.

Consequently, | ß | is 27 or 28. Note that, in either case, ß is uniquely determined

(as {x} U B U Fx or {x, y) U B U Fx) up to TO(7,3)-equivalence. Thus, it suffices

to show that K* = TO(l, 3)0 has the required transitivity properties, and then to

study subgroups of A"* containing H. For this we will require a digression involving

root systems mod 3.

Digression. In order to examine the embedding of the Weyl group W = W(E1) of

type £7 into 0(1,3), we will consider the embedding of the Weyl group W( £8 ) into

0+ (8,3). The latter embedding will also arise in later sections.

Let {e¡} be an orthonormal basis for an 0+ (8,3)-space. Form the vectors

e,e; + ee (i ¥= j) and 2®e,e, with W\e¡ = -1, where each e, is ±1. Then W(ES) is

generated by the reflections in the hyperplanes perpendicular to the above "root"

vectors (Carter [3, p. 48]).

Set p = e-j — e% and u — e6 + e7 + eg — -p + (e6 — <?7), and write W = W(E^)p.

Then Wu = W(Eb), so (WJ = ß(5,3). Moreover, (WJ acts faithfully on u±/(u)

as ß(5, 3). In particular, W behaves as in (vi), with x = ( u > and

\<u)T\ = \W:W<u>\=2S.
Now consider Wu. This group acts on the set of 27 roots a such that «Ep1 and

a + (e6 — e-j) is a root. (These roots a are e7 + e%, ±e¡ — e6 with 1 < i < 5, and

2f e¡e¡ + e6 — e7 - es with IIf e, = -1.) Then Wu also acts on the corresponding 27

points (a + u). One of these is <V) with u' = e6 — e7 — e8, and Wuu, = W(DS).

Consequently, (2.16 v) holds when A" = (Wu)' and x = («'). (N.B.-The

correspondence with our previous notation is as follows: x = («'), y = (u),

dj = -ju' - u, b¡ = e¡.)

We now return to Case 8. Which subgroups K of K* = TO(l, 3)n behave as

required in (2.16)? We may assume that | ß |= 28. Then W< K* < rO(7,3). By

Fischer [17, (15.3.16)], K* = <-l> X W. First suppose that

A-^A"* = <-l)X 0-(6,2).

Two suitable AT*-conjugates of A = 02(H) generate ß~(6,2), so that K is as

in (2.16 v). Now suppose that K is transitive on ß. If Kx 2= ß(5,3), then

(2.16 vi) certainly holds. Suppose that At>Kx. Then K acts imprimitively on ß,

with 14 blocks of size 2. Since an element of K* of order 5 fixes only 3 members of

ß, this is impossible.

This completes the proof of (2.16).

Remark 2.17. We will need further information concerning the embedding of

W(E%) into 0+ (8,3), whose study was begun in Case 8 of (2.16). The vectors e„ p

and u were defined there. Changing notation somewhat, we will now write x = (u)

andA"= W(E%).
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Note that (u, p) contains all root vectors ß such that ß — u is also a root. Thus,

Kx = NK((u, p» (since x = rad(u, p», where Kx = Ku X (-1). Recall that Kup is

W(£6). Moreover, Ku — Kup(rp, ru+p) where rp is the reflection with axis px . Note

that (rp, ru+p)= S3, and it contains the 3-cycle / = (6,7,8) acting on {e¡}. Here, t

centralizes both Kup and xx /x.

The points of our 0+ (8,3) have the shape (±1305) or (±1602). It follows that K is

transitive on them. Also, Kx induces 0(5,3) on Xa-/x, so that K has 2 orbits of

(l,2)-flags and is transitive on (l,4)-flags. Then A" = ß+(8,2) is transitive on

the (l,4)-flags of each type. Moreover, if F is a 4-space then WF s 3 -Sp(4,3);

this is easily proved directly, but also follows from the fact that Autß+(8,2) <

AutFß+(8,3).

E. Primitive divisors. If q > 1, a primitive divisor of qk — 1 is a prime r dividing

qk — 1, but not dividing q' — 1 for 1 < / < k. (Note that /c | r — 1.) For conven-

ience, a primitive divisor of qk + 1 is defined to be the same as a primitive divisor of

q2k — 1. The following number-theoretic fact will be crucial in §6.

Lemma 2.18. qk — 1 has a primitive divisor, with the following exceptions:

(i) q = 2, k = 6; or

(ii) q is a Mersenne prime, and k = 2.

Proof. Zsigmondy [67].

The following simple result will be used often, frequently without reference.

Lemma 2.19. Let r be a primitive divisor of qk — 1, and R a nontrivial r-subgroup of

T(V). Then

(i)V=Cv(R)±[V,R],and

(ii) each irreducible constituent of[V, R] has dimension k.

3. Characters of the Weyl groups. Let Bn = Z2 wr 5„ be the «-dimensional

hyperoctahedral group, viewed as the group of all "signed" permutations of

ß= {±1,...,±«}. Then Bn is generated by {(/,/+ 1)(-/, -/ - 1);

(«, -«) | / = 1,...,« — 1} Ç Sa. The groups Bn and Dn = Bn n Aü are the Weyl

groups of classical groups, and hence the proof of our main theorem requires explicit

information about certain of their permutation characters.

The purpose of this section is to describe how the appropriate permutation

characters decompose as sums of irreducible characters. The authors acknowledge

the generous help of Jan Saxl in the development of Table II.

A partition A of the natural number s, written À \- s, is a nonincreasing sequence of

nonnegative integers A,,... ,XS such that 2A, = 5. The length k of such a partition is

defined byAA:+1=0 7tA^. We say a subset X of ß is admissible when x E X if and

only if -x E X. In case X Q ß is admissible we define X+ = X n (1,2,...,«} and

X~ = X n {-1, -2,...,-«}, and consider two groups of permutations of ß:

Ax — ((x, x')(-x, -x') | x, x' E X+ )

and

Bx=(Ax,(x,-x)\xEX+ ).
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Observe that 1^1= 2/c if X is admissible and that Ax is isomorphic to the symmetric

group Sk while Bx is isomorphic to the hyperoctahedral group Bk.

Let (À; u) be a pair of partitions where X Y s has length / and p, h « — s has length

«7. Partition ß into admissible sets LX,...,L„ Mx,...,Mm so that |L,| = 2À, and

| M■ | = 2fij for 1 < i < /, 1 < ; < m, and consider the Weyl subgroup (notation of

Mayer [35])

W(X;n)= (ALi,BM.\i= l,...,l;j= l,...,m)<BH.

It is easy to see that the conjugacy class of W(X; p) is uniquely determined by (X;p).

The Weyl subgroups of Bn play a very important role in the character theory of Bn

that is quite analogous to the role played by the Young subgroups W(X;<p) in the

character theory of the symmetric groups (in the notation of Kerber [34]). In spite of

this we are most interested in the parabolic Weyl subgroups, i.e., those that

correspond to parabolic subgroups of a group with a (B, Ai)-pair of type Bn. These

are the Weyl subgroups W(X; p) where / < 1.

Let 1(X; p) denote the character of Bn obtained by inducing the trivial character of

W(X;n) to Bn, and let e(A;p) denote the character of Bn obtained by inducing the

alternating character e of W(X;¡i) to Bn. (Recall that e(g) = -1 if g is an odd

permutation in 5a and e(g) = 1 if g is an even permutation in Sa.)

Let C(l, m) denote the 2/ + m by 2/ + m matrix having block diagonal form:

and let M(a;b\ I;m) denote the set of all nonnegative integral 2a + b by 2/ + m

matrices M = (M,- ■) such that

(i) C(a, b)MC(l, m) = M and

(ii) M¡j is even whenever both ; > 2a and y > 21.

Suppose W(a;ß) and W(X;¡i) are Weyl subgroups, where the associated partitions

have lengths a, b and /, m, respectively. Define M(a;ß\X;ii) to be the set of all

M E M(a;b\l;m) such that the row sums of M are

ax,ax,...,aa,aa,2ßx,...,2ßh

and the column sums of M are

Xx,Xx,...,Xl,Xl,2p.,2pm.

Finally, let N(a; ß | X; p) be the set of elements of M(a; ß \ X; p.) of the form

* I oK
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Theorem 3.1. Let ( , ) denote the usual inner product of characters and suppose

W(a; ß), W(X;n) are Weyl subgroups in Bn. Then

(l(a;ß),l(\;ii)) = \M(a;ß\\;n)\=(E(a;ß),e(\;n))

and

(l(a;ß),e(X;rl)) = \N(a;ß\X;fi)\.

Remark. This should be compared to Coleman [6, Theorem 15] and Snapper [52].

Proof. By the Mackey subgroup theorem,

(l(a;ß),l(X;n))=  2  ( V(«;P)|y> V<x;>0 \y)
yets

where Y= W(a;ß) D ( W(X; p))v and A is a complete system of (W(a; ß), W(X; p))

double coset representatives in Bn. Since each term in this sum is 1, we have

(l(o;/8),l(X;/»)) = |A|= the number of W( X; p) orbits on Bn/W(a;ß).

Let Ax,... ,Aa, Bx,...,Bh and L,,... ,L¡, Mx,.. .,Mm be the admissible partitions

of ß associated with W(a;ß) and W(X;¡x), respectively. View the coset gW(a;ß),

g E Bn, as the admissible partition gAx,...,gAa, gBx,...,gBh of "type" (a;ß). We

claim that gW(a;ß) and hW(a;ß) are in the same H/(A;p)-orbit if and only if

\g(Af ) n L/| = \h(Af ) n L/l    for 1 < i <a, 1 </< /,

\g(A/ ) n L+\ = \h(Af ) n L/l    for 1< i < a, 1 </< /,

\gB¡ n Lj\ = \hB¡ n Lj\    for 1 < i < b, 1 <; < /, (3.2)

|gy4,- n M-| = |/l4,- n My|    for 1 < /' < a, 1 *¿j < m,

\gB¡ n Mj\ = \gB¡ n My|    for 1 < i < b, 1 < / < m.

It is clear that these conditions are necessary, since for example

\x(g(A/)nL;)\=\xg(A/)nL;\    forxG IF(\,p)

and all relevant i,j. To see that (3.2) is also sufficient, observe for example, that the

group AL < W(X;ii) acts as the full symmetric group on Lx+ and acts trivially on

ß — Lx. Consequently there is an x E AL taking g(Af ) n Lx+ to h(Af ) n L\ and

gBk n L\ to hBk n L|, since these two partitions of L\ have the same type. A

similar observation holds for each group AL, 2<j<l, and each group BM,

1 <j^m.

This shows that the orbit parameters given in (3.2) completely determine a

IF(A;p)-orbit on Bn/W(a;ß). Thus, each element of A is associated with a 2a + b
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by 2/ + m matrix of the following form:

M

\gA¡ n // i , \gAf n Lj I

\gA; nz,/| , \gAj r\Lj\

¿Í

n Lf i

v

\gB¡ n £-1

1^4+ n/i^-i

\gAj nM/'

\gB¡   nM/- ■

gAx+

gAf

sa:
(3-3)

LJ
gBb

M, Mi M.

The sum of the entries in one of the rows of this matrix is just the cardinality of the

set labeling that row, and similarly for columns. Since {{x, —x) \x = 1,...,«} is

a system of imprimitivity for the action of Bn on ß, we have

|g^i,+ nL/1 = \gAf nLf |,      \gAf dl;I = \gA/ nlj\,

\SA/ n«i| = \gA; nm,\,      \gB¡ n L/1 = \gB, n l; \,

and it follows that M G M(a; ß \ X; p).

We leave to the reader the verification that any element of M(a;ß \ A;p) may be

viewed as a matrix of intersection numbers as in (3.3), and hence determines an

element in A, from which it follows that

<l(«;/?),l(X;p)) = |M(«;/3|A;p)|.

The Mackey subgroup theorem also implies that

(e(a;ß),e(X;n))=  2  (e|y, e|y) = |A|,
veA

where Y = W(a;ß) n W(X;p)v and A is a complete system of (W(a;ß), W(X; p))-

double coset representatives as above. Therefore

(£(a;ß),E(X;fi)) = \M(a;ß\X;li)\.

In fact, the same argument establishes the remaining equality provided only that the

elements of N(a;ß\X;n) correspond to those double coset representatives y6A

having the property:

<lr, ey)= 1    where Y = W(a;ß) n W(X;ix)y.
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This condition that Y < ker e amounts to the condition that none of the various

intersections considered in (3.3) contains both ±k, 1 *£ k < «. These are just the

elements of N(a; ß \ X; p), and the theorem follows.

Corollary 3.4. (l(a; ß), l(X; p)> is the coefficient of

a b l m

n (x,x_,)" n (y,y-,f n (^^ n (^r
,=i ,=i 7=i y=i

/« /«e expansion of the generating function

(1 - x,x_,z7z_y)

n
(1 - x,zj)(\ - x_¡z_j)(l - x¡x_¡w2)(l -yfzy.^l ~y2w2)

Theorem 3.1 can be used to express the irreducible characters of Bn and the

permutation characters l(a;ß) as linear combinations of one another, since the

characters l(a;ß) span the character ring of Bn (Mayer [35, 3.1]). We will, however,

not require this much information.

The irreducible characters of Bn are also labeled by ordered pairs of partitions

(a\ß) where a\-s, ßvn — s and (a\ß) occurs as a constituent of l(ß;a) (Kerber

[34, 2.22]). A routine, though tedious calculation yields Tables I and II. An example

is given after (3.7). We note in passing that rows 1, 2, 4, 5, 8, 9 and 10 of Table I can

be found on p. 154 of Mumaghan [42].

Table  I.  The  irreducible constituents of selected permutation

characters l(a;ß) and their multiplicities.

0;«)

;0;n- 1, 1)

l;«- l)

0; n - 2, 2)

0;n-2, 1, 1)

l;n-2, 1)

2; n - 2)

0; n - 3, 3)

0; n-3,2, 1)

0;n- 3, l3)

1; n-3,2)

1; m - 3, l2)

2; n - 3, 1)

3; n-3)ni= 4

3;1)

o     —     — O        — — —
— ..       m —
ni       (N        — CN —•        —        r^

1

1

2

2       1

1        I

2 1

3 1

2 1

1 1

1 1

I

1       1

1

2 1       1

3 3       2

2       12       1

I 1       1

1       1

1

1       1

1       1

1 1       1

(N.B.-Characters involving nondecreasing sequences are to be ignored.)



20 W. M. KANTOR AND R. A. LIEBLER

Table II. The multiplicities to which the irreducible constituents of

1(1;« — 1), 1(2;« — 2) and 1(3;« — 3) occur in selected parabolic

characters of Bn (also the multiplicities to which the irreducible

constituents of 6X, 62 and 83 occur in selected parabolic characters

of a group with (B, Af)-pair of type Bn or C„-see §4).

Character degree

l(l;n - 1) n»2

1(2; «-2) «>3

1(3;« - 3) n >S

1(3; 1)

1(4; n - 4) n > 1

1(4; 2)

1(4; 1)

K«; 0)
l(l2;n-2) n»3

1(2, 1;« -3) «>5

1(2, 1; 1)

1(13;« -3) n >4

1(13;0)

1(3, 1; ii-

lO, 1; 2)

1(3, 1;1)

\(n - 1, 1

1(2, 1;0)

4) n>l

0) n> 4

I     n
n(n - 3) /n*.—j—    «(«-2)  (2)

(")"t-5  O"4) O"3' (s)

Since this paper was first written, Geissinger and Kinch [20] has appeared. These

tables may be calculated directly from the elegant Theorem III.5 of [20].

This completes the data required to deal with groups of type Bn. The characters of

Dn are related to those of Bn in a particularly simple manner.

Theorem 3.5 (Kerber [34, 2.25]). An irreducible character (a \ ß) of Bn remains

irreducible when restricted to Dn if and only ifa¥=ß. The characters of the form (a\a)

decompose into a sum of two irreducible characters (a \ a)~ conjugate in Bn. In any

case, (a|/3)|D  = (ß|a)|D.

Corollary 3.6. Let W(X;p.) be a Weyl subgroup of Bn and define

W*(X;n)= H/(A;p)n/)„,        l*(A;p) = lfc(X;il)   for p * 0

and

W*(X;0)+= W(X;0) n Dn, 1*(A;0) +

W*(X;0y = (w(X;0)°nDn),       l(X;0y

lXV*(\;0) +

W*(\;0r
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where o is the permutation (1,-1) in Sa. Also, define (a \ ß) to be the restriction of the

Bn-character (a\ß)toDn. Finally, set 1*(X; 0) = 1*(A; 0)+ + 1*(A; 0)" . Then

<l*(A;p),(a|/3))=(l(A;p) + £(A;p),(a|/?))

and

(l*(a;ß),l*(X;(i)) = \M(a;ß\X;ix)\ + \N(a;ß\X;lu)\.

Proof. Since Dn — ker e,

l*(X;n)B" = 1^.(A;M) = (1 + e)^.,, = l(A;p) + e(A;p)

for p ¥= 0. In case p = 0,

1*(A;0) " = (V*(A;0)+ + V*(X;0) J    = 2(ln/*(X;0)+ +l>r:(A;0)+J    •

since H/*(A;0)+ and W*(X;0y are conjugate in Bn. However, W*(X;0)+ = IF(A;0)

and ln,.(x;o) = £ic(X;0)' so

l*(X;0)B" = (V(X;0) + e^;0))ß" = 1(A;0) + e(A;0).

The first claim now follows from Frobenius reciprocity.

By the Mackey subgroup theorem, l*(A;p) = l(A;p)ß. Consequently, if

l(A;p) = 2cyS(y | 8) for integers cyS, then-l*(A;p) = lcyS(y \ 8) also. Thus,

(l*(«;ß),l*(\;ii))={l*(a;ß),2cyS(y\0))

= (l(a;ß) + e(a;ß),l(X;ti)) = \M(a;ß\X;li)\+\N(a;ß\X;v)\

by the first part of this corollary and (3.1).

Corollary 3.7. (i)

(l*(A;p),(«|a)+)= (l*(A;p),(«|ar)    //p ¥= 0.

(ii) If a * ß and if (I* (3; n - 3); (a | ß))¥=0, then

(l*(A;p),(a|ß))=(l(A;p),(a|ß))

whenever p I-1 with t > 3, while

(l*(X;0)+ ,(a\ß))= (l*(X;0y ,(a\ß))= (l(A;0), (a \ ß)).

(iii)

{\*(X;0y ,(a\a)+)= (l*(A;0)_ , (a | a)+ ) = (l*(A;0)+ ,(a|a)_)

= (l*(X;0)-,(«|a)-).

Proof. Statement (i) follows from (3.6) and the fact that 1*(A; p) is ¿„-invariant.

If p h t and / > 3, then 7V( A; p | 3; « - 3) = 0, and hence (ii) holds in this case.

Clearly, N(X;0\a;ß) = M(X;0\a;ß) for all partition pairs (a;ß). Thus,

(l*(X;0),(a\ß))= 2(l(X;0),(a\ß)). Here, (a\ß) is ¿„-invariant while l^AjO)"
is not, so that

(l*(X;0)")(a|a)) = i(l*(A;0))(a|ß))=<l(A;0),(a|ß)>.

This completes the proof of (ii).
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Write

l*(A;0)+=   2 c(alß)(a\ß) + 2ca(«\<*)+ +2da(a\<*Y

for integers c(aj/}), ca and da. Since (W*(X;0y )" = W  (X;0)   , we can conjugate

by o (cf. (3.6)) in order to obtain

l*(A;0r = 2c(alß)(a\ß) + ^ca(a\ay + 2¿a(a|«) + .

We claim that 0 = <1*(A;0)+, 1*(A;0)+ — 1*(À;0) >. For, let {a,\ 1 < i < t} be

a complete set of (IF*(A; 0)+ , JF*(A; 0)+ ) double coset representatives in Dn. Then

{a,.a | 1 </'</} is a complete set of (W*(X;0)+,W*(X;0)') double coset

representatives; for, w+aaw~ = bo if and only if w+ aow~ o = b, while

ow~ o E W*(X; 0)+ whenever w~ E W*(X; Oy . This proves our claim.

Thus,

0 = (l*(A;0), Z(ca - da)(a | a)+ + 2 (da ~ ca)(a \ a)~ )

= l(ca-da)(l*(\;0),(a\a)+-(a\ay)=?J(ca-da)2.

This proves (iii).

Further inner products, not handled in (3.7) and Table II, will be needed later.

These are found in Table III, which is obtained by further straightforward

calculations, as in the following example.

Example. We illustrate the use of (3.1), Table I and (3.6) in a very simple

situation. For n s* 3 we show that

l(n-2,l;l) = (n|0) + 2(« - 1,1 | 0) + 2(« - 1 | 1) +x,

1*(« — 2,1; 1) = (« | 0) + 2(«- 1,1 | 0) + 3(«- 1| 1) +x'

where (x, 1(1 ;w — 1))= 0 = (x', 1*(1;« — 1)). We see trivially that the elements of

M(0;«|« - 2,1;1) and M(0;n - 1,1 | « - 2, 1; 1) are (« - 2, « - 2,1,1,2) and

« - 2
0

« - 2
0

« - 3
1

«-3
1

«-2
0

1     1
0    0

« - 2
0

0 0
1 1

2
0.

2),
0/'

respectively. It is almost as easy to see that M( 1 ; « — 1 | « — 2,1 ; 1) consists of

1

0

\ « — 3

/     0
0

\« -2

0
1

«- 3

0
0

«-2

0
0
1

1

0
0

0    0
0 0
1 2,

0
0
1

0
1

«-3

'     0

0
\ « — 2

1

0
«-3

0
0

«-2

0
0
1

0
1
0

0 0\
0 0
1 2/

1 0'
0 0
0 2

and



RANK 3 PERMUTATION REPRESENTATIONS 23

Table III. The multiplicities of the irreducible constituents of

1 *(3, « — 3) in selected parabolic characters of Dn (also the

multiplicities of the irreducible constituents of 6X, 62 and 03 in

selected parabolic characters of a group with a (B, A')-pair of type

£>„-see §4).

o I

S
I

o

et

CN

I
K

I

O

ro

I
R

CN

rn

!

ro

I
«

I
E

1*0; 3)

1*(2;2)

1*(3; 1)

1*(12;2)

1*(2, 1;1)

l*(l3;l)

1*(2;3)

1*(12;3)

1*(3;2)

1*(2, 1,2)

1*(13;2)

1*(3, 1;1)

1*(3;3)

1*(2, 1;3)

1*(3, 1; 2)

1*(3, 1;3)

1*(4;3)

1*(4, 1;2)

1

1

2

2

3

4

1 1

2 2

2      2

2      2

1 1

2 2

0

1

0

1

1

2

0 + 0

1 + 1

1 + 1

1 + 1

2+2

3 + 3

1

1

2

3

4

4

1 1

2 3

2      3

2      3

1 1

2 4

0

0

1

2

3

1

0

0

1

0

3

6

0

0

1

3

5

4

3

C
U

3'S
o

1 + 1

1 + 1

2 + 2

By (3.1) we have

(1(0;«),1(«-2,1;1))= 1,

(1(0;«- 1,1),1(«-2,1;1))=3

and

(1(1;«- 1),1(«-2,1;1)>=5.

The first three rows of Table I imply ((0 | «), 1(« - 2,1; 1)>= 1, ((« - 1,1 | 0),

1(« - 2,1; 1)>= 3 - 1 = 2 and <(« - 1 | 1), 1(« - 2,1; 1)>= 5 - 3 = 2. The first
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claim follows. By (3.6) and the above enumeration,

(1*(0;«),1*(«-2,1;1)>= 1+0=1,

(1*(0;«- l,l),l*(n-2,l;l))=3 + 0 = 3

and

(l*(l;n- 1),1*(«-2,1;1))=5+ 1 =6,

since the last matrix listed in M(l, « — 1 | « — 2,1; 1) above is in N(l, « — 1 |

« — 2,1,1). The second claim follows from (3.7) (each of the characters (« | 0),

(« — 1,1 | 0), (« — 1 | 1) is an irreducible character of D„) and from Table I, just as

above.

The last Weyl group we must discuss is the symmetric group 5„. Since 5„ is a

homomorphic image of /?„, some of the irreducible characters of Bn are also

characters of 5„. It turns out that these characters are precisely those of the form

(a | ß) where ß = 0 (this follows, for example, from Mayer [35, 1.1]). In fact, one can

obtain a table describing characters of the symmetric group from Table II by

deleting columns 3, 5, 6, 8, 9, and 10, and replacing the semicolons in the row labels

by commas and rearranging into partitions.

The information we require about characters of 5„ is included in the following

lemma.

Lemma 3.8. Let 6¡ be the permutation character of 5„ on i-sets (alias 1(« — /, /)), 6¡¡

(i <j) the character on pairs consisting of an i-set and a j-set containing it (alias

1(« —j, j — i, /)), and so on. Then the following hold for 1 < / < n/2.

(i) 6¡ — 8¡_x is irreducible, 60 = 1.

(Ü) (6,.- e,_ x,e¡_x)= o.

(iii)0,, = W
(ív)<0, -i, eX2... „_,>«- i.

(v) (83 - e2, e34)= (e4 - e3, e45) = 2 ifn > 8.

(vi) (02 - 6X, ex2)= 1; (02 - 6X, 0X3) is l if n = 4, and is 2 if n > 4;

(62 - BX,6X23)= 3; and if« >5 then (82 - 0X,6X24)= 4 and (62 - 0X,0X234)= 6.

For these inner products, see Murnaghan [42, p. 154], where more standard

notation is used; or see (10.1) below.

4. Parabolic characters. In this section we are concerned with characters of

Aut(Chev(K)). After a technical lemma that is used to deal with graph automorphisms

in §§8-10, we turn to characters of parabolic type. We recall the fundamental

correspondence, due to Curtis, Iwahori and Kilmoyer [8, (7.2)], between these

characters and those of the Weyl group, which provides the link with §3. Finally, in

(4.7) we use the remarkable formulae of Hoefsmit [26] to completely determine the

characters of parabolic type that fail to have degree divisible by p (compare Howlett

[27]).
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Lemma 4.1. Let G be as in (1.1) or (1.2), and let G+ = G n G\ where G" «

generated by Chev(F) and its diagonal and field automorphisms. Let AT =£ G satisfy

G = KG+ , and set K+ = K D G+ . Write <p=l£=l+x + s" where \ is irreduc-

ible, and let tp+ = <p|c. , X+ = xlc4 an^ £+ = £ Ig4 • Finally, let B be a Bore!

subgroup ofG+ (cf. [9, (2.6)]). T«e«
(a)<p+ = (V)c+;

(b) Each irreducible constituent ofyf occurs to multiplicity one;

(c) The irreducible constituents of\+ ore conjugate under G;

(d) Either x+Q\Gb  or (x+,1Gb)=0.

Remarks. (1) T(V) = G* unless V has type ß+ (2«, q) in which case

\T(V):GXx\=2.

(2) A slightly more technical, similar lemma that can be used to restrict to

Chev(K) is described in §11.

Proof. Since K+ = K n G+ , g G G+ fixes a coset Kh, « G G+ , if and only if it

fixes K+h. This proves (a). Since \G: G+\ divides 6, Isaacs [28, (6.18)] (applied

twice if necessary) implies (b), and (c) follows from Clifford's theorem [28, (6.5)].

Finally, (d) follows from (b) and (c) together with the fact that 1¿ is G-invariant [9,

(2.6)].
The (B, N) structure of Chev(K) is discussed in detail in Carter [3] (and also

Curtis, Kantor and Seitz [9, §2]). We observe that each of the groups G in Theorem

1.1 or 1.2 has a (B, A^J-pair with the associated Coxeter system (W, R),

R = [sx,.. .,s„) of typeBn, C„, Dn or A„.

For each subset / Ç {1,...,«}, W, = (sj\j E I) and G, = BW,B are parabolic

subgroups. (This is consistent with §3, where s¡ = (/, / + 1) ( — /,—/ — 1) for i < «

while 5„ = ( —«, «), and W — W(Bn) s W(Cn).) The irreducible characters f of G

that occur as constituents in l£ are said to be of parabolic type.

It is elementary to see that the normalizer of a Sylow /7-subgroup of G fixes a

unique flag in V. The group B is just such a normalizer [3, §8.6], [9, §2], and so fixes

a flag (F,, V2,...). The group Gv is maximal in G and contains B. Consequently, Gv

is the parabolic subgroup G, = G,iX for a suitable labeling of the elements of R (cf.

[3, 8.3.3]). It follows that the parabolic subgroup G, is the stabilizer of an

(/',, i2,.. .)-flag, where / = {/,, i2,...}; and the character 8, = 8¡ ,-•••= 1* iS Just

the permutation character of G on the set of all (/,, i2,.. ,)-flags.

Theorem 7.2 of Curtis, Iwahori and Kilmoyer [8] provides a natural 1-1

correspondence J -> ?0 between the irreducible characters f of parabolic type and the

characters f0 of W such that

(L8,)= (f,ig,)= («,)= (so,i(A;aO), (4.2)

where / = {/,, i2,. . . ,/,}, A is obtained by rearranging the sequence

(/,, i2 - /,,...,/, — !,_,) into a partition of /,, and p = (« — /,), provided that /, < «

when G has type D„. (The flags of groups of type Dn have the more complex

structure described at the beginning of §2, but A is obtained in an analogous way.)

The examples most relevant to (1.1) are 8¡ = 1(/;« — /), 8Xl = l(i — 1, /; « — /), and

f?i23 = 1(13;« - 3) (cf. Table II).
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A consequence of the fact that the right-hand side of (4.2) depends only on the

partition (A; p) and not on / is that

*,.. = «,-,., (4-3)

for appropriate values of r, s.

For simplicity of notation we will use (a \ ß) to denote the irreducible character of

W as well as the corresponding parabolic character of G.

The importance of (4.2) cannot be over-emphasized. The proof of Theorem 1.1

essentially reduces to the situation where one of the characters in lGK corresponds

under (4.2) to a character labeling a column of Table II. In each case, the table

forces A* to have so much transitivity of one sort or another that it cannot escape

recognition.

The following is a simple example of (4.2).

Corollary 4.4. Let Chev(F) =s G+ < G «s T(V), and assume that G and G+ have

the same Weyl group. Let B be a Borel subgroup of G, and let B+ = B D G+ . If x ¡s

an irreducible constituent of lGB, then x \g+ 's an irreducible constituent of 1°,+ .

Proof. Apply (4.2) to both G and G+ .

A few entries of Tables II and III can be computed using the following special

case of Curtis, Iwahori and Kilmoyer [8, (2.2) and (9.17)].

Theorem 4.5. (i) The multiplicity to which the character f in (4.2) occurs in 1% is the

degree of the associated character f0.

(ii) // p is the character of G corresponding to the reflection character (n — 1 | 1) of

W(Bn) or W(DJ then

n-\I\={p,8,)={(n-l\l),ll).

As an example of the use of (4.5 ii), we will give another proof of the fact that

(0\„-\'(n ~ Fl|0))=2 for groups of type Dn (cf. §3). First, compute

(#,„_,, 8X)= 6 by considering the action of the stabilizer of a (1, « — l)-flag on

points. Then note that 0,„„, = 0,„„ is the character of triples (Vx,Vn,V'n) with

F„ n V'n an « - 1-space on Vx. By (4.5 ii), <#,„_„(« - 1 | 1)> = 3. Since

0, = 1 + (« - 1 | 1) + (« - 1,1 | 0), the desired result follows.

In his thesis [26], Hoefsmit gives formulae for the generic degrees for all irreducible

representations of the generic ring corresponding to a classical group. These formulae

require numerous preliminary definitions.

The index parameters x and y of G are defined by

x=\B: Bn Bs<\,       y=\B: B n Bs«\.

The index parameters of a classical group associated with the field GF(q) are powers

of q and are given explicitly in Curtis, Kantor and Seitz [9, §5].

The crux of our discussion concerns groups of type Bn, since groups of type Dn

correspond to the situation y — 1 and groups of type An_x correspond to the

situation^ = 0 (Hoefsmit [26, (3.4.12), (3.4.15)]). It is important to note that x > 1

in every case.
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Let a be a partition of s and let a also denote the associated Young diagram (cf.

Kerber [34]). The conjugate partition ä is associated with the diagram obtained from

a by interchanging the rows and columns of a. The (/, j)-hook of a for a node (/, j)

of a is A"j U {(/, j)} U Lfj where A"y = (nodes (/, t) in a \ t >j} is the hook's arm

and L"j = {nodes (/, j) in a \ t > j) is the hook's leg. The (/, j) hook length of a is

htj=\Atj U Lfj U {(/, j)}\= (a¡ -j) + (äj -0 + 1.

Hook lengths were first introduced by Nakayama [45] in connection with modular

representations of the symmetric groups. They play an important role in the intricate

recursion relations that arise in the study of the symmetric groups.

Let (a;ß) be a partition pair as in §3, where a\-s, ß\-(n — s). The (/, j)-split hook

lengths are defined by g," = (a¡ — j) + (ßj — i) + 1 for each node (/, j) of a and

gfj = (ß,■ — j) + (äj■ — i) + 1 for each node (/, j) in ß. (Caution: A split hook

length may be negative; for example, if (a;ß) — (12;0) then g2X = -1.) Following

Hoefsmit [26], we define the following rational functions of x andy:

Hfj = x'-sj(xh>J - l)/(x- I),

G« = 1 +yx*t,

Hfj = x'^(x<-l)/(x-l),

Gfj = x-"j(y-xx^+ l),

and the Poincaré polynomial

P(x,y) = "\l {(l+x'y)(x'+x-l)/(x-l)}.
1 = 0

Hoefsmit gives the following formula for the degree d(a\ß) of the irreducible

character (a | ß) of G associated with the Weyl group character (a | ß) by (4.2).

d(a\ß) = P(x,y)/(    II    HTjGfj    II    Hffif\. (4.6)
V (1,7)6« (ij)eß i

Theorem 4.7. Suppose (a | ß) is not 1 = (« | 0) and G has type A„, Bn, C„, or Dn,

n~s*2. Then p divides d(a\ß) unless G of type Sp(2n, 2) and (a \ ß) = (n — 1,1 | 0),

(« — 1 | 1) or (0 | «). In these cases

d(n- 1,1 | 0) = (1 -+ 2")(2"   ' - 1),

d(n- 1|1) = (1 +2"-|)(2"- 1)

and

d(0\n) = (1 +2")(1 +2n_1)/3.

Remarks. (1). The first two exceptional cases of (4.7) are the nontrivial irreduc-

ible constituents of the 2-transitive permutation representations of Sp(2n,2). While

they do not yield exceptional cases for (1.1), they do appear in the characters of the

imprimitive rank 3 representations of Sp(2n,2) — ß(2« + 1,2) on the cosets of

Q±(2n,2).
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(2). The case of G of type An in (4.7) is treated in Curtis, Kantor and Seitz [9,

(5.9)] by a more elementary argument.

(3). In (4.7), the case of untwisted G of type Bn, C„ with q > 2, or Dn is due to

Howlett [27].

Proof. Consider the product

n hh= n X'-5'(^L)= n (
(ij')6a (i,j)Ba \    x        '     / (i.j)Ea \

xyyyyl

x- 1
'X :<«,-')

Here.

2  {Sj-i) = 2
(i.j)Ga j

2(5i-0
;=l

2 ii=i =?(?
and each factor of the form (xh — l)/(x — 1) is congruent to 1 modulo/?. It follows

from (4.6) that

(d(a\ß))p = x^+Hp(x,y)/(    Il    Gfj    il    Gj»

where (Ç);, denotes the highest power of p dividing Q. Next, observe that

n Gtt n g,v= n (i+yx^) n (i+jt^w
</,7)e«      (ij)eß (i,/)Eo (',/)e/3

where

Since

2 /      \ 2

we now have

2 =   2  «,- = 2   2«,-= 2«/y

?)+i?)+^=^+Ä)(^+Ä-o= p;Ä.

(</(«|/0) =**s'í*>J /^..v)

n (1+^«*) n (í+y-1^)
(4.8)

(i) Suppose p i^2. Then the only way a factor in the denominator can influence

(d(a\ß))p is if it has the form

1 + p-k =p-k(\ + pk).

In this case it contributes a positive power of p. Therefore,

(d(a\ß))p>x*ijtl>.

Since x > 1 is a power of p, (d(a\ß))p= 1 only if a~j + fy< 1 for all 7, that is,

(a|ß) = («|0) or (0|«). But if (a \ ß) = (0 | «), then g? = 0 and Gfx = 1 +_v~'.
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Therefore,

(d(a\ß))t (i+jO.
P(x,y)

f[(l+y-xx'-x)
i=2

! V-

This shows that d(0 | «) is divisible by p also, unless perhaps _y = 1. If y — 1, G is of

type D„ and (0 | «) = (« | 0), by (3.5) and (4.3).

(ii) Suppose p = 2. Then there is the possibility that a factor in the denominator

has the form 1 + 1=2. Observe that g" and gf) are both strictly decreasing

functions of / (as a, > ai+x, ß, s* ß,+ 1 by the definition of a partition of integers).

Therefore, factors of this troublesome type occur at most a, + ß, times in (4.8). Set

x = 2m and y,. = a,. + ¿fy. Then (4.8) yields

loi2[(d(a\ß))2]>mi^h+2^\\-äx-ß{

m

T YiUi ■4))]-|(5)-
Now jj is an integer so each summand is nonnegative, and the first term is

nonpositive only on the interval 0 < Yi < 1 + 2/m *£ 3. It follows easily that

d(a | ß) is divisible by p, except perhaps if

(a) y, = 3, y2 < 1 and »1 = 1,

(b) y, — 2, y2 = 2, y3 < 1 and m — 1, or

(c) y, — 2, y2 < 1 and m < 2.

(d)Y, = 1.

Since {y,} is a nonincreasing sequence of natural numbers (it is the sum of two such

sequences), the corresponding pairs of partitions are:

(a) {a, ß] = {(« - 2,1,1); 0 }, {(« - 2,1);(1)}, {(« - 2);(1,1)},
(b) {a, ß) = {(« - 2,2); 0}, {(« - 2); (2)},

(c){«,ß} = {(«-l);(l)}.

(d){«,ß} = {(«);0}.

Direct computation of (4.8) shows that 2 divides d(a\ß) in each case except (c)

and (d) when m = 1 and x — y — 2. These index parameters are those of Sp(2n, 2)

(Curtis, Kantor and Seitz [9, Tables 2 and 5]). This completes the proof of (4.7) in

case G has type Bn or C„.

If G has type A„, then (4.6) still holds withy- = 0 and ß i- 0 (Hoefsmit [26, 3.4.12]),

and so the above calculation also establishes (4.7) in this case.

Suppose G has type Z)„. Then y = 1 and (a \ ß) is irreducible only if a ¥= ß

(Hoefsmit [26, 3.4.15]). Since G > ß+(2«, q), G is of index 2 in a subgroup G* of

ro+(2w, q) of type Bn. By Clifford's theorem, the irreducible characters of G that

do not extend to characters of G* are conjugate in G*, and hence have degree a half

of the expression (4.6). Therefore, the above argument proves (4.7) for G, except

perhaps for characters of the form (a \ a) when y = 1, p = 2 and the right-hand side
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of (4.8) is not divisible by 4. In this case, split hook lengths are hook lengths and

hence are positive, and

/ \

,2<2!')-
P(x,l)

n o+*«'")
(ij)eo

2x^

n (i+xh"j)
L('.7)6«

>2x",

contrary to the hypothesis that « > 2. This completes the proof of (4.7).

5. Transitivity in small dimensions. In this long section, we will consider classical

groups of low rank: those of rank 2 or 3, as well as TO+(8, q). The goals are a

number of results concerning subgroups having specific transitivity properties. Most

of these are closely related to ( 1.1 ) or ( 11.1 ). However, some are designed for use in

§6, where arbitrary dimensional situations are reduced, in part, to small dimensional

ones.

There are two approaches to the required transitivity results. One is geometric, ad

hoc, tedious, and very long, but reasonably elementary. The other uses classification

theorems [14], [43], [44], [61], [64]-[66] which depend upon deep results concerning

the classification of finite simple groups. We have chosen the latter approach: it

requires much less space, and at the same time yields somewhat stronger results than

are essential for our main theorems.

This section is divided into four subsections: (A) invokes the aforementioned

classification theorems in order to deal with subgroups of TL(4, q) and TL(5, q); (B)

uses (A) in order to discuss subgroups of rank 2 classical groups; (C) deals with

subgroups of rank 3 classical groups; and (D) concerns TO+ (8, q).

Recall that H{oo) denotes the last term of the derived series of //. Throughout this

section A"(00) (or //<0O)) will be uniquely determined up to conjugacy in T(V), unless

otherwise stated. Since A"(0O> is usually irreducible on V, K/Z(K)K(CC) is a group of

outer automorphisms of Kl-x), and hence can be determined at a glance.

(A) Subgroups of TL(4, q) and TL(5, q). Throughout this subsection, let

H «£ TL(W) = TL(4, q) or TL(5, q). The possibilities for H have been more or less

determined by Mwene [43], [44], Wagner [61], DiMartino and Wagner [14], Zalesskiï

[64], [65] and Zalesskii and Suprunenko [66].

Theorem 5.1. Let H be a primitive subgroup ofTL(4, q). Then one of the following

holds.

(a)H> SL(4,q).

(b) H < TL(4, q') with GF(q') C GF(q).

(c) H < TL(2, q2), with the latter group embedded naturally.

(à) H < Z(//)//,, where //, is an extension of a special group of order 26 by 55 or

56. Here, q is odd, Hx induces a monomial subgroup of 0+ (6, q), and Hx is uniquely

determined up to TL(4, q)-conjugacy.

(e) //(oc) is Sp(4, q)' or 5/7(4, qx/1).

(f) H < TO ' (4, q).

(g) Hix) is PSL(2, q) or SL(2, q) (many classes).
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(h) //(oo) is As. Here, H arises from the natural permutation representation of S5 in

0(5, q), andp ¥= 2,5.
(i) /7(oo) is 2 -A5, 2 -A6 or 2 •A1. These arise from the natural permutation

representation of S7 in 0(1, q).

(j) /7(00) = Alt andp = 2.

(k) //(oo) = Sp(4,3), and q = 1 (mod 3). This arises from the natural representation

of the Weyl group W(E6) in 0+ (6, q).

(1) //(00) = 5L(2,7), and q3 = 1 (mod7). Here, //<00) lies in the group 2 ■A1

occurring in (i).

(m) H(x » = 4 • PSL(3,4), and q is a power of 9.

(n)/7<°°> = Sz(q),andp = 2.

Proof. If q is even, see [43], [65]. (It is necessary to sift through the various cases

examined in these references in the course of proving their main theorems.)

If q is odd, we will use [44], (Note that [66] assumes that/7 > 5.)

By primitivity, if H has a noncentral abelian normal subgroup then (c) holds.

Suppose that (c) does not hold, but that H has a noncentral normal subgroup E of

prime power order. Since dim F = 4, E is a 2-group. We may assume that E/Z(E)

is elementary abelian, and then (d) follows readily.

Let M = M/Z(H) be a minimal normal subgroup of H = H/Z(H). We may

assume that M is a direct product 5, X • • • X Sk of isomorphic nonabelian simple

groups S„ where S¡ = S¡/Z(H).

If Sx is reducible, then (by Clifford's theorem) M preserves a decomposition

W = Tx © T2, where Tx and T2 are 5,-isomorphic 2-spaces. Then 5, fixes a

regulus 2 of <7 + 1 lines, which are permuted by NH(SX). Thus, NH(SX) < TL(4, ¿¡r)2

= TO+(4, q). If k = 1, then (0 holds. If k > 1, then 5, X 52 < ß+(4, q)Z(H),

from which (f) again follows.

Finally, suppose that 5, is irreducible. Then M = Sx, and A"<00) is quasisimple.

This is precisely the situation studied by Mwene [44]. His theorem, and his study of

the modular representations of covering groups of 5,, complete the proof.

For further information concerning (5.1m), see Finkelstein [16], McLaughlin [38]

and Mwene [44].

Theorem 5.2. Let H be a primitive subgroup ofTL(5, q). Then one of the following

holds.

(a) H > SL(5, q).

(b) H < TL(5, q') with GF(q') C GF(q).

(c)//< rL(l,<75).

(d) H < Z(H)HX, where Hx is an extension of an extraspecial group of order 53 by

SL(2,5). Here, Hx is uniquely determined up to TL(5, q)-conjugacy, andp ¥= 5.

(e) //<°°> = ß(5, q) or SU(5, qx/2).

(f) //<oc) is PSL(2, q), in the representation afforded by homogeneous polynomials of

degree 4 in 2 variables.

(g) H{x) = 0(5,3), andq=l (mod6).
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(h) //(00) is As, A6 or A7, and is contained in ß(5, q). Here, p = 1 if H{00) = A-,.

These cases arise from the permutation module for PGL(2,5), 56 or 57.

(i) //(oo) = PSL(2, 11), p t^ 11. This arises from the irreducible complex

representation ofPSL(2, 11) of degree ¿(11 — 1).

(j) ¿/<°°> = Mxx, p = 3 (two classes).

Proof. See [61], [65] for q even and [14] for q odd. (Note that [66] assumes that

p>5.)
Remark. The precise fields over which the groups listed in (5.1,2) can be realized

are discussed at length in [14], [44], [61].

Various transitivity and related results are simple consequences of (5.1,2).

Corollary 5.3. Let H be a subgroup of TL(4, q) of order divisible by a primitive

divisor r of q2 + 1. Then one of the following holds.

(i) H > SL(4, q).

(ii) H < TL(2, q2).
(iii)//<°°> = Sp(4,q)'.

(iv)H<TO-(4,q).

(y) H = A-, < SL(4,2).
(vi) //<-» = Sz(q).

(vii) r = 5, and one of (5.1 d, h, i, j, k, 1, or m) holds.

Proof. Clearly, H is primitive, so we only need to sift through the list in (5.1).

Note that r > 5 and r ¥= 1. If r = 5 then (vii) can occur. All remaining cases of (5.1)

are easily checked.

Remark 5.4. We will use primitive divisors together with (5.1,2) in other situations.

It will always be as straightforward to check the lists as it was in (5.3). Another

example is provided by the next result.

Corollary 5.5. If H is a subgroup ofTL(n, q),n — 4 or 5, and if H is transitive on

points, then one of the following holds.

(a)H>SL(n,q).
(b)H<TL(l,qn).

(c)H^TL(2,q2)<TL(4,q).

(d)H^) = Sp(4,q)'<TL(4,q).

(e) H = Aj, insideSL(4,2).

(f) H has a normal extraspecial subgroup of order 25, and 5 | | H |, where

H < GL(4,3).

Proof. If « = 5, then | H\ is divisible by a primitive divisor r of q5 — 1. Here,

r > 11, and it is straightforward to use (5.2).

If « = 4, then (5.3) applies. The possibilities listed in (5.3 vi) are easily checked.

(B) Subgroups of rank 2 classical groups. The results in (A) can clearly be used to

study TSp(4,q), TU(4,q), TU(5,q), TO(5, q) and TO(6,q). We only need to

consider the first three of these. TSp(4, q) was handled long ago by Mitchell [41],

when q is odd. (Partial results for q even were obtained by Flesner [18]; he

essentially only dealt with the case of subgroups containing transvections.)
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Theorem 5.6. Let K =£ TSp(4, q). Then one of the following holds.

(i) A-'00' = Sp(4, qj with GF(q') E GF(q).

(ii) K fixes a point, a line, a pair of skew lines, or a pair of perpendicular hyperbolic

lines.

(iii) K n Sp(4, q) =£ Sp(2, q2) ■ 2.

(iv) Kix) is SL(2, q'), in its representation afforded by homogeneous polynomials of

degree 3 in 2 variables, where GF(q') Ç GF(q) andp > 3.

(v) K < TO± (4, q), wherep = 2.

(vi) Kix) = Sz(q), where q > p = 2.

(vii) K induces a subgroup of TO(5, q) fixing an anisotropic 2-space.

(viii) K fixes a quintuple of pairwise orthogonal nonsingular points when viewed

inside TO(5, q), and q is odd.

(ix) K(x) is 2 A5 or 2 -At, in the representation obtained from the mod p permutation

representation of Ab in ß~ (6, q).

(x) A"<0O> is 2 -A-,, in the representation obtained from the mod7 permutation

representation of 57 in 0(1, q).

Historical Remark. The first q > 2 for which this was proved was q — 3.

Dickson [11] listed all 70 factors of 25920, and then sifted through them, primarily

using Sylow's theorem and lists of permutation groups of small degree.

Theorem 5.7. Let K *£ TU(4, q). Then one of the following holds.
(i) K(x) = 5(7(4, q') with GF(q') E GF(q).

(ii) K fixes a point or line, a nonsingular point or line, a pair of skew lines, a pair of

perpendicular nonsingular lines, or a quadruple of pairwise perpendicular nonsingular

points.

(iii) K induces a subgroup of PTO~ (6, q) fixing a nonsingular point or line, a pair of

perpendicular nonsingular planes, or ( when q is odd ) a sextuple of pairwise perpendicular

nonsingular points.

(iv) K(0O) is 2 -A-, or SL(2,1). Here, K(x) arises from the permutation representation

of St in 0(1, q).
(v) K{x) = 5/;(4,3), and q3 = 1 (mod7). Here, K(x) arises from the natural

representation of W(E6).

(vi) K(x) = 4  PSL(3,4), and q is a power of 3.

Theorem 5.8. Let K *£ TU(5, q). Then one of the following holds.
(i) A"(oc) = SU(5, q') with GF(q') E GF(q).

(ii) K fixes a point or line, a nonsingular point or line, or a quintuple of pairwise

perpendicular nonsingular points.

(iii) A" < Z( A")TG(5, q), where the 0(5, q) is embedded naturally.

(iv)K<TU(l,q5).

(v) K *£ Z(K)KX, where Kx is an extension of an extraspcial group of order 53 by

SL(2,5), andp =£ 5.

(vi) H(x) = ß(5,3), andp > 3.

(vii) H(x) is A5, A6, or A7, and is contained in ß(5, q). Moreover, p — 1 if

H(X)   =   Ay.

(viii) H(x) = PSL(2,11), where p ¥= 11.
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Theorems 5.6-5.8 are almost immediate consequences of the following elementary

result.

Lemma 5.9. Let H be an absolutely irreducible subgroup of GL(W) = GL(n, q). Let

( , ), and ( , )2 be two nonsingular hermitian forms on W (or two nonsingular

alternating forms on W) preserved by H. Then there is a scalar c such that ( , ), =

c( , )2.

Proof. View H as a group of matrices, and ( , ), as arising from a matrix A¡.

Consider the unitary case. Here, A/xhA¡~ (h~x)' for all h EH. Then A2A/X

centralizes //, and hence is a scalar by Schur's Lemma.

Proof of (5.6)—(5.8). We may assume that K is primitive. Suppose first that

K0 = K D SL(V) is absolutely irreducible. By (5.9), if a group occurring in (5.1) or

(5.2) can arise in (5.6), (5.7) or (5.8), then all occurrences are conjugate. The groups

listed in the latter theorems all occur, for suitable q [44], [14], [60]. Note that neither

(5.1j) nor (5.2j) can occur: in each case, there is a 1-dimensional subspace x such that

Kxx) does not fix any hyperplane.

If K0 is not absolutely irreducible, then one of (5.1 c, f) or (5.2 c) holds. Suppose

that K lies in both TSp(4, q) and TL(l, q4). Then K0 has an irreducible normal

cyclic r-subgroup for some prime r (cf. (2.18)) By Sylow's theorem, K *s TSp(2, q2),

with the latter group embedded naturally. The same argument applies if K is in

TU(5, q) n TL(l, qx0), this time producing (5.8 iv). However, the case

Ti7(4, q) n TL(l, q%) cannot occur (acting irreducibly), since | 5f7(4, q) | is not

divisible by the required prime r.

This leaves us with the possibility that dimF=4 and (5.1 f) holds (with q

replaced by q2 in the unitary case). Then A" has a normal subgroup 5 acting

irreducibly on some 2-dimensional subspace T. By primitivity, T has at least 3

images under K, all of which must be 5-isomorphic.

If F is a line, then (5.6 vii) or (5.7 iii) holds. (For, 5 fixes at least 3 points of the

corresponding 5- or 6-dimensional orthogonal space.)

If T is nonsingular, then T1- is also 5-invariant. Moreover, T and T1- are

5-isomorphic. This uniquely determines 5 up to conjugacy. Then 5 fixes a nonsingu-

lar plane of the corresponding 0(5, q) or 0~ (6, q) space. Consequently, (5.6 vii) or

(5.7 iii) holds for K. This completes the proof of (5.6)-(5.8).

The remainder of this subsection parallels (5 A): primitive divisors will be used in

order to deduce transitivity properties.

Lemma 5.10. Let K *¿ TU(4, q), and assume that \K\ is divisible by a primitive

divisor r of q2 + 1. Then one of the following holds.

(i) K has a normal Sylow r-subgroup, and fixes a hyperbolic line when viewed inside

TO- (6, q).

(ii) K fixes a line.
(iii) A"(oo> = 5(7(4, q).

(iv) K(x) = 5/7(4, q)'.

(v) K{x) = 5/7(2, q2).

(vi)A"(00) = ß-(4, q).
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(vii) A:(oo) = Sz(q).

(\m)K{x) = 4 ■ PSL(3,4), and q is a power of 3.

(ix) r= 5, and either K(x) is A5 (with q odd), 2 -A5, 2 -A6, 2 -A7 or Sp(4, 3), or

K n 5/7(4, q) induces a monomial group inside 0~ (6, q).

Proof. Check the lists in (5.6) and (5.7) (using Dickson [12, Chapter 12] in order

to deal with subgroups in the cases (5.6 iii, v)).

Lemma 5.11. If K^TU(5, q), and if \ K/K n Z(TU(5, q)) | is divisible by both
q2 + 1 andq3 + 1, then either

(i)K^SU(5,q),
(ii) A" t> Zj X A5, acting monomially inside TU(5,2),
(iii)A"(oo) = 5/7(4, q),

(iv) A"<oo) is A5, A6 or E X A5, with E extraspecial of order 32, where K < TU(5,2)

and K fixes a nonsingular point, or

(V) K(x) = 4 -PSL(3,4), inside TU(5,3).

Proof. Assume that (i) does not hold. If q3 + 1 has a primitive divisor, then K

fixes a nonsingular point by (5.8), and hence (5.10) applies. If no primitive divisor

exists, then q — 2 by (2.18). Thus, | K | is divisible by 45. If (ii) does not hold, then A"

fixes a nonsingular point by (5.8), and hence K < (Z3 X GU(4,2)) -2. The subgroups

of TU(4,2) of order divisible by 15 give rise to the examples in (iv).

Corollary 5.12. Let K < TSp(4, q), TU(4, q) or TU(5, q). If K is transitive on

points or lines, then one of the following holds.

(i)K<-x) = Chev(V)'.

(ii) AT<0O) = 5/7(2, q2), inside TSp(4, q).

(iii) K(x) = SL(2,5) < 5/7(2,32), inside TSp(4,3).

(iv) A:(oo) = ß   (4, q), inside TSp(4, q) with q even.

(v) A"<00) = 5¡7(3, q), inside TU(4, q).

(vi) A" t> SU(3,2)", inside TU(4,2) (and K fixes a nonsingular point).

(vii) K has a normal monomial subgroup Z3 X A4, and K < TU(4, 2).

(viii) A:(00> = F5L(3,2), inside TU(4,3) (and K fixes a nonsingular point).

(ix) A"<00) = 3 -A7, inside TU(4,5) (and K fixes a nonsingular point).

(x) A"> E X Z5, where E is extraspecial of order 25, E < 02(K), K< T5p(4,3),

and K acts monomially within TO(5,3).

(xi) A"(oo) = 4 -F5L(3,4), inside TU(4,3).

Proof. If K*zTSp(4, q), then (q + T)(q2 + 1)||AT|. Thus, (5.10) applies by

(2.18). All possibilities are easily checked (although some computation is required in

the monomial case of (5.10 ix)).

Let K < TU(4, q). If K is point-transitive, then (q2 + 1)(<73 + 1) 11 K \, and (5.10)

again applies. If K is line-transitive, then (q + l)(^f3 + 1) 11 K\. As in the proof of

(5.11), if q > 2 then a primitive divisor of q3 + 1 can be used: if K is irreducible then

(i) or (xi) holds. For any q, (2.8) can be applied in case K fixes a nonsingular point.

Finally, if q = 2 then PSU(4,2) = PSp(4,3) and (q + l)(q3 + 1) = 27, so that (5.6)

and our transitivity lead to (vi) or (vii).
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If K < TU(5, q), then q5 + 1 11 A"|. By (2.18) and (5.8), only (i) can occur.

Definition. A" is an (a, b, c)-group if it has a point-orbits, b line-orbits and c

flag-orbits. The next two results contain complete determinations of all

(a, b, c)-groups for some triples (a, b, c) of special importance later.

Corollary 5.13. Let K « TSp(4, q), TU(4, q) or TU(5, q), and let (a, b, c) be one

of the triples (1,2,2), (1,2,3), (2,1,2) or (2,1,3). If K is an (a, b, c)-group, then one of

the following holds.

(1,2,2)i K{x) = 5/7(2, q2), inside TSp(4, q).

(1,2,2)u K/Z(K) = Z\ X D, where D is dihedral of order 10, K < TSp(4, 3), and

K acts monomially within TO(5,3) with respect to an orthonormal basis.

(1,2,2)m Ay<-1>= 55, A5 X Z2 or 55 X Z2, K < TSp(4,3), and K acts monomially

within TO(5, 3) with respect to an orthonormal basis.

(1,2,2)1V K(x) = 4  PSL(3,4), inside TU(4,3).

(1,2,3) There are no (1,2,3)-groups.

(2,1,2), Kix) = ß~ (4, q), with q even, inside TSp(4, q).

(2,1,2)¡¡ A"*00' = 5Í7(3, q), inside TU(4, q).

(2, l,2)iM A" < r/7(4,2), and either K>Z¡ X A4 with the latter group monomial

with respect to an orthonormal basis, or K fixes a nonsingular point and

K>SU(3,2)" X Z8.

(2,1, 3) There are no (2,1,3)-groups.

Proof. This is a consequence of (5.12) and some straightforward computations.

Lemma 5.14. Let K « TSp(4, q), TV(4, q) or TU(5, q). If K is a (2,2,3)-group, then

one of the following holds.

(i) K(x) = 5/7(4, q'), inside TU(4, q).

(ii) K(x) — SL(2, q) X SL(2, q), K fixes a pair of perpendicular hyperbolic lines,

and K < TSp(4, q).

(iii) K > ß+ (4, q), inside TSp(4, q) with q even.

(iv) K < 5/7(4,2), A" behaves as in (ii), and 18 11 K \.

(v) K < TSp(4,3), K behaves as in (ii), andKç> SL(2,3)' X 5L(2,3)'.

(vi) A"/Z(A")>Z2 X A4, where K <TSp(4,3) and K acts monomially inside

rO(5, 3) with respect to an orthonormal basis.

(vii) K/Z(K)>Z2t XF5L(2,5) or ZA2 X Ab, where K<TU(4,3) and K acts

monomially inside TO   (6,3) with respect to an orthonormal basis.

(viii) K(x) = Z3 X A5, where the latter group acts monomially inside TU(5,2) with

respect to an orthonormal basis.

(ix) A'<00) = 5t/(4, q), inside TU(5, q).

Proof. There is a point x and a line L such that both Kx±/x and Kf are transitive

on points.

Suppose first that K « TU(5, q), but that (viii) does not hold. Then (5.11) applies,

so that A" fixes a nonsingular point b. Clearly, K must be transitive on the points of

bx , as well as on the q3(q4 — 1) points not in b-1. Thus, only (5.11 ii or iii) can

occur.
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Next, suppose that K < TU(4, q). This time, | K\ is divisible by both q + 1 and

q2 + 1, and (5.10) applies. (5.10 i-vii) are easily handled. Consider (5.10 ix). The

first four cases lie in TSp(4, q), but are not transitive on points there (cf. (5.12)). If

K(x) = 5/)(4,3) then q > 1, and hence q2 + 1\\K\.

Finally, suppose that K < TSp(4, q). Then q + 1 11 K\. Consider the possibilities

listed in (5.6). We may assume that K is primitive. This takes care of (5.6 ii), and

(5.6 iii) is easily eliminated. In (5.6 iv, vii and ix) there are more than 2 point-orbits,

while in (5.6 vi) there are 4 flag-orbits.

If K r> ß+ (4, q), and if K has an element interchanging the two normal subgroups

5L(2, q) of ß+(4, q), then K has the desired orbit structure. Similarly, this and (v)

are the only possibilities arising from (5.6 v).

Finally, in (5.6 viii) it is again straightforward to check the orbit structure.

(C) Rank « = 3. We now turn to spaces V of rank « = 3. The only interesting

result is (5.19), which characterizes both the groups G2(q) and (for q = 2 or 8) the

groups TL(2, <73).

The case of V of type ß+ (6, q) is especially easy, and will usually be ignored in

view of the following result.

Lemma 5.15. A point-transitive subgroup ofTO+ (6, q) either contains ß+ (6, q) or is

A-¡ or 57 inside 0+ (6,2).

Proof. (5.1) (but compare (10.2)).

Remark. The next two results concern groups A" which are transitive on points

and planes. The numbers of points, lines and planes are given in §6, Table IV. By

(2.12), if V is not unitary then A" is (1,3)-transitive.

Lemma 5.16. If n — 3, then T(V) has no subgroup transitive on points and planes

and having 2 orbits on lines and (1,3)-flags, and 3 orbits on (l,2)-flags.

Proof. Let K be such a subgroup. As just noted, V must be unitary. By

hypothesis, there is a line L such that A"f is transitive. An element of KL of order a

primitive divisor of q2 + 1 (cf. (2.18)) will fix each plane E D L. On the other hand,

q2 + q + 1 11 K§ | by (2.12). By Mitchell [40] and Hartley [22], K§ > SL(3, q2),

whereas K is not ( 1,3)-transitive.

Theorem 5.17. // « = 3, and if K is a subgroup of T(V) which is transitive on

points, lines and planes, then K > Chev(F) (or K is A7 or S7 inside 0+ (6,2)).

Proof. By (2.6), we may assume that K is not flag-transitive. Also, we may assume

that K = Op'(K). Let F be a plane and x a point of E. Set K* = Kf/x. We will

consider the various possibilities for V separately.

Case K < TSp(6, q) or TO(l, q). Since K* is line-transitive but not flag-transitive,

(5.12) can be applied: K < TO(l, q), and either K* fixes a nonsingular 4-space For

q = 3 and K* f> Z\ X Z5.

Also, K§ is point-transitive but not flag-transitive. By (2.7), if | Kx¿x | is divisible

by q then q = 3 and q2 cannot divide this order. Thus, if F exists then K*F fy

Q~(4,q).
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Consequently, q - 3, and either K*(x) = A5 or K* > Z\ X Z5. If AT* r> Z^ X Z5,

there is an involution t E CK(x) such that [V, t] has type ß+(4,3); then t fixes a

plane and acts nontrivially on it, and this contradicts the known behavior of ATf.

Thus, K*{x) = Ay Let A < Kx, where | Ax±/X\ = 4, A < A"(oo>, and A is a 2-group.

Then 3 11 NK(A)X |, and ^ centralizes x. Let T E Syl3NK(A)x. Then AT centralizes

nonsingular 2-spaces of both V and xx /x. Consequently, T centralizes y1 /y for

some point y. There is a plane E' on y not centralized by F. Then TE contains a

transvection, and we again obtain a contradiction.

Case K < TO~ (8, q). Since AT* is line-transitive but not flag-transitive, it cannot

be point-transitive by (5.12).

Let r be a primitive divisor of q2 + 1 (cf. (2.18)). Let R E SylrK, and set

W = CV(R) and N = NK(R). Then IF has type ß+ (4, q), and Nw is point-transitive

by Sylow's theorem. Thus, Nf is point-transitive for each line LEW. Now K is

(1,2)-transitive, and hence A^* is point-transitive.

Case K < TU(6, q). By (2.12), each line-orbit of K§ has length divisible by

(q6 — l)/(q2 — l)d (where d = (q + 1,3)), while each line-orbit of A'* has length

divisible by q3 + 1. Exclude for the moment the possibility that q = 2 and K* is

monomial but irreducible. By (5.7) and (2.8), K* fixes a nonsingular point, and

K* r> 5t/(3, q), 3 -A7, PSL(3,2) or SU(3,2)". In the first two cases, q2 or 5 divides

| KxE |, and we find that A"f is flag-transitive.

Assume that K*(x) = PSL(3,2). By (2.14 iii), Kx has a subgroup 5 = PSL(3,2)

such that dimCy(S) = 3. An element of 5 of order 3 fixes a point y E [V, 5] and

induces a transvection on yL /y. This contradicts the known action of K*.

This leaves us with the case q = 2. Note that K = 02(K) ^ GU(6,2). Let

R G Syl-jK. Then R fixes exactly 2 planes. Since | CC(J(6y2)(R)\ is odd, there is an

involution j E NK(R) interchanging these planes. If t> is a vector in one of these

planes, then (v + vf v + vJ) — 0. Thus, Cv(j) is a plane, which we may assume is

E. Set P = CK(E). In view of the known action of A"*, Px /x lies inside of a

dihedral group of order 8. On the other hand, a Sylow 7-subgroup Rx of KE acts

fixed-point freely on P. If | P \ — 8, then all nontrivial elements of P are ß,-conjugate

to j, and hence P acts faithfully on xx /x. Thus, we must have | P |> 8, and hence

|P|>64. If x^=yExR', it follows that CP(x±/x) n CP(y^/y) contains an

involution i. Thus, dimCy(i) > 5, which is clearly impossible.

Case K<TU(l,q). By (2.12), each point-orbit of K* has length divisible by

q5 + 1. By (5.8), K* < TU(l,q5). The latter group has order (q5 + l)10e, where

q = pe, and it contains all scalars in TU(5, q). Thus, q5 + 1 must be a divisor of

(q5 + l)10é>/(<7 + 1). This is only possible if q is 9 or 4. However, TU(l,95) has a

point-orbit of length (95 + l)/2. Thus, q = 4. Since K = 02(K), | K* |= (45 + 1)5.

By (2.1), | Kx | is odd. If R E Syl7K, then R fixes 2 planes, and hence | NK(R) \ is

even; but then so is | Kx \. This contradiction completes the proof of (5.17).

Lemma 5.18. If n = 3, then T(V) has no subgroup which is (l,2)-transitive and has 2

orbits of planes, (1, 3)-flags and flags.

Proof. Let A" be such a subgroup. Let £ be a plane, let x E E, and consider both

A^f and K* = Kx /x. Since A'jf is flag-transitive, it contains SL(E), except perhaps
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if q = 2 or 8 (by (2.7)). On the other hand, A:* is a (l,2,2)-group, so that (5.13)

applies. Use of Kx¿x eliminates (1,2,2)ü. In every other case in (5.13), there is a

plane E such that/711 (KE)E/x \, and then K§ > SL(E).

Thus, KxE ̂  A X 5L(2, q), where \A\=q2. Since K* is irreducible, (2.1) shows

that K* must also contain a section A X 5L(2, q). By (5.13), either K* > 5p(2,22)

or K* t> Z33 X A4, where A" < r5p(6,2) or TO~ (8,2), respectively. In either case,

the existence of an 54 section in AT* forces | (KE)E/x | to be even for every plane E

on x. But then KE has an 54 section for every E (as above), and this is not the case.

Theorem 5.19. Let « = 3, and let K be a point-transitive subgroup of T(V) having 2

orbits of lines, planes and (1,2)-flags, 3 of (1,3)- and (2,3)-flags, and 4 of flags. Then

either

(i) K f> G2(q)', embedded naturally in TO(l, q)or(ifq is even) in TSp(6, q); or

(ii) K r> TSp(2, q3), q — 2or%, embedded naturally in TSp(6, q) (or TO(l, q)).

Proof. We will proceed in several steps.

(I) There are planes E and F such that KE is point-transitive while KE has 2

point-orbits ß, ß' and 2 line-orbits. Each line meeting both ß and ß' produces 2

flag-orbits. Hence, KE has 3 flag-orbits, KE is flag-transitive.

By (2.7), KE > 5L(3, q) except, perhaps, if q — 2 or 8 and KE has order

(q2 + q + l)(q + 1).

Let x be a point. By hypothesis, K* = K¡±/x is a (2,3,4)-group.

(II) For each line L, KE is transitive. Suppose that V is unitary. Let r be a

primitive divisor of q2 + 1 (cf. (2.18)). An element of order r in KL centralizes

L"1 /L. Thus, if L C F then r 11 KLF \. Then KE is line-transitive by Sylow's theorem.

Thus, V is not unitary.

Suppose that q =* 2, K < TO(l, q) or TO-(8,4), and KE>SL(3,q). Then

CK(E±/E)E> SL(3,q). By (2.14), KE has a subgroup H inducing SL(3,q) on

V/E1- and such that V/E has an //-complement W/E to V/E1-. Here, W has type

ß+ (6, q). Passing to 5L(4, q) and again applying (2.14), we find that H may even be

assumed to fix a second plane of W. Now H contains long root groups, and (2.4)

applies. Only (2.4 ii) can occur.

(III) Since F contains representatives from both line-orbits, there is a line L

contained only in planes from FK, and having KL transitive on these planes. We may

assume that L E F, and that E n F = M is a line. Note that KM is intransitive on

Mx/M.

Suppose that K < TO (8, q), where q = 2 or 8. Since q2 + \\\KL\,i(D E Syl5K

then D ¥" 1 and CV(D) has type ß+(4, q). Then NK(D) is point-transitive on

Cy(D), and hence(q + l)211 NK(D) \. Since | D \= 5, (q + l)211 C^D) |. It follows
that CK(D) has an element r of order 3 such that Cv(r) has type ß+ (6, q).

Let R be a 3-group maximal with respect to centralizing a line. Set W = CV(R),

N = NK(R) and C = C^JF"1). Then Np is transitive for each line L' C W (by the

Frattini argument). Also, W has type ß+ (6, g). (If W had type ß+ (4, q) or ß~ (6, q)

then RwX would fix a point.) By (5.1), Nw > ß+ (6, 9) or ^7. Thus, Cw s= ß+ (6, </)

or A7. By (2.4), C^ > ^7 and </ = 2.
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There is a nonsingular vector w G W such that Cw > A6. Let O^oG IF1", and

set y = (v + w). Then Kyy /y contains a subgroup A6 fixing a nonsingular vector.

Since K* is a (2,3,4)-group, this is impossible.

(IV) From now on, we will assume that T < TSp(6, q), where q is odd, 2 or 8.

Suppose that q is odd. There is an involution / G KME inducing -1 on M. We may

assume that -1 G AT. Let R E Syl2CK(M), and define W, N and C as above. Then

dim W = 4, so R cannot be properly contained in a larger 2-group centralizing a

line. Note that Ntf > GL(2, q), while N¡j is transitive for any line L' E W and Nw

has at most 2 line-orbits. By (5.12), Cw is transitive on points. This contradicts the

intransitivity of K*.

(V) Thus, q = 2 or 8.

Next, suppose that K* has an element of order 3 centralizing a point. Let Ä be a

3-group maximal with respect to centralizing a line, define W, N and C as above,

and again find that Cw is point-transitive. Thus, A"* has no such element.

However, A'* is a (2,3,4)-group. By (5.6), K* fixes a line. Thus, Kx fixes a unique

plane F(x) on x.

We must distinguish between the cases F(x) E EK and F(x) E FK.

(VI) If F(x) E EK, note that F(xg) = F(x)g = F(x) whenever g G KF(x). Thus,

\EK \= q3 + \. The cosets of the members of EK form an affine translation plane &

(Dembowski [10, p. 133]).

Since K* is transitive on the q3 lines opposite F(x)/x, â is desarguesian and

K < TL(2, q3) [10, pp. 130-131]. Since | K\ is divisible by

q3(q+l)-(q6-l)/(q- I),

it follows that K 3= TL(2, q3).

(VII) Now suppose that F(x) E FK. Note that Kx is transitive on the lines

of F(x) through x. If L' is such a line, then | L'K\ = \ xK \ (q + l)/(</ + 1) =

(q6 — l)/(q — 1). The points of V, together with L'K, form a generalized hexagon

with parameters q, q. (For, A"* has just 2 point-orbits, so all lines in L'K through x lie

in F(x). If x,,... ,x5 are distinct points such that (x¡, x,+ 1)G L'K for all / (mod 5),

then all x¡ are perpendicular since, for example, (xx, x2), (xx, x3) C F(x,); thus, all

F(x¡) coincide, which is absurd. Thus, there are no triangles, quadrangles or

pentagons, and a count shows that we have a generalized hexagon.) By Yanushka

[63, (1.1)], this is the G2(q) hexagon.

Since A" has just 2 plane-orbits, \EK\ = q3(q3 + 1). Then \K\= q3(q3 + 1)| AT/;|.

If q = 2 then K contains a Sylow 3-subgroup of G2(2)' = PSU(3,3), and hence

A"r>G2(2)'.

Finally, if q — 8 then we may assume that K does not contain any nontrivial

scalars, and hence that | JST|= 83(83 + 1)(82 + 8 + 1)(8 + 1). Set H = K n G2(8).

Then \H\ = \K\/3 (since K§ * GL(3,8)).
G2(8) has a class of 83(83 - 1) subgroups 5 s 5f7(3,8). Choose 5 so that 5 n H

contains a Sylow 3-subgroup of H. Note that 15 n H\>\ //|/83(83 - 1) =

(83 + 1)3/7 > 2(8 + l)2. Then 5 n H = 5 by Hartley [22], and (2.4) yields the

desired contradiction in this case. This completes the proof of (5.19).
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Remark 5.20. (i) In its natural embedding in TSp(6, q) with q = 2 or 8, the group

A" = TL(2, q) = TSp(2, q) actually satisfies the hypotheses of (5.19). Indeed, K

produces a partition EK as in (VII), consisting of planes since isotropic 1-spaces over

GF(q3) have dimension 3 over GF(q). Also, | ̂ ¿-1= q3(q3 — l)(q + 1) and

I K§ l= (^3 ~~ 1)(<7 + 0> where KE is flag-transitive. Let K* be the group induced

by Kx on x^/x. Certainly A"* stabilizes E/x, and permutes its points transitively.

Since 02(KX) is transitive on EK — {E}, K* is transitive on the lines missing E/x. A

subgroup of K* of order q + 1 fixes a line missing E/x and acts transitively on that

line. Thus, K* has 2 orbits on points, 3 on lines and 4 on flags. Then K has just 2

line-orbits. Finally, if a plane meets F in a line, it meets each other plane in E K in at

most one point, so K has 2 plane-orbits.

However, the permutation representation of TSp(6, q) on the set X of cosets of

TL(2, q3) does not have rank 3. For, if it did, the permutation character would be

1 + X + ? with X — (1 I 2), by Table II of §3. However, | X\ — 1 — x(l) does not

divide | T5p(6, q) \.

(ii) The groups K — G2(q)' also satisfy the hypotheses of (5.19), since Kx behaves

as indicated in (VII).

It is known that 5/7(6,2) has rank 3 on its class of subgroups G2(2) (Frame [19],

Edge [15]). In view of (1.1), we must consider the rank for other values of q as well.

The group ß(7, q) has 2 classes of subgroups G2(q), which are all in a single class

under TO(l, q). These can be viewed as follows. Consider ß+ (8, q), with underlying

vector space V. There is a subgroup G of ß+(8, q) such that -1 G G,

G/(-l)= ß(7, q), and G* = (G/(-l»T fixes a nonsingular point b, where t is a

triality automorphism of Fß+ (8, q). Since G* is transitive on each class of 4-spaces,

G is point-transitive. Moreover, G* F> G*T = Cg.(t) = G2(q). Note that b can be

chosen to be in any ß+ (8, <?)-orbit of nonsingular points of F. There are (2, q — 1)

such orbits, conjugate in Nro+iS ¿G). Checking orders, we find that G is transitive

on each class X of nonsingular points of F.

If b, c G X, b ¥= c, then (b, c) may be anisotropic or contain a unique singular

point; it can also contain 2 singular points if q > 3. Thus, if q > 3 then G cannot

have rank 3 on X.

Suppose that q = 3. If (b, c) is anisotropic, then Ghc = 5(7(3,3) -2. If (¿7, c)

contains a singular point r, then Ghr is a parabolic subgroup of Gb = G2(3), has an

element inverting r, and hence acts nontrivially on (b, c). Since Gh is transitive on

the points of ftx, it is transitive on {c E X\(b, c) is an anisotropic 2-space}.

Consequently, G has rank 3 on X. (Of course, the case q — 2 can be handled

similarly.)

(D) Subgroups of TO+ (8, q). The case of TO+ (8, q) is somewhat similar to the

rank 3 cases already considered. The only interesting result is (5.22), which deals

with W(EJ. We begin with an analogue of (5.15).

Lemma 5.21. // K is a subgroup of TO+ (8, q) which is transitive on both points and

lines, then K > ß+ (8, q).
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Proof. By (2.12), Kx±/x is either point-transitive or has 2 point-orbits of length

\(q2 + T)(q2 + q + 1). By (5.1), Kx is flag-transitive, and hence (2.6) applies.

Proposition 5.22. Let K < TO+ (8, q), and assume that K stabilizes each class of

4-spaces, is transitive on each class of(l,4)-flags, has 2 orbits of lines, (l,2)-flags, and

each class of (2,4)-, (1,2,4)- and (l,3)-flags, and has 3 orbits of flags. Then K is

W(EJ, embedded naturally in ß+ (8,3).

Proof. Set K* = Kx±/X, A(x) = CK(x) n CK(xx/x) and V(x) = [V, A(x)\. By

hypothesis, A"* is transitive on each class of planes, and has 2 orbits of points, lines

and (l,3)-flags and 3 orbits of flags. By (5.1), A"*<00) = ß"(4, q) or Q(5,q)',

embedded naturally in ß+ (6, q).

Case K*(x) = Q~(4,q). Let F be a 4-space. By (5.1), (A"£)(0O) = 5/7(4, q)' or

SL(2,q2). Computing |A"| using points or a class of 4-spaces, we find that

(Kkyx) = SL(2,q2).

Suppose that A(x) ¥= 1. By (2.1, 4), V(x)/x is anisotropic. If x G F then

F ¡zf V(x)± . Thus, A(x)F is nontrivial and contains transvections, which is not the

case.

Consequently, A(x) = 1 and Kxx) = ß"(4, q). If q ¥= 3, then Kxx) centralizes a

4-dimensional space, by (2.14); but then A(y) ¥= 1 for some pointy.

Thus, q = 3 and dimIF(x) = 3, where W(x) = CV(KXX)). Here, W(x)/x is

anisotropic.

Let f E Kx have order 5. Then dimCK(/) = 4, and / centralizes W(y) for each

y E Cy(f). Thus, T= W(x) n W(y) is an anisotropic 2-space if y G Cv(f) but

y^x. Then H = (K{x), K(x)) acts on Tx . By (5.7), H is 2-F5L(3,4). Set

(j)=Z(H).
Let Tx be a second anisotropic 2-space in W(x), and letyx denote the point other

than x in Tf C\Cy(f). This produces a second group 2 PSL(3,4), and a second

involution jx. Both/ and y, invert W(x)x, and both centralize W(x)/x. Hence

jjx G A(x) = 1, and K*(x) cannot be ß" (4, q).

Case K*ix) = ß(5, q)'. If q > 3, then (2.14) applies: Kx has a subgroup ß(5, q)

centralizing a 3-dimensional subspace. Then (2.4) yields a contradiction.

Suppose that q = 3. Then K{x) has a subgroup J = Z2 X A5, where

dimCK(02(/)) = 3. Thus, dimCv(J) = 3, and J acts monomially on [F, 7]. In

particular, A(y) ^ 1 for some y, so that |/4(>»)|= 3 and dimF(j) = 2 by (2.1, 4)

and the action of A'*. Moreover, there are pointsy, z E [V, J] such that V(y) n V(z)

is a nonsingular point b.

Since K\x) centralizes V(y)/y, it centralizes V(y). Then A:fc > (Klx\ A"z(00)>,

where AT'00' ̂  A\(oo) (as otherwise A"'00' would act on the nonsingular 3-space

(b, y, z), in which case | A(y) \ would be at least 33). By (2.16), K¡¡±> W(EJ.

Note that A(y) moves b to another nonsingular point c in V(y). Then

K^> W(E7)'. Moreover, (A'^0°))fcX lies in a unique subgroup W(E7)' (see the proof

of (2.16), Case 8); a similar statement holds for (A"((oo))c\ Thus, (A^001, K^x)) is

contained in a group W(EJ, and hence is W(EJ. Also, ¿7* contains all "roots" for

the latter group. Consequently, K = W(EJ, as desired.
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Finally, if q = 2 then K* >ß~(4,2). By (2.14), Kx has a subgroup ß~(4,2)

centralizing a 4-dimensional subspace. This time, | A(x) | > 4 in view of the action of

this ß~(4,2), and (2.1, 4) yield a contradiction.

Lemma 5.23. TO+ (8, q) has no subgroup stabilizing each class of 4-spaces, transitive

on points and each class of 4-spaces, and having 2 orbits on lines, planes and each class

of ( 1,4)-flags, 3 orbits on (l,2)-flags and each class of (2,4)-flags, 5 orbits on (1,3)-

and (2,3)-flags and each class of (1,2,4)-flags, and 9 orbits of flags.

Proof. Let K be such a group. Let F be a 4-space, and set H — KE. Then H has 2

point-orbits, 3 line-orbits, 5 orbits of (l,2)-flags and 9 flag-orbits. Corresponding

statements hold for A'* = Kx /x. (In fact, our hypotheses are invariant under

triality.)

First consider the possibility that H(x) = ß~(4, q) = K*(x). If q is odd, then

K*ix) is ß(3, q2), in its natural embedding into ß+ (6, q). By (2.1), (2.4) and (2.14),

K(x) centralizes a hyperbolic line. If F G Sylp(Kx n ß+ (8, q)), then dim CV(P) = 4,

dimrad CV(P) = 2, and NK(P) cannot be transitive on the fixed points of P.

If q is even, then K*(x) fixes a nonsingular 1-space b, and induces at least

5L(2, q2) on b^/b. By (2.1) and (2.4), A(x) = CK(x) n CK(x±/x) has order at

most q. Let x ¥= y E Cv(A(x)). Then A(x)y /y lies inside an 5L(2, q2), and hence

has order 1 or at least q2. Consequently, A(x) = 1. By (2.14), Hx(K*(x\ x^/x) = 0.

Thus, Kxx) again centralizes a hyperbolic line, and we obtain the same contradiction

as before.

It remains for us to show that there are no possibilities for //(co) other than

ß~ (4, q). This involves checking all the possibilities in (5.1). Most are eliminated by

the following facts.

H has 2 point-orbits.

There is a line L E F such that Hf is transitive.

There is a plane E such that HE fixes a point, a line, or (if q — 4) a hyperoval;

moreover, HE contains either an elementary abelian group of order q2 or Ab. (For,

let EH and E'H be the plane-orbits of H, where HE has fewer point-orbits than H§',.

If HE has 2 point-orbits, then it has at least 3 flag-orbits; by (2.7 iii), H§' has at least

6 flag-orbits, and hence HE behaves as desired. If HE is transitive let ß,, ß2, ß3, ß4

be the point-orbits of HE'. If no line of E' meets all orbits Q¡, then joining the ß, in

pairs accounts for at least 9 flag-orbits, and leaves HE with none. Thus, some line

meets ti¡, and accounts for 4 flag-orbits. This leaves only 4 flag-orbits for the

remaining 3 line-orbits of KE', and (2.7 iv) yields a contradiction.)

Applying (5.1) we find only one situation requiring further comment: that in

which H fixes a line L. Here, H is transitive on L, on the q2(q + 1) points y G L, on

the q(q + l)2 lines meeting L in a point, and on the q4 lines skew to L. As in (2.12),

Hy has just 2 orbits of lines on y. The same holds for Hx, x E L. Then H has only 4

orbits of (l,2)-flags, and this situation cannot occur.

Lemma 5.24. TO+ (8, q) has no subgroup stabilizing each class of 4-spaces and

having 2 orbits on points and each class of 4-spaces, 4 orbits on planes and each type of

(l,4)-flags, 5 orbits on (l,2)-flags and each type of (2,4)-flags, 1 orbits on (l,3)-flags

and each type of (1,2,4)-flags, and 10 orbits of flags.
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Proof. Let K be such a subgroup. As in the proof of (5.23), if £ is a plane such

that KE has / orbits of points and lines, then K§ has at least 2/ - 1 flag-orbits. The

only partitions of 7 with 4 parts are

7 = 4+1 + 1 + 1=3 + 2+1 + 1=2 + 2 + 2+1.

Since there are only 10 flag-orbits, it follows that Kj¡ is flag-transitive for some plane

E.
Let F be a 4-space containing E. By (2.15), KF contains 5L(4, q) or A7, or else

fixes a point or a plane.

If KF contains 5L(4, q) or A7, let t denote a triality automorphism of Fß+ (8, q).

Then (2.16) applies to (K/Z(K))T; but then A" either fixes F or contains ß+ (8, q) or

Ag, and hence cannot satisfy the required orbit conditions.

Thus, KF fixes a point or a plane. If KF fixes both a point and a plane, then it has

at least 10 flag-orbits, which is impossible. Thus, KF has 2 orbits of points and lines,

and 3 orbits of (1,2)-flags.

Let F' E fn78.</) _ fk Then kf; has 2 orDits of points, lines and (l,2)-flags.

Then KllF, is transitive for each line L of F', and hence KF, has only one point-orbit,

which is not the case.

Lemma 5.25. TO+ (8, q) has no point-transitive subgroup having 2 plane-orbits and 3

orbits of (1,3)- and ( 1,4)-flags.

Proof. Let K be such a subgroup. There is a plane E such that KE is transitive. By

(2.7), if F is a 4-space containing E then KEF is still transitive, as is KxE for some

point x of F. By (2.15), Kx /x fixes a plane or a pair of planes. In either case Kx /x

has more than 3 plane-orbits, contrary to hypothesis.

6. Subspace transitivity. For rank « 3s 4, our study of highly transitive subgroups

of T(V) will employ the elegant method of Perin [46]. This method was, in fact,

already used several times in §5C. As in §5, we will require numerous technical

results. The only general results are (6.1, 6.4, 6.5).

The following notation will be used throughout this section, as well as in §12.

K < TL(V), with AT point-transitive.

x is a point.

r is a prime and R is an r-subgroup of Kx.

W= Cy(R),N = NK(R) and C= CN(WX).

Usually, R E SylrKx. Then, by Sylow's theorem, Nw is point-transitive. Perin's

method involves comparing Nw and Nw in order to show that Cw is relatively

large. We begin with a simple example.

Theorem 6.1. Let K be a point-transitive subgroup of TU(d,q), where d > 4.

Assume that K is transitive on lines; if d = 6 or 1, assume further that K is also

(l,2)-transitive. Then K > SU(d, q).

Proof. By (5.12), we may assume that d > 6. Let r be a primitive divisor of

qd"3 + (-I)** (cf. (2.18)); we will exclude the cases ri/(6,2) and rt/(9,2) until the

end of the proof. Let R G SylrKx. By Table IV, R =£ 1. Since r divides the number

of nonzero vectors of W1-, from Table IV it also follows that IF is a nonsingular

3-space.
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By (2.12), Nw> SU(3, q), PSL(3,2), 3 -A7, or an extraspecial group of order 27.

Also, N w   is a subgroup of TL(2, qd~3).

If N* contains SU(3, q), PSL(3,2) or 3 -A7, then so does Cw. If Cw > SU(3, q),

then (2.4) applies.

We claim that Kx acts irreducibly on x±/x. This is clear if d = 6 or 7. If d > 8,

then | A7X | is divisible by primitive divisors of qd~2 — (-T)d and qd~3 + (-l)d, from

which irreducibility follows immediately. (If K < r/7(8,2), this argument fails.

However, in this case AT is (1,2)-transitive by (2.12), and then the irreducibility of Kx

is obvious.)

In particular, by (2.1) and (2.4), we may assume that C C\ Q = 1, where

Q = Op(SU(V)x). But in both of the exceptional cases q = 3 and 5, Cw n Qw ¥= 1.

Thus, we are left with the case q = 2.

Now all we know is that N w has a normal extraspecial subgroup of order 27 and

exponent 3. Since Nw < TL(2,2d~3), it follows that Cw contains the center (t) of

SU(3,2). Note that / centralizes the hyperplane (Wx +x)/x of x±/x. Thus, Wagner

[60] applies to the group H induced by Kx on xx/x. Using r, we find that

H > 5í/(í/ - 2,2). Consequently (2.6) applies.

Finally, suppose that A" < TU(6, 2) or TU(9, 2). In the former case,

Kx±/X > 5/7(4,2) by (5.12). Consider the case T(7(9,2). By (2.12), K is

(l,2)-transitive. Let R E Syl7Kx, and define W, N and C as before. Then N^ is

transitive on points, and dim IF = 3 or 6. If dim W = 3, we can proceed as before. If

dim W = 6, then Nw is (1,2)-transitive, so that Nw s* 5/7(6,2). Then Cw ^ 5/7(6,2),

and (2.4) completes the proof of (6.1).

Remark. By Table II and (4.2), a subgroup of TU(m, q), m > 6, is point-transitive

if it is line-transitive.

Lemma 6.2. Suppose that K is a point-transitive subgroup of T(V) which is either

transitive on lines or has 2 line-orbits and at most 3 orbits of (1,2)-flags. (Moreover, if

there are 2 line-orbits and V has type TO(2m + 1,3) or TO~ (2m, 2), assume that K

has 2 plane-orbits and at most 4 orbits of (2,3)-flags.) Define s by the following table.

Type of V Sp(7m,q) Q(2m + \.q) Ü1 (2m,q) SU(2m, q) SU(2m + 1, q)

+ 1,
M

q-¿+\,

m »4

± 1 (either sign),

m > 6

q2 + \,m = 5

qim~>+ 1,

m s=4

+ 1,

Assume that, for some line L, \KL\ is divisible by a primitive divisor r of s. Then

K>Chev(V).

Remark 6.3. (i) The parenthetical hypothesis in (6.2) is only used in cases (h) and

(j) of the proof.

(ii) Several cases are automatically excluded in (6.2): those in which s has no

primitive divisor. For future reference, these excluded cases are listed in the

following continuation of the preceding table

Type of V\ 5/7(10,2) I ß(ll,2) I ß* (12,2), ö* (18,2) | 5/7(8,2) | none
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Proof of 6.2. The argument falls into several steps.

(I) Let R E SylrKL. In each case, W = CV(R) is a nonsingular subspace; its type

is given in the following continuation of the previous tables.

Type of IF   |   5/7(4, q)       Q(5,q)       Q±(6,q)       5(7(5, q)   j   5.7(4, q).

Clearly, R E SylrKxL for x E L. Also, rl|r(IF)v| except when W has type

ß~ (6, q) and V has type ß" (10, q). Thus, if R G SylrKx then W has type ß" (6, q),

and r \ \ N^ | for each point y of W, in which case (5.10) applies. On the other hand,

if R E SylrKx then Nw is point-transitive. In any event, Nw has at most 2

line-orbits and at most 3 orbits of (1,2)-flags, by Sylow's theorem. Note that if TV'4'

has 2 line-orbits then so does K.

In view of (5.12, 5.13, 5.15), one of the following holds (and is handled in the step

indicated):

(a)Nw>Chev(W)(TT);

(b) Nw > 5(7(3, q) for IFof type ß" (6, q) (II);

(c) Nw > 5L(2, 42) for IFof type 5/7(4, 9) (V);

(c') V •" > 5L(2,5) for IF of type 5/7(4,3) (V);

(d) N w is A6, for IF of type 5/7(4,2) (VI);

(e)Nwis A7 or 57, for IFof type ß+ (6,2) (VI);

(f)Nw>4- PSL(3,4) for IF of type 5/7(4,3) (VII);

(g)Nwi>2 -PSL(3,4)for Wof type ß" (6,3) (VIII);

(h) 02(NW) is elementary abelian of order 16 or 32, and 20 11 Nw/02(Nw) \, for

W of type ß(5,3) (IX);
(i) 02(NW) is extraspecial of order 32, and 5 11 N w \, for IF of type 5/7(4,3) (X);

or

(j) | 03(NW)\> 27, for IFof type Q~ (6,2) (XI).

(II) By (2.4), we may assume that K contains no long root elements. (In (2.4 iv),

there are 3 line-orbits, 2 of which arise from lines of the unitary geometry.)

If s = q' ± 1, then the normalizer of Rw in T(WJL) is contained in TL(2, q').

Consequently, this statement holds for N w . However, N w is not contained in any

FL(2, q').

If (a) or (b) holds (excluding 5/7(4,2) and 5F/(3,2)), then (Nw)" has no

homomorphic image in any TL(2, g'), so that (Cw)" = (Nw)" and C contains long

root elements.

If ArM/> 5/7(3,2), then Cw contains a transvection (since TL(2,2') never has a

quaternion subgroup). Once again, C contains long root elements.

Finally, if Nw is 5/>(4,2), or if one of (c)-(g) holds for Nw, then one of (c)-(g)

also holds for C w in place of N w. We will have to consider these possibilities for C w

separately. Note that, if (h) or (i) holds for Nw, it might not hold for Cw: only

| 02(CW) |= 16 or 32 is clear at this point. Similarly, if (j) holds for Nw it need not

hold for C"".

(III) Set Q = Op(T(V)x), A(x) = K n Q and V(x) = [V, A(x)]. Clearly, Kx acts

on both A(x) and F(x). Recall that A(x) is assumed to contain no long root
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elements. However, in several of our cases, C F) A(x) is nontrivial:

(c) | C f) A(x) | = q and V(x) is a line (since a Sylow /7-subgroup of Cx has order

g2 and acts on the q + 1 lines through x, centralizing one of these lines: V(x));

(c') | C Pi A(x) | = g and V(x) is a line;

(d) | C Pi /4(x) |= 4 and V(x)/x is an anisotropic 2-space when AT is regarded as

lying in 0(2« + 1,2) (since IF is an obvious section of the standard mod 2

permutation module for AJ,

(e) | C Pi A(x) | = 4 and V(x)/x is again an anisotropic 2-space;

(f) | C n A(x) | = 9 and V(x) = W C\ x1- ;

(h) If 3 | | N w | then | C n ^(x) | = 3 and V(x)/x is a nonsingular 1-space;

(j)|cn /i(x)|<2.
In cases (g) and (i), C Pi A(x) — 1. In all cases, we will use (2.1) in order to show

that \A(x) | is small.

(IV) We claim that A(x) < C. For, suppose not. Then A(x) { CK(R). In

particular, \A(x)\> q2. By (2.1), V is neither symplectic of characteristic 2 nor

orthogonal.

If Fis of type Sp(2m, q), then r\ q"''2 + 1, so \A(x)\^ q2"'-4. By (2.1), A(x) is

abelian and A(x)Q'/Q' contains q2m~4 mutually orthogonal vectors in a

2m — 2-dimensional symplectic space. This is clearly impossible.

Thus, V is of type SU(d,3). By hypothesis, s = 3d'4 + 1 or 3d'5 + 1. Thus,

\A(x)\> 32d~l0. But | Q/Q' | = 32{d~2) and 2d - 10 > d - 2 if d > 8. Consequently,

(2.1) produces the same contradiction as above if d > 8. This leaves us with the case

of V of type 5t/(8,3). Here, |/l(x)|=36 by the above argument. However,

|Cn,4(x)|=32 in case (f), whereas our group R of order 7 cannot act

fixed-point-freely on a group of order 34.

This contradiction proves our claim. In particular, A(x) = 1 in cases (g) and (i).

(V) In (c) and (c'), use of Nw shows that F(x) = V(x') whenever x' G V(x). Let

L be a line on x such that L C V(x)x but L ¥= V(x). If y E L and y ¥= x, then

>> G K(x)x implies that A(x) acts on F(y). Since V(x) n F( y>) = 0 and

V(x) = [V, A(x)], it follows that V(y) C V(x)x C x1". Thus, L = <x, j) C V(y)x .

Consequently, there are at least 3 types of lines: those of the form V(x), those

lines L contained in V(x)x for all x G L (but not of the form V(x)), and all other

lines. Since A" has at most 2 line-orbits, this is impossible.

(VI) We treat cases (d) and (e) together. Recall that | A(x) | = 4 and F(x)/x is an

anisotropic 2-space. We first show that, if y E F(x)x , then V(y) E F(x)_L. For, let

ß(x) be the subgroup of C such that A(x) ■=£ B(x) = A4 and

Cv(B(x))= Cy(A(x))= V(x)x. Then B(x) acts on A(y), and hence A(x)

centralizes A(y). In particular, A(x) acts on V(y), fixing each subspace throughy. If

v E V(y), a E A and v" ¥= v, then v" — v must be the third nonzero vector in

(v, v"), and hence is in y F) F(x). Thus, if y ¥= x then A(x) centralizes V(y), and

hence V(y) C V(x)L .

Let M be a line on x such that M £ V(x)x . Then A(x)M ¥=l.lf x¥=y E M then

y G F(x)x , so x G F(v)x by the preceding paragraph, and hence A(y)M ¥= 1.

Thus, Km is transitive.
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Since K has at most 2 line-orbits, it has 2 such orbits: those lines M as above, and

all remaining lines. In particular, K is transitive on the (l,2)-flags of the form

(x,' M) with M G F(x)x. Then Kx is transitive on the points on xx/x not in

F(x)x/x. Consequently, Kx is transitive on the nonsingular vectors in V(x)±/x. In

particular, rad V = 0.

Fix x, let x ¥= y E F(x)x , and set F((x, y)) = (V(y), V(y')), where / is the

third point of (x, y). Since F(j>) and F(j') are perpendicular, V((x, y)) is a

6-dimensional subspace of F(x)x , and V((x, y))/(x, y) has type ß+ (4,2).

Consider the pairs ({x, y), (x,d)) with y E V(x)x, dE V((x, y)), and d

nonsingular. Each point of F(x)J_/x arises as a first component; V((x, y))

determines 6 -2 second components; and Kx acts transitively on the set of second

components. Thus, the number of nonsingular points of V(x)±/x divides twelve

times the number of singular points, which is not the case (since rad F = 0).

(VII) In (f), V(x)/x is a nonsingular 2-space. There are thus 4 types of lines on x:

those in V(x), those in V(x)± , those perpendicular to exactly one line of V(x)

through x, and all others. (If M is one of the latter lines, then (Mx F) V(x))/x is

nonsingular.) Thus, K has more than 3 orbits of ( 1,2)-flags.

(VIII) In (g), Cx acts irreducibly on (x-1 C\W)/x: it induces at least ß~(4,3)

there. We claim that Kx acts irreducibly on xx/x. For, let M be a proper

A^-invariant subspace of xx/x of least dimension. If dim M < 4, then R centralizes

M, so that M = (x-1 n W)/x and Kx has at least 4 point-orbits on xx/x (namely,

those in M, those in Mx , those on lines meeting M and Mx , and those on no such

line). Thus, dim M > 4. Also, dim M < { dim(xx/x) = m — 1 (by minimality).

Since R acts on M, we cannot have s = 3m~3 + 1. Thus, s = 3m~3 — 1. Using Cx

again, we see that dim M =£ m — 2, w — 1. Consequently, M is a totally singular

«i — 3-space. The lines on x must fall into A"x.-orbits of lengths {(3m~3 — 1),

10 -3m~3 and \2m(3m'3 - 1). Let U be any line such that Kl¿ is intransitive.

Counting suitable (1,2)-flags in four ways, we find that | L'K \e¡=\xK\l¡ with /, and

l2 two of the above numbers and ex, e2 integers < 3. However, the equation

exl2 = e2lx is easily seen to have no solution.

Thus, Kx acts irreducibly. Set E = CK(L) n CK(L±/L), so that | E D C \ - 9. If

e E E then dimfx^/x, e] < 2 by (2.1).

We next show that Kx acts primitively on xx/x. For, suppose that Kx preserves a

nontrivial decomposition xx/x = Wx@ ■ ■ ■ ®Wk. The above property of E fl C

shows that £ilC cannot act faithfully on {Wx,..., Wk). Since (CJ s A6, we may

assume that (xx n IF)/x E Wx. Then R fixes IF,. Since r \ 3m~2 ± 1, it follows that

Xa- n IF/x = IF,. But ATX has at most 3 point-orbits on x^/x. Thus, k = 2, and F

has type ß+(10,3). Now the 3 point-orbits have lengths 2 ■ 10, 10 10-2 and

30 -15 -2. This leads to an impossible equation exl2 = e2lx as before.

Now Kx is primitive, | E \> 9, and E acts faithfully on xx/x (since A(x) = 1 by

(IV)). By (2.5), Kx induces at least ß(xx/x) or 2 -ß(7,3) on xx/x. The first case is

eliminated by (2.6) or (2.14). By (a) in (2D), the second case leads to a subgroup

2 • ß(7,3) of Kx containing long root elements. Thus, (g) cannot occur.
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(IX) In (h), I 02(C)\> 24. There is an involution j G 02(C) inverting L such that

F ~ [^ j] bas type ß+ (4,3). Then y centralizes Lx /L. Since

KL>(j)(CK(L)nCK(L±/L)),

by the Frattini argument we have KL /L = HE /L, where H = CK(j)L. Note that

Lx /L and Fx are //-isomorphic.

If L' is any line on x such that L' n Fx^= 0, then j acts nontrivially on L'.

However, if L" is any line of IF then Nf," acts regularly on points since Nw is

monomial; moreover NE" — KE„ by the Frattini argument. Then L' G LK, and

hence L" E LK since K has at most 2 line-orbits. In particular, A/w is line-transitive.

Note that KE. /L' cannot be point-transitive. (For, if it were, then we would have

r | | KL. | , and then L' would belong to LK by Sylow's theorem.) Thus, by the

parenthetical hypotheses of (6.2), HF has at most 2 point-orbits. There are two

subcases to consider: (a) H fixes IF, and (ß) H moves IF.

(a) Here, H is transitive on the (3m_2 + l)(3m~3 - l)/2 points of Fx . Suppose

that m > 6. Let r, be a primitive divisor of 3"'~3 - 1 (cf. (2.18)), let Rx E SylrH,

and set Z = CV(RX), Nx = NK(RX) and C, = CN(Z±). Then Nxz is point-transitive,

W C Z, and A7,1^ = AT£ = A7"' by the Frattini argument. Moreover, dim Z — 1. Set

Nx* = (Nz)x±/x. Then 5 | | Vf |. Also, Nf contains an elementary abelian group of

order 8 none of whose involutions induces -lonZil xx/x. (Namely, (Nxw)z has a

subgroup Z\ centralizing IFX FlZ and fixing a member of the distinguished

orthogonal basis of IF.) Since Z contains a line L' meeting both F and Fx n Z, Vf

has 2 or 3 point-orbits, and it follows from (5.6) that Nx* > Z2 X

Z5. The latter group is line-transitive, so Nxz is (l,3)-transitive. But then Nxz is also

(2,3)-transitive, whereas it is not even line-transitive (since L, L' C Z). Thus, m *£ 5.

If m = 5, then //f± is a point-transitive subgroup of TO (6,3). By (5.12),

Q(F)> Ö"(6,3) or 2 F5L(3,4). In particular, 5||Q(L)|. Setting r, = 5 and

proceeding as before, we again obtain a contradiction.

If m = 4 then //"' is transitive on the points of W1-, and on those of Fx not in

W1-. Thus, CK(F)i> ß"(4,3) or Ay By (IV), \A(x)\= 3 and Q(F)r> A5. Since

/l(x) < C^(ß), we have Cr> Z2 X A5. If y is a point of IFX , then C acts on y±/y.

Also, V(xy/x has type ß+(6,3). (For, F(x)x n W/x and IFX have respective

types ß~ (2, 3) and ß (4,3).) Thus, Ky induces a subgroup of Aut PTL(4,3) having

at most 2 line-orbits and containing the point-transitive group induced by C. By

(5.12), Ky±/yt> ß+(6,3), ß(5,3) or Z\ X A5. The latter 2 cases require that Ky±/y

fixes more than one nonsingular point, and hence that it has more than 3 point-orbits.

In the first case, (2.14) produces long root groups.

(ß)Let« G //with Wh * IF. Then FC IF*.SetZ= ( IF, Wh > and D = (C,Ch).

Then dim Z = 6, D acts on Z, and D centralizes Zx .

Since Cw(j) and Cxv(j)h are isometric, Cz(j) is either anisotropic or has a

nontrivial radical.

Assume that z = rad Z ^ 0. Since C and Ch agree on Z/z, while centralizing Zx ,

they are conjugate under 03(D). Thus \03(D)\^ I. If 1 ^ ¿ G 03(/7), then

dimCz(d) = 5; since d centralizes Zx , we have d E A(z). Now C?> Z4 >4 A5 once

again. Thus, | /l(z) |> 3 (since C acts on A(z)), which contradicts (IV).
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Consequently, Cz(j) is an anisotropic 2-space. Since CiV(j) and Cw(j)h are

isometric, it follows that Z = F± Cw(j) ± Cw(jf. However, 02(C)F = 02(Chf.

Thus, 02(C) and 02(Ch) commute.

Now N — (02(C)H) is an elementary abelian normal subgroup of //, and acts

non trivially on Fx . Then H acts monomially on [Fx, A/], while having at most 2

point-orbits on Fx . Thus, 2«i — 3 = 5 and HF > Z4 X Z5. Then

CK(F)F±> Z4 X Z5.

Let {e¡} be an orthogonal basis of (Fx, x)/x with respect to which CK(F) is

monomial. We may assume that (e¡, e¡) — 1. Let {e, /} be a basis of xx FiF/x with

(e, e) = 1 = -(/, /). We may assume that R is generated by g — (1,2,3,4,5).

Then Cj7(g) = (e, f, 2,e,), where F = xx/x. Consequently, Nx acts transitively on

{(e +/), (e-f), (e + 2>,>, <e - 2,e;>}. Set K* = AT^A and a = <e +/>**.

Then CK(F) acts on ß, and hence ß contains all the points (e + 2¡e¡e¡) with each

e¡ = ±1. Then ß contains two perpendicular points, such as (e + 2,e,-> and

(e + ex + e2 — e3 — e4 — es). Also, CK(F) is transitive on the lines of F through

(e +/). By (2.10), K* fixes a hyperplane. The only one available is/x , which has

type ß+ (6,3). This produces the same contradiction as in the last part of (a).

(X) In (i), Cw has a normal extraspecial subgroup of order 25. Let j be an

involution in C such that [F, j] is a hyperbolic line, and let x G [V, j], Then y inverts

x and centralizes xx/x.

By (IV), QHK=l. Thus, (j) = CK(x±/x) < Z(KX). Write jx = j and

U(x) = [V, jx\. If y E U(x) then U(y) = U(x). If y E t/(x)x , thenjx centralizes;,,

and U(x) D U(y) = 0, so that U(y) E /7(x)x .

Let y E U(x)x and z G í/(x)x n /7(>-)x , and consider 5 = (U(x), U(y), U(z)).

If j G 5X then U(s) E 5X . Thus, 5X = (U(s) \ s E 5X ). Similarly,

5 = (U(s) | s E 5). There are (36 - l)/(32 - 1) = 91 hyperbolic lines U(s) in 5, of

which (34 - l)/(32 - 1) = 10 he in t/(s)x Pi5. Call each such U(s) a Point, and

each of these sets of 10 Points of 5 a Line. Then two distinct Points are in at most

one Line. A standard counting argument shows that we have a projective plane of

order 9. Since U(s) -» J7(s)x l~i5 induces a polarity without absolute Points, this

contradicts a result of Baer [10, p. 152].

(XI) In (j), there are two possibilities for Nw, which are dual to examples

(2.1, 2)iü of (5.13). In both cases, | 03(C) \> 33. Let (/) be a subgroup of order 3 in

03(C) such that (i)w is central in a Sylow 3-subgroup of ß (6,2). Then [F, /] = IF,

and there are exactly 9 lines of V fixed but not centralized by /, all of which lie in W.

There is also an element y of 03(C) such that F = [V, j] has type ß+ (4,2) and for

which there are exactly 3 lines of V fixed but not centralized byy, all of which lie in

F. We may assume that x E L E F, and that L is the fixed line of y through x. Note

that (j) is transitive on L, while (/) is transitive on the second line L' of F through

x. Also, LK ^ L'K since LN ^ L'N.

If E is any plane containing L, then y fixes E and K\E is transitive. If E' is any

plane containing L' and fixed by /, then KE.E, is transitive. Here, E' G EK. (For

otherwise, some conjugate /' of / acts nontrivially on E. By Sylow's theorem, [E, /']
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and [E, y] are in the same line-orbit of Kf, and hence of K, which is not the case.)

Thus, EK and E'K are the two plane-orbits of K (cf. (6.3 i)).

In particular, all planes containing L lie in EK. Moreover, KE is transitive on the

members of LK lying in E (again by Sylow's theorem). By considering (L, E)K, it

follows that KL is point-transitive on Lx/L.

Since (j)(CK(L) n CK(L±/L)) < K,, we have K£±/L = HL±/L by the Frattini

argument, where H = NK((j))L. Then H is point-transitive on Lx/L, and hence

also on Fx . Since (y) is transitive on L, it follows that Hx is also point-transitive on

Fx . Here, Hx fixes both L and L'. Consequently, KL.F is transitive on Fx, and

hence on L'x/L'.

Some plane contains lines from both of the orbits LK and L'K (cf. (2.13)). In view

of the transitivities we have found, K must be transitive on planes, which is not the

case.

This completes the proof of (6.2).

Theorem 6.4. Let K be a subgroup of T(V), where V has rank n > 3. If K is

transitive on points, lines and planes, then either K S* Chev(F) or K is A7 or 57 inside

0+(6,2).

Proof. By (5.15, 5.17, 5.21), we may assume that « > 4 and that V does not have

type ß+ (8, q). By (6.1), we may also assume that Fis not unitary.

By Table IV, a suitable prime divisor r of the number of planes can be used in

(6.2), except for cases listed in (6.3), and except when a candidate for r already

divides the number of lines. A straightforward check shows that we must only

consider the cases ß^ (10, q), ßa (12, q), 5/7(8, q), ß(9, q), ß" (14, q) and ß" (18, q).

For m = 5 and 6, the number of planes of an ß+ (2m, q) space is divisible by

(q"'~3 + l)2. Thus, (6.2) applies, except in the case of ß+(12,2).

Similarly, in the cases 5p(8, q), ß(9, q), and ß~ (14, q), (q2 + l)2 | | K \ ; while for

Q-(1&, q), (q3 + I)211 K \. Thus, (6.2) applies, except in the case ß" (18,2).

For ß~ (12, q), the number of planes is divisible by (q2 + l)2. Let r be a primitive

divisor of <72 + 1, and let R E SylrKL. Define IF and C as usual. Since R¥= l,W

has type ß~ (6, q) or ß+ (8, q). The first possibility is dealt with exactly as in (6.2). If

IF has type ß+ (8, q), let r* be a primitive divisor of q3 — 1. Then N contains an

element of order r*. Since r* 11 N w |, we can apply (6.2) with r* in place of r.

For ß~(10, q), the number of lines is divisible by (q3 — l)/(q — I). Let d be a

primitive divisor of q3 — 1. If D E SyldK, then CV(D) has type ß~ (4, q). Let r be a

primitive divisor of q2 + 1. Since NK(D) is point-transitive on CV(D), its order is

divisible by r. An element of order r in NK(D) must centralize C|/(/J)x= [F, D]

(since r \ \NK(D)[y-D]\). Consequently, (6.2) applies.

Similarly, in the case ß+(12,2) we find that | K\ is divisible by d = 24 + 1. If

D E SyldK, then CV(D) has type ß~ (4,2), and an element of order r = 5 in NK(D)

centralizes C^(F»)X. If F is a plane of C^(£»)x, then r\\CK(E)\. Let

R E SylrCK(E), and define W, N and C as usual. Then IF has type ß"(8,2). By

(2.12), K is (1,3)-transitive. Thus, Nw is (l,3)-transitive. By (5.17) and Table II,

N w s* ß^ (8,2). Then also Cw > ß~ (8,2), and (2.4) applies.
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In the case of ß" (18,2) set d = 27 - 1 and r = 22 + 1. If D G SyldK, then

Cy(D) has type ß" (4,2). Once again, some element of order r centralizes CV(D)X .

Let R E SylrKL. Then IF has type ß+(6,2), ß"(10,2) or ß+(14,2), and Nw is

transitive on lines and planes (by Table IV). In the second and third cases, N w is

also transitive on points (since 82 D 8X by Table II); then Nw > ß(IF), and we can

proceed as usual. Suppose that dim IF = 6. Then Nw *z 0+(6,2) = 58. It follows

that Cw 3* A7 or A%, and we can proceed as in steps (II) and (VI) of (6.2) in order to

obtain a contradiction.

Finally, in the case of 5p(10,2), K is (1,2)-transitive by (2.12). Let R E Syl3CK(L).

Then R has index 32 in a Sylow 3-subgroup of K, and R ^ 1 since 33 divides the

number of planes. Note that dim IF is 4, 6 or 8. If dim W > 4 then N w is transitive

on points, lines and planes; but then Nw ^ Sp(W), and we obtain the usual

contradiction. Thus, dim W = 4 and TV^ is flag-transitive. It follows that Cw > Ab,

and we can again proceed as in steps (II) and (VI) of (6.2) in order to complete the

proof of (6.4).

Remark. By Tables II and III, if « > 5 then plane-transitivity implies both point-

and line-transitivity.

Theorem 6.5. Let Vhave rank n > 3. If K is a subgroup ofT(V) which is transitive

on points, lines and n-spaces (of at least one type, when V has type ß+ (2«, </)), then

either K > Chev(F) or K is A7 or S7 inside 0+ (6,2).

Lemma 6.5'. Let Vhave rank « > 4, but not have type ß+ (8, q). Then T(V) has no

subgroup K having the following properties:

(i) K is transitive on points and n-spaces (of each type, when Vhas type ß+ (2«, q));

(ii) K has 2 orbits of lines, at most 3 orbits of (1,2)-flags, and at most 2 orbits of

planes and (I, n)-flags (for each type on n-space, when V has type 2+ (2n, q)); and

(iii) if K has more than 3 orbits of (2,3)-flags, then it has 4 such orbits, as well as 2

orbits of planes and (I, n)-flags (of each type); if, in addition, « = 4, then there are 1

orbits of (1,2,3)-flags and 9 orbits of flags.

Proof of (6.5) and (6.5'). The proof parallels that of (6.4). By (5.15, 5.17, 5.21),

we may assume that « > 4 and that V does not have type ß+ (8, q). By (2.18) and

Table IV, we can use the number of n-spaces in order to find a prime r required in

(6.2), except for cases occurring in (6.3), or cases in which a candidate for r already

divides the number of lines. Thus, this time we must consider the cases ß~ (10, q),

ß+ (12, q), 5/7(8, q), SU(10, q), 5/7(10,2), ß" (12,2), 5/7(8, q) and ß(9, q).

For ß+(10, q), q ¥= 2, use primitive divisors d of q3 + 1 and r of q2 + 1. If

D E SyldK then CV(D) has type Q,~(4,q), and hence NK(D) has an element of

order r. That element cannot act nontrivially on CV(D)± . Thus, (6.2) applies.

The case 5/7(8, q), q¥=2,is handled in the same manner, using primitive divisors

d of q5 + 1 and r of q3 + 1. Also, for 5i/(10, q) we find that (q3 + l)2 divides | K \

(Table IV), so that (6.2) applies when q ¥* 2.

For 5/7(2«, 2), « = 4 or 5, let M be an «-space. By (2.12), K$ is point-transitive if

n = 4, and has order divisible by 25 — 1 if « = 5. By hypothesis, K™ has at most 2
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point-orbits. Now (5.1, 5.2) imply that K$ is transitive unless « = 5 and

Kff > SL(5,2). If « = 5 and 711^1, then (6.2) applies. Thus, we may assume that

K is (1, «)-transitive. By (6.1) and (6.5' ii, iii), there is a line L such that K¡ is

point-transitive on L±/L. If « = 4, then 22 + 1 11 CK(L) | by (5.12); if « = 5 then

25 + 1 11 KL |. In either case, (6.2) yields a contradiction.

For ß~(10, q), assume first that A" is line-transitive. Then primitive divisors of

q3 — 1 and q2 + 1 can be used as before. Now assume that we are in the situation of

(6.5'). Then K has 2 orbits of (1,4)-flags, and hence also 2 of (3,4)-flags and at most

2 of planes. If K is plane-transitive then it is also line-transitive (by Table II), and

(6.4) applies. If K has 2 plane-orbits, then KE /E is point-transitive for each plane

E; thus, q2 + 1 divides | KE |, and (6.2) applies.

In the cases ß+ (10,2), ß" (12,2) and 5p(10,2), K is ( 1,5)-transitive (by Table IV

and (2.12)). Let M be a 5-space. If | Kff | is even, then K$ = 5L(5,2) by (5.5). Thus,

\Km\ is odd. However, \K\ is even. (A Sylow 31-subgroup 5 fixes exactly two

5-spaces, which NK(S) permutes transitively.) Let / be an involution in A^. Then we

may assume that t fixes M, and hence centralizes M. But now it is easy to find

another fixed 5-space of / not in Cv(t).

For ß+ (12, q), let d and r be primitive divisors of q4 + 1 and q2 + 1, respectively.

Using a Sylow ¿/-subgroup of K, we find (as earlier in the present proof) an element

of order r centralizing a subspace IF of type ß~(8, q). Let R E SylrCK(W). If

R E SylrK, then N w is transitive on the (q4 + T)(q3 - T)/(q - 1) points of IF, and

(6.2) applies with s — q3 — 1. Thus, we may assume that R is not Sylow in K (and

that N w is not point-transitive).

If Kis line-transitive, then r 11 NE | for every line L of W. Then also r 11 CN(L)W \.

Fix x G IF, and set N* = Nx nw/x. Each point of (xx Fl W)/x is fixed by an

element of N* of order r. By (5.10), N*(x) = ß~ (6, q) or 2 P5L(3,4). In the former

case, (2.14) produces long root elements in K; while in the latter case, (6.2) applies

with s = q3 + 1.

Thus, we must now consider (6.5') for ß+(12, q). Here, Nw has at least 2

point-orbits and at most 4 orbits of (l,3)-flags. As in the preceding paragraph, we

find that there are 2 point-orbits and 4 orbits of (1,3)-flags, both for Nw and for K.

In particular, each plane-orbit of K has a member in IF. Since q2 + q + 1 divides

the number of points of V but not the number of planes, there is a plane E such that

\KE\ is divisible by a primitive divisor r* of q2 + q + 1. We may assume that

E C IF. By the Frattini argument, KE = NE. Thus, r*\\ NE \. An element of order

r* in NE centralizes IFX , and hence also centralizes a line of F. Once again, (6.2)

applies with s = q3 — I, and finishes the case ß+ (12, q).

The cases 5/7(8, q) and ß(9, q) are somewhat different from the preceding ones, in

that a suitable prime is harder to find. Suppose first that we are in (6.5'). If L is a

line, we may assume that q2 + 1 11 K¡ |, as otherwise (6.2) applies. In particular,

K[ /l is intransitive on both points and lines. Thus, we must be in (6.5' iii). Let

(x;, L¡), i = 1,2,3, be representatives of the orbits of (l,2)-flags; let A', be the

corresponding group induced on Lf/L¡. Since K has 7 orbits of (1,2,3)-flags, we

may assume that A', and A"2 have 2 point-orbits, while K3 has 3 point-orbits. Since
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Kx has at least 2 line-orbits, it has at least 3 flag-orbits; and so does A^2. Thus, K3

has at most 3 flag-orbits. Then (A^)^ is transitive on _yx /y for each point y of

Lf/L3. Consequently, K3 is line-transitive, which is not the case.

Thus, we must be in the situation of (6.5): K is transitive on the

(q4 + l)(q3 + 1)(<72 + l)(q2 + q + 1) lines of F. By (2.12), if F is a 4-space then

q2 + q + 1 divides the length of each line-orbit of KF. Since A' is not flag-transitive,

KF fixes a point or a plane (by (5.1)). In either case, there is a plane E C F such that

KEF is transitive. By Sylow's theorem, KF is transitive on the set of such planes.

Hence, KE /£ is also transitive.

Consequently, there is an orbit of \LK\a(q + 1) =| FK | e(q2 + q + 1) triples

(L, E, F), where a and e are the numbers of planes E containing L and contained in

F, respectively. Here, e is 1 or q3 (cf. (2.7 i) and (2.14)), and hence so is a (by Table

IV). Then a = 1. (For, if a = q3, a Sylow p-subgroup of KL acts transitively on the

corresponding q3 points of Lx/L. Then these are the points not in some line of

Lx/L. Thus, KL fixes a 4-space containing L, and this contradicts (2.12).)

Note that K§ ^ 5L(3, q) if q > 2. For, suppose that KE > SL(3, q) and q ¥= 2.

Then CK(E±/E)E > SL(3, q). By (2.14), KE has a subgroup 5 s 5L(3, q) fixing

two planes. Then Sx has an element of order p centralizing xx/x. This is impossible

by (2.1) and (2.4).

Now suppose that q ¥^ 2,8. Recall that K¡ — KLE, and that KEE/E is transitive.

There is a prime r ¥= 3 dividing q + 1 but not dividing log^, q. Let R E SylrKL. Then

RE = 1 by the preceding paragraph and (2.7 i), so that dim IF = 6 or 7, Nw is a

line-transitive subgroup of TSp(6, q), TO+(6, q) or TO(l, q), q2 + 1 | | Nw\, and

hence (6.2) applies.

Thus, q is 2 or 8. Let d be a primitive divisor of q3 — 1, and let D E SyldKE. Then

NK(D) is transitive on the 2(q + 1) fixed 4-spaces of D. Thus, | A^| is even, and

hence so is \K¡\ = \KEE\. Then KE> SL(3,q). A Sylow 3-subgroup of KEF

centralizes a line. If Ä G Syl3CK(L), we obtain the same contradiction as before.

This completes the proof of (6.5) and (6.5').

The remainder of this section degenerates into those types of technical results

which dominated §5 (and resemble (6.5')). They appear here only because they will

be needed in (8.3): there, (6.6) and (6.8) are used to deal with (« — 2 | 2), while (6.7)

and (6.9) are used for (« — 3 | 3).

Lemma 6.6. Suppose that « > 4 but Vdoes not have type ß+ (8, q). Then T(V) has

no subgroup K with the following properties:

(i) K is point-transitive;

(ii) K has 2 orbits of lines, planes and ( 1,2)-flags;

(iii) K has 3 orbits of (1,3)- and (2,3)-flags; and

(iv) if n = 8 then K has 2 plane-orbits and 3 orbits of (3,4)-flags.

Proof. By (ii) and (iii), there is a line L such that KL is transitive on L±/L. By

Table IV and (2.18), | K¡ | is divisible by a prime required in (6.2), unless F has type

5/7(10,2), ß+ (12,2) or ß_ (18,2) (cf. (6.3)). Thus, by (6.2) we only need to consider

these three cases.
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If V has type 5p( 10,2), then 7 11 KE /L |, and the proof of (6.2) can be repeated in

order to obtain a contradiction.

If V has type ß+(12,2), set d = 24 - 1 and r = 3. Since d\\KL\, a Sylow

¿/-subgroup of K centralizes a subspace WQ of type ß+ (4,2). There is then a group of

order 9 centralizing IF0X . Let £ be a plane of W¡f ; if possible, choose E so that KE is

transitive (such planes exist in V, by (ii) and (iii)). Let R E Syl3CK(E). Then

W — Cv( R ) = W<f . If 7 divides | N w |, then an element of order 7 in N centralizes

IFX , and (6.2) applies. Since KE = NE by the Frattini argument, KE cannot be

transitive. Thus (by (ii)), all planes of IF lie in the same IF-orbit. Consequently, Nw

is transitive on planes; but then 7 again divides | Nw \.

If V has type Í2 (18,2), then (iv) provides us with a plane E such that KE is

point-transitive on £x/£. Then 26 + 1 11 KE \, and (6.2) yields a contradiction.

Lemma 6.7. Suppose that n > 4 but V does not have type ß+ (8, q). Then T(V) has

no subgroup K with the following properties:

(i) K is ( 1,2)-transitive;

(ii) K has 2 orbits of planes, (1,2,3)-flags and 4-spaces; and

(iii) K has 3 orbits of (1,4)- and (3,4)-flags.

Proof. By (6.1), F is not unitary. Set K* = Kx±/x. Then K* is transitive on

points and has 2 orbits of lines and of (l,2)-flags. Clearly, (6.2) applies to neither K

nor K*. However, by (ii) and (iii) there is a plane E such that KE is point-transitive

on £X/F. By Table IV and (2.18), the failure of (6.2) implies that V has type

5/7(12,2), ß~(12,2), ß+(14,2), 5p(8, q), ß(9, q), ß+(10,i/), ß(2«+l,3) or
ß~(2« + 2,2).

If V has type ß+ (14,2), then r = 22 + 1 | | KE \. Let R E SylrKL. Then Nw is a

(l,2)-transitive subgroup of TO" (10,2), TO+(8,2) or TO+(6,2). In the first case,

24 + 1 divides the number of lines of IF, and (6.2) applies to K. In the remaining

cases, Nw contains ß+ (W) or A7 (by (5.15), (5.21)), and we can proceed exactly as

in steps (II) and (VI) of the proof of (6.2).

If F has type 5/7(12,2), a Sylow 3-subgroup of KE has all its point-orbits on Fx/£

of length at least 9. Thus, there is a 3-group centralizing E but fixing no point of

E±/E. Let R E Syl3Kx[ for x G L. Then Nw is a ( 1,2)-transitive subgroup of

5p(4,2) or 5/7(6,2). Either Nw or (Njx±niV)/x contains 5p(2,4), and we can again

proceed exactly as in (6.2).

If F has type ß(2« + 1, 3), « > 5, let r be a primitive divisor of 3"-3 + 1, and

note that r 11 CK(E) \. Let R E SylrCK(L). Then A^ is a ( 1,2)-transitive subgroup

of TO(7,3). By (6.3 i), it is even flag-transitive, and we obtain a contradiction from

(2.6) just as in step (II) of (6.2).

If F has type ß~ (2« + 2,2), « ¥= 5, let r be a primitive divisor of 2"~2 + 1, and

let R E SylrCK(L). Then N w is a (l,2)-transitive subgroup of TO~ (8,2). By (6.3 i)

and (2.1), | 03(NXW) \> 27. Thus, Nxw fixes a second point y, and is point-transitive

on (x, i')x . Then y- is uniquely determined, and {x, y) is an imprimitivity block for

the action of N on the points of W. Since W has an odd number of points, this is

impossible.
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Consider the remaining cases. If E is any plane then KE is flag-transitive. Thus, by

(2.7 i), CK(E±/E)E is transitive on E. Let F be any 4-space. If E E F then K§F is

transitive. Thus, KF is transitive. This contradicts (ii) and (iii).

Lemma 6.8. TO+ (10, q) has no subgroup transitive on points and having 2 orbits of

each type of5-spaces, 3 orbits of planes and of each type of (1,5)-flags, and 4 orbits of

(1,3>flags.

Proof. Let K be such a subgroup. Let r be a primitive divisor of q3 — 1. There are

two plane-orbits E¡K, i= 1,2, such that KE is transitive on E¡. In particular,

r 11 KE |. Let R E SylrK; note that a Sylow /--subgroup of TO+ (10, q) is cyclic, and

fixes exactly 2 planes.

We may assume that R fixes Ex and E2. Clearly, R centralizes Ef /E¡. Let M be a

5-space containing Ex. Since R fixes only one plane of M, Sylow's theorem shows

that M contains no member of E2. But there are only 2 orbits of 5-spaces having the

same type as M. Thus, we can choose Ex so that Kff is transitive (recall that there

are 3 orbits of each type of (1,5)-flags). Now (5.5) implies that K^ s* 5L(5, q).

Set Q = Op(TO+ (V)M). Then Q is elementary abelian of order qw, and Kff acts

on Q as it does on skew-symmetric 2-tensors. Hence KM acts irreducibly. Since Q

contains long root groups, we have Q n K = 1 by (2.4). Since H](SL(5, q), Q) = 0

(Jones and Parshall [30]), KM must fix a second 5-space. But then KM contains long

root groups, which is not the case.

Lemma 6.9. If Kis a (l,2)-transitive subgroup of TO+ (14, q), then K^iï+(l4,q).

Proof. Let d and r be primitive divisors of qs + 1 and q2 + 1, respectively. Note

that d divides the number of lines. If D E SyldK, then Cy(D) has type ß~ (4, q). By

Sylow's theorem, r | \NK(D)\. An element of order r in NK(D) cannot act nontrivially

on [F, D]. Thus, r | | KL | for some line L.

Let R G SylrK¡, and define IF and N as usual. Then IF has type ß+(6, q) or

Q~ (10, q), and A^is (l,2)-transitive. The first possibility for A^is handled as in

(6.2) (cf. (5.15)). If IF has type ß~ (10, q) then (q3 - l)/(q - 1) divides the number

of lines of W, so that (6.2) applies with s = q3 — 1.

Remark. A similar argument deals with (l,2)-transitive subgroups of ß (2m, q)

whenever m is relatively small.

7. Theorem 1.1: Reductions. Let G and K be as in (1.1), but assume that the pair

G, K is not listed in that theorem. We will assume, until §9, that G actually acts on

the vector space F as a group of semilinear maps. We may also assume that

rad V = 0. The case of V of type ß+ (6, q) will be postponed until §10.

Note that A' is a maximal subgroup of G.

Write <p=l£=l+x + f with x and f irreducible characters.

Let B be a Borel subgroup of G. To each irreducible character (a \ ß) or (a \ a) '

of the Weyl group of G there naturally corresponds an irreducible constituent of 1%,

also called (a | ß) or (a \ a)~ , as explained in §4.
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Throughout §§7-9, frequent reference will be made to Tables II and III of §3.

Recall from §4 the fact that, for example, the permutation character 1(12;« — 2)

appearing in Table II is just the permutation character 8X2 of G on the set of

(l,2)-flags of V. The proof of (1.1) will involve computing inner products of <p with

several such permutation characters. Some such characters not explicitly listed in a

table are implicitly in the table, because of (4.4); for example, 823 = 8X3. Most

relevant inner products for Dn are in Table II, not Table III, because of (3.5, 6, 7);

consequently, we will be able to deal with ß+ (2«, q) and 0+ (2«, q) simultaneously

in most situations.

Lemma 7.1. Every noncentral normal subgroup of K is irreducible on V.

Proof. Let N be a noncentral reducible normal subgroup, and let IF be a minimal

proper A'-subspace. Then rad W = 0 or W. If N = K, it is straightforward to check

whether G has rank 3 on WG; only instances on our list can occur (namely, (1.1 i, ii,

iii, iv) arise in the present context). Thus, K is irreducible and (by Clifford's theorem)

V — Wx © • • • © Wr with Wx = W and each W¡ an A^-subspace conjugate to IF,

under K. The maximality of K forces K to be the stabilizer of the set {IF,,..., IFr}.

Once again it is easy to check whether G has rank 3 on Wc.

Lemma 7.2. // « 3= 2 and K is transitive on points then K contains no long root

element.

Proof. Deny! Then the subgroup N of K generated by long root elements is

irreducible by (7.1), and N = (tN) for some long root element / by (2.3). Thus, (2.4)

applies. (This time, (1.1 viii, ix, x) arise.)

Lemma 7.3. We may assume that yëIJ.

Proof. If (<p, 1^) = 1, then Seitz's result (2.6) applies if « s» 2. If « = 1, then K is

transitive on points, so that (2.7), (2.8) and Dickson [12, Chapter 12] can be used to

find K. In all cases, it is straightforward to check whether or not K is maximal and G

has rank 3 on G/K. (The cases (1.1 v, vi, vii) occur here.)

Lemma 7.4. f G 1%, except perhaps if G is Sp(2n,2) and f is (« — 1,1 | 0),

(« - 1 | 1) or (0|«).

Proof. Suppose <jp C lcB. Then, excluding the stated possibilities for f in the case

5/7(2«, 2), we have | G : K\= <p(l) = 1 (mod p) by (4.7). By (2.2), K is then reducible

on F. (The cases (1.1 i, ii) appear here.)

Convention. Throughout §§7, 8, we will assume that f <$. 1%. The inevitable

5p(2«, 2) case will be dealt with in §9.

Lemma 7.5. « > 2.

Proof. By (7.3, 4), K has 2 point-orbits, so that (2.8b) applies when « = 1. If

n = 2, then x G 0, or 82, or x = 1% ~ 8X - 82 + lc (by 4.5(i) and Table II). Then

using Table II in order to compute (<p, lGB), we find that (5.13) or (5.14) applies. The

rank on G/K is straightforward but tedious to check geometrically. (The cases (1.1 v,

vi, vii) occur here.)
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8. Transitivity. The most enjoyable part of the proof of (1.1) is the following

crucial fact.

Theorem 8.1. AT is transitive on points.

Proof. Assume that K is not point-transitive. Then (x>#i)= L so that x =

(« — 1, e | 1 — e) for e = 0 or 1, and K has just (<p, 8X)= 2 point-orbits ß, ß'. By

(4.5) and the argument following it, we have (q>, 8n_e)= 2 and (q>, 8Xn_e)= 3.

Thus, A" has 2 orbits on (1, « — e)-flags (of each type if G has Weyl group W( /),,)).

There must then be an « — e-space whose stabilizer is transitive on its points; we

may assume that ß contains this n — e-space. By (2.13) there is an « — e-space W

not in ß which contains an « — e — 1-space of ß.

Since flags behave differently for types Bn and Dn, we will consider these cases

separately.

Type Bn. Each flag has the form (Vx,V2,...,Vn), and there is an / with Vt E ß,

V¡+1 (£ ß. Flags having different values of / cannot be in the same A^-orbit. Every

value of / between 0 and dim W = n — e can occur (using an /-space inside IF n ß if

/ < n — e). However, by (4.5) we have (<p, 1^)— 1 + « — e, so any two flags with

the same / are in the same AT-orbit. Set / = 0, and apply (2.16) with x = F, in ß', in

order to see that K is listed in (1.1).

Type Dn. Each flag has the form (Vx,...,Vn_2,V„,VJ where F„ and F„' are

«-spaces on an « — 1-space Vn_x D F„_2, and are in different G-orbits.

Once again, K has (9,1^)= 1 +« — e flag-orbits. As above, at least « — 2 of

these are accounted for by flags having Vn_2 (£ ß. We will exhibit 3 — e orbits of

flags having F„^2 Ç ß.

By (4.5), there are (<p,82)= 2 orbits of lines: those contained in ß and those

meeting both ß and ß' (the latter type can be seen in IF). In particular, ß' contains

no « — 1-space. By (4.5), there are (<p, 8n_x)= 3 — e orbits of « — 1-spaces and

(<p, 8X „-,)= 4 — e orbits of (1, « — l)-flags. There are thus 2 —e orbits of

« — 1-spaces contained in ß, and one further orbit of « — 1-spaces. One of the latter

« — 1-spaces contains an « — 2-space in IF n ß. Thus, each of the 3 — e orbits of

« — 1-spaces has a member containing a I^_2 contained in ß. This produces at least

3 — e further flag-orbits.

As before, (2.16) applies, and completes the proof of (8.1).

Remark. Cases (iii)-(v) of (2.16) clearly cannot occur in (1.1). Also, ß(7,3) has

rank 4 on the cosets of W(EJ, with 4 distinct subdegrees (Fischer [17, (15.3.16)]).

Lemma 8.2. x G 82 or 83.

Proof. If x ? 82, 83 then (by Tables II and III) K is transitive on points, lines and

planes, so that (6.4) applies. (Recall that the case of ß+(6, q) has been postponed

until §10.)

Lemma 8.3. Either « < 3 or V has type ß+ (8, q).

Proof. Assume that « > 4 and F does not have type ß+ (8, q). Suppose first that

X ¥= (n — 2 I 2), (« — 3 | 3). By Tables II and III, x Í i„, so that K is transitive on
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«-spaces (of each type, if G has type Dn). Again by those tables, K has at most 2

orbits of lines and 3 orbits of (1,2)-flags. Then by (6^5), K has 2 line-orbits. Thus, x

is (« - 2,2 | 0) or (« - 2,1 | 1). By Tables II and III, K has at most 2 orbits of

planes and (1, «)-flags (for each type of «-spaces in the case of ß+(2«,<7)). If

X = (« - 2,2 | 0) then K has 3 orbits of (2,3)-flags. If x = (« - 2,11 1) then K has 2

orbits of planes and (1, «)-flags (for each type of «-spaces), 4 orbits of (2, 3)-flags

and 7 orbits of (1,2,3)-flags; moreover, if « = 4, there are 9 orbits of flags by Table

II and (4.5 i). Thus, (6.5') eliminates this possibility for K.

Now suppose that x — (n — 2 \ 2). Again by Tables II and III, K is point-transitive,

has 2 orbits of lines, planes and (l,2)-flags, and 3 orbits of (2,3)-flags (except when

G has Weyl group W(D5), in which case there are 4 such orbits); and if n — 8, then

K has 2 orbits of planes and 3 of (3,4)-flags. By (6.6), G must have Weyl group

W(Di). But here, Table III implies that K has 2 orbits of each type of 5-spaces, 3

orbits of planes and each type of (l,5)-flags, and 4 orbits of (l,3)-flags. Thus, (6.8)

eliminates this case.

Finally, suppose that x = (« — 3 | 3). We may assume that G does not have Weyl

group W(D5) (as otherwise we are back in the case (3 | 2) by Table III). This time, K

is (l,2)-transitive, has 2 orbits of planes, (1,2,3)-flags and 4-spaces, and 3 orbits of

(3,4)-flags (except that there are 4 such orbits if G has Weyl group W(D7)). Now

(6.7) and (6.9) eliminate this case.

Lemma 8.4. n ¥= 3.

Proof. Suppose that n = 3. By (8.1), (8.2) and Table II, x = (1,1 | 1), 0 | 2) or

(0 | 3).
If x = (1,1 | 1), then (by Table II) K is transitive on points and planes, has 2

orbits of lines and ( 1, 3)-flags and 3 orbits of ( 1,2)-flags. This is impossible by (5.16).

If x = 0 I 2), then K is transitive on points, has 2 orbits of lines, planes and

(l,2)-flags, 3 orbits of (l,3)-flags and 4 orbits of flags. Then (5.19) describes all

possible groups K, and (5.20) discusses which produce rank 3 permutation

representations.

Finally, if x = (0 I 3), then K is (l,2)-transitive and has 2 orbits of planes,

(1, 3)-flags and flags. This is impossible by (5.18).

Lemma 8.5. V does not have type ß+ (8, q).

Proof. Suppose that V has type ß4 (8, q). Define G+ = ß+ (8, q), K+ , <p+ and

X+ asin(4.1).Then<<p+ -1 - x+ , \%" >= 0.

If <x+ - #2>~ 0'tnen K+ is transitive on points and lines. This contradicts (5.21).

Thus, x+ C 62. If x+ G 8X, the proof of (8.1) applies with K+ in place of K.

Consequently, x+ E 82 — 8X.

Suppose that x+ — (2 | 2)* . Let t denote a triality automorphism of Fß+(8, q),

and consider (K+ (-l)/(-l))T. This group behaves as in the preceding paragraph,

ifX + T = (3,l|0).

Thus.x4- = (2,2 | 0), (2,1 | 1) or (2 | 2).
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If x+ — (2,2 | 0) then (by Table III) K+ is transitive on each class of (l,4)-flags,

and has 2 orbits of lines, (1,2)-, (1,3)- and (2,3)-flags and 3 of flags. Since x+ is

T-invariant, K+ also has 2 orbits of each class of (2,4)- and (1,2,4)-flags. By (5.22),

K+ is W(EJ, embedded in ß+ (8,3). Then G has rank at least 4 on the cosets of K

(Fischer [17, (18.3.12)]).

If x+ = (2,1 | 1) then x+ is again T-invariant. Now Table III and (5.23) yield a

contradiction.

Finally, if x+ = (2 | 2) then G has type B4, and x — (2 | 2). This time, Table II and

(5.25) yield a contradiction.

9. Proof of Theorem 1.1: Conclusion. In view of §§7, 8, the proof of (1.1) is

complete except for two situations: (A) G = 5/7(2«, 2) and cp E lGB; and (B) G has

elements not arising from semilinear transformations of V. (Recall however, that the

case of Kof type ß+ (6, q) has been postponed until §10.)

(A) G = 5/)(2«, 2), « 3= 3. (Of course, 5/7(4,2) s 56.) By (2.2), \G: K\ is even.

Thus, by (4.7), <p = 1 + x + s with f = (« - 1,1 | 0), (« - 1 | 1) or (0 | «).

Lemma 9.1. 22"~31 <p(l). In particular,

(i)2"~' is the highest power of 2 dividing x(l) if Ç is (n — 1,1 \0) or (n — 1 | I), and

(ii) 4 is the highest power of 2 dividing x(l) if'? = (0 | «)■

Proof. Set Q = CG(xx/x), and consider its action on the <p(l) cosets of K. The

orbit of K has length | Q : K n Q \. By (7.1), (2.3) and [33], K n Q does not contain

long root elements of ß(2« + 1,2). By (2.1), | K n Q |< 4. Thus, | Q |/4 = 22""3

divides (p(l) = 1 + x(l) + fO). By (4.7), <p(l) = 2"-'(2" ± 1) + X(l) or

4(22""3 + 2"~2 + 2"~3 + l)/3 + x(l)- Assertions (i) and (ii) are now immediate.

Lemma 9.2. Ifn>4 then x G 823.

Proof. Suppose that x £ 823. If f = (0 | «) then (6.4) applies (by Table II). Thus,

t — (n — 1,1 | 0) or (n — 1 | 1). By Table II, K has 2 orbits of points, lines and

planes, and 3 orbits of (1,2)-, (1,3)- and (2,3)-flags. Call the point-orbits ß and ß'.

We may assume that ß contains a plane. Then each line meets ß' in 0 or k points,

for some k > 1. By (2.11), k = 1.

Let x G ß\ Then Kx is transitive on the planes through x. If r is a primitive

divisor of 2"~2 + 1 (use r - 23 - 1 if « = 5), then r\\Kx\. Let RE SylrKx, and

set W = CV(R), N = NK(R) and C = Q(IFX) as in §6. Then Nw is a subgroup of

5/7(4,2) having at most 2 orbits of points and lines. Since k = 1, it follows that

| W n ß | = 5 and Nw> ß~ (4,2). Then Cw t> ß~ (4,2) as well.

Set Q= CG(x±/x). Then |Cn Q\=4. Since A^/l is point-transitive, (2.1)

implies that K > Q, which is ridiculous.

Lemma 9.3. « < 4.

Proof. Suppose that « > 5. Using Mayer [35, (1.1)], we find that 8X3 has 15

irreducible constituents, 12 of which have even degree. Of these, only the character
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(« - 3 | 3), « ss 6, has degree = 4 (mod8), by (4.8). Suppose that f = (0 | «). By

(9.1), x = (»- 3 | 3). By (4.8),

\G:K\= 4(22""3 + 2""2 + 2"-3 + l)/3 + 4(22" - 1)(22"~2 - 1)(2"-2 + 1)/315

is not divisible by 22"~3. Thus, f ^ (0 | «) by (9.1).

By (9.2), xe#23< and by (9.1), x(l) = 2B_I (mod2"). By (4.8), x must be

(3, 1 | l2), (3, l21 1) or (2 | 2,1). However, 1 + f(l) + x(l){ | G | in each of these cases.

Proposition 9.4. There is no counterexample to (1.1) when G = Sp(2n, 2).

Proof. We must eliminate the cases « = 3,4. Let « = 4. As in (9.3), we find that

<p is (4 | 0) + (3,1 | 0) + (2, l21 0) or (4 | 0) + (3 | 1) + (2, l21 0). In neither case is

there a divisor d of \G\ such that <p(l)d(<p(l) — d — l)/xO)?(l) is a square,

contrary to Frame's theorem [62, (30.1)].

Similarly, if « = 3, a routine calculation shows that there are only 3 characters

<p C lg such that (<p, 1)= 1, (()D, <p) = 3 and <p(l) 11 G|. Once again, none of these

satisfies Frame's theorem. This proves (9.4).

(B) Graph automorphisms. There are two cases to consider: Sp(4,2e) and

Fß+ (8, q). (The graph automorphisms of ß+ (2«, q), « > 4, of order 2 were already

considered when we discussed 0+ (2«, </).)

As usual, we have <p = 1 + x + f- Define K+ , <p+ , x+ > f+ and B as in (4.1). By

(2.6), we may assume that (<p+ , 1% )> 1. By (4.Id), we may assume that x+Clj .

If <p+ Ç lg+ then (2.2) applies by (4.7), except in the easy case 5/7(4,2). We may thus

also assume that (f+ , 1% )— 0.

Suppose that 5/7(4,2e) < G < Aut 5/7(4,2"). If x+ is irreducible, use (5.6). If x+ is

reducible then x+ — (L 1 | 0) + (0 | 2). Here, K+ has 3 point-, line- and flag-orbits.

No such group exists. (If L is any line then (K+ )L would be transitive, and hence

K+ would be point-transitive.)

Next suppose that Fß+ (8, q) < G < Aut Fß+(8, q). If x+ is irreducible, the

arguments in §§7, 8 apply with K+ replacing K. We may thus assume that x+ is

reducible. By Table III, 82 is G-invariant, so x+ Q 82 by (5.22). Again by Table III,

X+ must be a sum of 2 or 3 of the characters (3,1 | 0), (2 | 2)+ and (2 | 2y .

By (5.25), the case x+ = (3,1 | 0) + (2 | 2)+ +(2 | 2)~ is impossible. If x+ has just

2 irreducible constituents, we can use AutFß+(8, q) in order to assume that

X+ = (2 | 2)+ +(2 | 2y . In this case, G < Fro+ (8, q), and G has type B4. Thus, this

case was handled in §§7, 8.

This completes the proof of (1.1).

10. Proof of Theorem 1.2. The more complicated results appearing in §§2-5 are

not required for ( 1.2), as the following remarks indicate.

Remark 10.1. We will require (3.8) when 8¡ is regarded as the permutation

character on /-spaces of a group lying between 5L(«, q) and TL(n, q), and when 8tj,

etc., are viewed similarly. The assertions in (3.8) can then be proved directly and

easily as follows. For (i), consider (8¡_x, 8¡_x), (6¡, 8¡_x) and (8¡, 8¡). Statements (ii)

and (iii) are especially easy. For (iv)-(vi), proceed as in the following example. In

order to compute (83 — 82, 834), calculate the number of orbits of the stabilizer of a

(3,4)-flag in its actions on both 3-spaces and 2-spaces, and subtract.
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Remark 10.2. From §2, we will require the relatively elementary results (2.7, 2.15).

All transitivity results in §5 will be avoided. Instead, we will refer to [23], [58], [46],

[31], [32] for transitivity statements. It should be noted that the results quoted from

[32] are merely simple cases of Perin's method, and should be straightforward

exercises for anyone who has read [46] or examined (6.1, 2).

We now begin the proof of (1.2). We are given PSL(n, q) *£ G *£ Aut PSL(n, q)

and K < G. Define G+ = G n FTL(«, q), K+ , <p, <p+ , x, x+ , f, f+ and B as in

(4.1).
If <qp+ , lg >= 1 then K+ is flag-transitive. Thus, Higman [23] can be applied if

« > 2, while Dickson [12, Chapter 12] provides a short list to check if « = 2.

Similarly, if n = 2 and (<p,lGB)^l then <cp, F¿>=2 and K has exactly 2

point-orbits. This time a longer list of possibilities for K D SL(2, q) can be obtained

from Dickson [12, Chapter 12]. In most cases there are elementary geometric

arguments showing that the rank of G on G/K is greater than 3. The remaining ones

are dealt with by arithmetic arguments. (For example, | <L7 : AT | — 1 — q is divisible by

the degree of an irreducible character of PSL(2, q), namely, q ± 1 or \(q ± 1).)

If (p+ E 1GB\ then | G+ : K+ |= 1 (mod p) by (4.7). (This simple case of (4.7) is

implicit in Steinberg [55]; cf. [9, (5.9)].) Thus, (2.2) applies.

In view of (4.1), we may assume that x+ Q !%■ and (f+ , 1%+ ) = 0. Note that x+

is irreducible. For, by (4.1 c), x+ is a sum of characters conjugate in G, while each

irreducible constituents of 1% is G-invariant. (In order to see this, note that the

permutation character of G+ on (/,,...,/,)- and (« — /,,...,« — /,)-flags coincide,

as in (4.3). Since every constituent of 1% is a linear combination of such permutation

characters by Steinberg [55] or (4.2), this implies the desired invariance.)

At this stage, we no longer require information of a rank 3 nature. All that is

needed is the following more general result (in which our notation has been altered

somewhat).

Theorem 10.3. Let SL(n,q)< G <TL(n,q), where « > 2. Let B be a Borel

subgroup of G, and let K < G. Assume that lGB and l£ have a common nonprincipal

irreducible constituent x sucn mat 0% ~ 1 ~ X' 1«)= 0- Then one of the following

holds (with the obvious embedding):

(i) K fixes a point or hyperplane;

(ii) K> 3 -A6, inside TL(3,4);

(iii) K > 5/7(4, q), inside TL(4, q);

(iv) K = A6, inside TL(4,2); or

(v) K > 5L(2, q2), inside TL(4, q).

Remark. In the context of (1.2), only (ii), 5/7(4,2) and 5/7(4,3) can arise,

corresponding to (1.2 iv, v, vi). For, (i) and (iv) clearly cannot occur, by primitivity.

Examples (iii) and (v) are best viewed by passing to TO+(6, q), where they

correspond to subgroups of the stabilizer of an anisotropic 1- or 2-space; from this

perspective, it is easy to check for the rank 3 property.

Proof of (10.3). We will proceed in several steps. Let V denote the underlying

vector space.
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(I) Suppose that x = 8X - 1 is the reflection character. By (3.8), K then has 2

orbits of points and hyperplanes, and 3 orbits of (1, « — l)-flags. Thus, K has a

point-orbit ß containing a hyperplane. By (4.5) (or a simple argument as in (10.2)),

there are 1 + (« — 1) flag-orbits. Each flag has the form (F,,..., F„_,) with V¡ C ß

and Vi+X <J ß, for some i. This accounts for « possibilities, one for each / between 0

and « - 1. Thus, if x G ß then Kx is flag-transitive on F/x. By (2.15), (i) or (ii)

holds.

(II) From now on, we may assume that K is transitive on points. By (2.7 i), « > 4.

Assume that x ^ 82 — 8X. Then K is line-transitive. By Kantor [31], [32], K is

2-transitive on points and « > 10. (The only possible counterexample given in [31] is

a Sylow 31-normalizer in 5L(5,2), which has 7 orbits of (1,3)-flags.) By Perin [46], K

is intransitive on 4-spaces, and even on planes if q > 2. Thus, x is 83 — 82 or 84 — 83.

Suppose x = 83 — 62. By (3.8), K has 2 plane-orbits and 3 orbits of (3,4)-flags.

Thus, there is a plane E such that KE is transitive on the (q"~3 — T)/(q— 1) points

of V/E. By (2.18), q"~3 - 1 has a primitive divisor. Thus, K > SL(V) by [32, (5.2)].

Similarly, if x = 84 - 83 and q = 2 then 2""4 — 1 11 K |, and [32] again shows that

K^ SL(V).

(III) Thus, x = 02-#i-

Suppose « = 4. By (3.8) and (5.5), (iii), (iv) or (v) holds.

This completes the proof of (I. I) when K *£ TO+ (6, q).

Remark 10.4. In view of remarks (10.1, 2), it seems desirable to outline a more

direct argument when « = 4, in order to avoid using (5.5). Note that A' is transitive

on points and planes, has 2 orbits of lines, (1,2)- and (l,3)-flags, and 3 orbits of

flags. Let F be a plane. By (2.7), KE fixes a point, line or (if q = 4) a hyperoval. If

KE fixes a hyperoval, then | Z(KE) | = 3, and Wagner [60] applies.

Suppose that KE fixes a point x. Then KE — Kx. Here, x *-* E defines a symplectic

polarity. (For, Kx is transitive on the q + 1 lines of E through x, and on the

remaining q2 lines through x. Let (x, y) be one of the latter lines. Then Kx^xy^ is

still transitive on the aforementioned q + 1 lines, by (2.12). Thus, Kxy cannot fix any

plane on both x and y.) Since Kx has just 2 line-orbits, it contains all transvections

with direction x. Thus, if x G L C E then Kx is transitive on L — x. Now

KL^SL(2,q). Also, q\\CK(L)\. Applying (2.1) to TO(5, q), we find that

CK(L) s* Op(GL) if q > 2. Thus, (iii) or (iv) holds.

Next suppose that KE fixes a line L. Then KE is transitive on the remaining lines

of E, so that L is the only member of LK lying in E. Consequently, | LK \ = q2 + 1,

and LK partitions the points of F. Note that Op(CK(L)E) is transitive on E — L, and

hence on LK — {L}. It follows that LK is uniquely determined up to

GL(4, 4)-conjugacy [10, pp. 130-131]. Hence, (v) holds.

(IV) From now on we will assume that « s* 5 in order to eventually obtain a

contradiction.

Since x = #2 ~~ 0i> (3-8) implies that there are 2 orbits of lines, planes and

(1,2)-flags, 3 orbits of (2,3)-flags and 4 orbits of (1,2,3)-flags. Thus, there is a plane

E such that KE is transitive, and a plane E' such that KE. has 2 point-orbits. Then

ATf,' has at least 3 flag-orbits, and hence KE is flag-transitive.
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There is a line L contained in E' but contained in no member of E . Then KL is

transitive on the points and hyperplanes of V/L. Consequently, if H is a hyperplane,

then K„ is transitive on those members of LK lying in H.

Similarly, there are 2 orbits of (1,2,3)-flags on the form (x, L, E'), and hence also

2 of the form (x, L, H). Thus, KEH has 2 point-orbits.

By (3.8), K" has 2 point-orbits (called ß and ß'), 3 line-orbits and 4 orbits of

(1,2)-flags. Thus, L Ft ß and LDfi' are the orbits of KEH, and only lines in LK can

meet both ß and ß'.

Again by (3.8), A' has 3 orbits of (1,3)-flags and at most 5 orbits of (1,3,4)-flags.

Thus, KxT is point-transitive on V/T for some (1,3)-flag (x, T).

(V) Assume that Kx fixes a proper subspace U(x) D x. Since KL is transitive on

V/L, U(x) is either a line or a hyperplane.

If U(x) is a line, then U(x) = L and no two members of U(x)K meet nontrivially.

Then T meets q2 or q2 + q + 1 members of LK in just one point, and KxT has a

point-orbit on V/T of length at most q2. Since ATx7- is transitive on V/T, this is

impossible.

Thus, U(x) is a hyperplane. As in (10.4), x <-» t/(x) defines a symplectic polarity.

However, Kj/T cannot be transitive in a symplectic geometry.

Thus, Kx/x is irreducible. Dually, so is K".

(VI) That « ^ 5 follows from (5.5).

Alternatively, since KE is flag-transitive, KEH is transitive whenever H D E (by

(2.7 i)). Thus, (2.15) shows that Kjj cannot be irreducible.

(VII) Thus, « s* 6. By (3.8), Kfj has 3 plane-orbits, 5 orbits of (l,3)-flags and 7

orbits of (1,2,3)-flags. By (2.7 iii), two of these plane-orbits produce subgroups of

TL(3, q) having 2 point-orbits and 3 flag-orbits, while the third produces a

flag-transitive subgroup.

We may assume that L E E' E H. By (2.7 ii), KEE,H has orbit lengths 1 and q,

except perhaps if q = 4 and the lengths are 2 and 3.

(VIII) If | L n ß | = 1, then any line meeting ß twice must be contained in ß. (For,

we have seen that A"/,' has a unique orbit of lines meeting both ß and ß'.) Thus, ß is

a subspace, and this contradicts (V).

Consequently, q = 4 and KE' > 3 -A6. Also, KE > 5F(3,4). Let r be a primitive

divisor of 4"~3 - 1, and let R G SylrKxT. Then R centralizes T, and NK(R)T = K£

by the Frattini argument. It follows that A^r([F, R])T contains transvections, and

hence so does K, which is ridiculous.

This contradiction completes the proof of (10.3), and hence also of (1.2).

11. Remarks concerning Theorems 1.1 and 1.2.

(A) Just as in the case of (1.2) and (10.1), the proof of (1.1) did not make full use

of the rank 3 hypothesis. The crux of the argument was the following companion to

Seitz's flag-transitive theorem (2.6).

Theorem 11.1. Suppose that V has rank at least 2, but is not of type ß+ (4, q) or

ß+ (6, q). Let Chev(F) < G ^T(V), and let K < G. Assume that there is an irreducible

character x common to lGK and lg such that (1% — X, <b) = h where B is a Borel
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subgroup of G. Then one of the following holds, with K embedded in T(V) in the natural

manner:

(i) K 3* Chev(H)' for a nonsingular hyperplane H, where V is orthogonal or unitary

andx = (n- l\T) or (n- 1,1 | 0);

(ii) F, K and x are given in Table V; or

(iii) K arises from Table V via one of the isomorphisms PSp(4, q) = Fß(5, q),

PSU(4, q ) = Fß" (6, q), or ß(2« + 1,2') = 5/7(2«, 2').

The proof proceeds exactly as in §§7, 8. However, more care is needed in checking

the examples occurring in the course of the proof. This is accomplished as follows. K

has (lGK, 8X) < 2 point-orbits; this eliminates most instances. In order to then verify

that a prospective example behaves as desired, one computes the number of

flag-orbits geometrically. If K is not point-transitive, (4.5 i) is used; for example,

(11.1 i) is checked by reversing the proof of (8.1).

(B) Imprimitive rank 3 groups. In order to underscore the previous remark we

observe that Theorems 1.1 and 1.2 can now be generalized to include imprimitive

rank 3 groups. For example, if G<T(V) as in (1.1) and G acts on G/K as an

imprimitive rank 3 group, then one of (2.6), (11.1) or (2.2) applies depending upon

the number of parabolic characters in the associated permutation character.

Comparing the resulting list of groups with those in the main theorem of [9] (and

using the fact that G acts 2-transitively on a system of imprimitivity) we have:

Theorem 11.2. Let G be as in (11.1) and let K < G. Assume that G acts as an

imprimitive rank 3 group on G/K. Then ß ± (2«, 2) = K < 5/7(2«, 2) = G.

In order to see that these are rank 3 representations, view 5/7(2«, 2) as the

stabilizer of a nonsingular point in 0± (2n + 2, 2) and let K be the centralizer of a

nonsingular 2-space on x not in xx . In a similar manner we obtain:

Theorem 11.3. Let G be as in (10.1) and let K^G. Assume that G acts as an

imprimitive rank 3 group on G/K. Then either K = A7 < 58 = Aut PSL(4,2) or K

has index 2 in the stabilizer of a point or hyperplane.

(C) Other Chevalley groups. It would be worthwhile to extend the methods

presented here to the other Chevalley groups. Clearly, transitivity questions would

have to be handled somewhat differently, due to the seeming lack of a convenient

module. The known examples of rank 3 representations are as follows: (i) E6(q)

on either of two classes of parabolic subgroups; (ii) G2(2) = PSU(3,3) -2 as in

(1.1 x); and (iii) G2(4) on a class of Hall-Janko subgroups (Suzuki [56]).

(D) Although we have dealt primarily with T(V), it may be helpful to observe that

our main theorems could have been proven by working entirely inside Chev(F).

While we have chosen the present exposition hoping that some of our numerous

intermediate technical results might find greater application, such "linearization"

might be necessary to deal with the other Chevalley groups. This kind of restriction

is facilitated by (4.1), (4.4) and the following lemma.
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Chev(V)

Table V

A normal subgroup of K Reference

ß+(8,</) ü(l,q) or 2-9.(1,q)

A 9, q =2

C2|2) * or

(3,l|0)

2-ß+(8,2),9 =3 (2,2|0)

(2.16) and

triality

(5.22)

ü(l,q) G2(q)'

PTL(2,q3),q = 2 or 8

(l|2)

5/7(6,2), q =3 (2,l|0)

(5.19)

(2.16)

5/7(6,2) 3PSU(4,3) (2|l) (2.16)

5/7(5,2) Z34 y\A5 (111) (5.14)

5/7(4,9) Sp(4,q)'

4-Z$ PSL (2,5) or4-Z24vl6 , q = 3 (ill)

4PSL(3,4),q =3 (0|2)

Z23 Xl/14, q =2

5/7(3,2)" XZ8, 9 =2 (1,110)

(5.14)

(5.13)

(5.13)

Sp(4,q) SL(2,q) XSL(2,q)

tt+(4,q), q even

5F(2,3)/X5F(2,3)', q =3

2-Z24-A4,q=3

Z],q=3

(ill)

Sp(2,q2)

2-Z24 X DX0,SL (2,5), q =3 (0|2)

Q   (4,q), q even (Filo)

(5.14)

(5.13)

(5-13)

Lemma 11.4. Suppose G r> G+ and K+ = K n G+ /or some A: «= G. Suppose x is an

irreducible character of G such that <x, l£) ^ 0. Ifx+ = X |G+ is irreducible then

(i^x)=(if+,x+)-
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Proof. By Frobenius reciprocity and the fact that 1GK = (l£*)G, it suffices to

consider the case G = G+ K. In this case,

<if+,x+)=(if,x)=(2"(i)"c,x)=2-(i)(^,x|//>

where the summations range over the irreducible characters w of K with kernel

containing K+ . The irreducible constituents of (x+ )G are of the form x+ <p where <p

is an irreducible character of A" with kernel containing A"+ (Isaacs [28, (6.17)]). Since

X is an extension of x+ , Frobenius reciprocity implies x — X+ <P f°r some such <p.

However, an easy calculation shows

(xbr,w)= (x|ä+» V )(<P,«>

for any w as above, and 0 ¥= (x, 1%)— (xU* l/r>(0>l/r> by hypothesis and the

preceding   equation.   Therefore   <p =  1^,    and    the   same   equation    shows

<X |*.«>= <X lie. !*>*«.!„• Thus

(i^,x+)=2"(i)(",x|//>=(i^,x),

as desired.

12. Proof of (1.3). Since K is (l,2)-transitive, by (2.6) and (5.15) we may assume

that d>l.SetQ = Op(TO(V)x); we may also assume that ATI Q= 1, by (2.1) and

(2.4).
Let r be a primitive divisor of qm 2 ± 1, for F of type ü±(2m,q) or

ß(2«i — 1, q); define Ä G SylrKx, W, N and C as in §6. By (2.18), r exists except in

the cases ß+ (10,2), ß~ (16,2), and ß~ (8, q) with q a Mersenne prime, all of which

we temporarily exclude. By Table IV, R ¥= 1.

Note that IF contains no line, while Nw is transitive on ordered pairs of points.

Thus, Nw r>0,~ (4,q) or ß(3, q), while Nw is isomorphic to a subgroup of

TO-(2,qm~2). Consequently, unless Nwx> ß(3, 3), we find that Cw^Q~(4,q),

and hence that C Fl Q ¥= I.

Thus, K « rO(2m - 1,3). Here, | 02(CW) |> 4. Let o be a nonsingular point of

IF whose corresponding reflection / fixes 2 points of W. Set H = (Kh, C)(t). Since

\bTO{V) Fl (X],x2)|= 1 for any pair of nonperpendicular points xx, x2, (t)Kh is

transitive on the set of points not in ox . Since C moves b, it follows that bh G ox for

some « G H. But then tth E K, and tth is in the conjugate 03(TO(V)x.) of Q (where

x' = rad(6, bh)), contrary to our assumption.

We now turn to the excluded cases. If K =£ TO (16,2), use r = 1 and proceed as

before. Note that Ä fixes a 6-space of IFX , and hence that Nw is contained in

TO+ (4,23). However, (Nlv)(x) = A5 is not contained in the latter group.

If K< rO+(10,2), let Ä, G Syl3Kx. Since xx/x has (24 - 1)(23 + 1) points,

\RX\^33. However, rO+(8,2) has no element of order 33, so Rx cannot be

fixed-point-free on xx/x. Let R be a 3-group maximal with respect to having

dim IF > 2, where W = Cy(R); define N and C as usual. If IF has type ß~ (4,2),

the usual approach works. Since an ß+(6,2) space has (23 — 1)(22 + 1) points, W

cannot have type ß+(4,2). If dim IF > 4, it follows similarly that IF has type

ß+(6,2) or ß~(8,2). By Sylow's theorem, Nw is then line-transitive, so that

7 11 N w | and we can proceed as in the preceding paragraph.
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Finally, suppose that K < TO (8, q) with q Mersenne. If L is a line, clearly

KE > 5L(2, q). We may assume that -1 G AT. If « G Syl2 CK(L) n 5L(8, q), then

fi^l. Define W, N and C as usual. Then Nw is (1,2)-transitive, and Nf s= 5L(2, o)

by the Frattini argument. Clearly, dim IF = 4, 5 or 6. If dim IF = 6, then C T) Q ¥= 1

by (2.6) and (5.15). If dim IF = 5 then q = 3orCnQ¥=lby (2.6). If IF has type

ß+ (4, q) then Nw > 0+ (4, q) while Nw± normalizes the 2-group Rw±< TO (4, q);

consequently, q = 3 (as otherwise, Cw > ß+ (4, q) and C Fl Q ¥= 1). We can now

introduce a reflection as before in order to complete the proof of (1.3).

Remark. It should be noted that the linearity assumed by Perin was as superfluous

for his arguments as it was for ours.
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