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TYPE STRUCTURE COMPLEXITY AND DECIDABILITY1

BY

T. S. MILLAR

Abstract. We prove that for every countable homogeneous model & such that the

set of recursive types of Th((£) is 2°, & is decidable iff the set of types realized in &

is a 2° set °f recursive types. As a corollary to a lemma, we show that if a complete

theory T has a recursively saturated model that is decidable in the degree of T, then

T has a prime model.

In this paper all models mentioned will be assumed countable. If 6B is homoge-

neous and realizes either no nonprincipal types [1] or all recursive types [2] then

, . & is decidable iff the set of types realized by 6B is an r.e.
(*)

set of recursive types.

An examination of the proofs involved leads naturally to the conjecture that the

techniques can be combined to prove (*) for those 6£ that are simply homogeneous.

Unfortunately this is false in general [5]. However, if the structure of recursive types

of the theory of & is not pathological, then (*) can be proved for those 6E which are

simply homogeneous. Specifically, the principal result of this paper is to prove that if

â is homogeneous and the set of recursive types of the theory of 6E is 22, then & is

decidable iff the set of types realized by 6B is a 22 set of recursive types. Since every

complete theory's set of recursive types is II2, the result is the best possible, in light

of [5].

Notations and conventions. All types in this paper are assumed complete. A

specific effective first order language L is assumed fixed, as well as an effective

enumeration {a, | i < w} of all formulas of the language. An «-type T is recursive if

the set {/' | a, G r(x0,... ,x„_,)} is recursive, {ju ¡\i < w} is an effective enumeration

of all partial recursive functions fi: u> -> 2. An index e for a recursive type T is a

natural number such that iie is the characteristic function for T relative to {o¡\i < u}.

A set of recursive types is 2° (22) if there is a 2° (22) set of indices for the types in

that set. We will say {T, | / < «} is an effective enumeration of types if there is some

recursive / such that f(i) is an index for T¡, i < w. Ts will denote the first s formulas

(order determined by index) of T Fl {a¡ \i < u}. 8k = 8 if k = 0, and ~~¡8 if k = 1.

{c¡\i < u) will be distinct constant symbols not in L and [xp¡\i < u) an effective

enumeration of all sentences in LU {c, | / < co} such that each sentence occurs
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infinitely often. {c¡\i<u} will be an effective enumeration of [c¡\i < u}<u. If

8(c0, ...,c„)EL(J {c¡\i < w} such that all c.'s occurring in 8 are among {c¡ | i < n),

then

**[(CV"»C'.)] =df3^o---3^0-i3^0+i •••3x,s_13x,VM

3xn8yxQ,... ,x,o_,, c,o, x,o+1,... ,x;j_,, c(j, x/j+1,... ,x„ j.

ü: u X « ^ w is a recursive function that is 1-1 onto and such that if v(i,j) = n then

/<«.(/-), is the exponent of the ith prime in the prime factorization of r. Finally, if

F is a function with domain a, then 'F*' denotes 'Limn^xF(n)'. For other

definitions and conventions, see [2-4].

We begin with several lemmas and interesting corollaries.

Lemma 1. If the set of recursive types of a complete theory «2°, then it is also 2°.

Proof. This is immediate from Lemma 3 of [2].

By the familiar technique of padding, if B is a set of recursive types with an r.e. set

of indices, then it is easy to see that it has a recursive set A of indices. However, to

then say that B is recursive would be misleading, since the question of whether or

not n is an index of a type in B is not equivalent to whether or not n is in A.

However, the use of the term r.e. is not similarly misleading.

Lemma 2. Assume that the set of all recursive types of a complete theory T is 22.

Then for every 22 set A of types of T there is a 2° set of types B D A such that every

type in B — A is principal.

Proof. Assume for notational simplicity that A is a set of 1-types. Let [<p¡(x) | i <

w} be an effective enumeration of all formulas of L(T) in the one free variable

displayed, and let {2(-11 < w} be an effective enumeration (by Lemma 1) of all

recursive 1-types of T. Since A is 22, fix a recursive R(x, y, n) such that {n \

3x\fyR(x, y, n)} is a set of indices for the types in A. We will define f(n, m),

inductively on m and uniformly in n, such that for the recursive h produced by the

s-m-n theorem satisfying f(n, m) = nh(n)(m) for all m, n, < u, the range of h will be

the r.e. set of indices (relative to {tp, | /' < w}), for the desired B. So fix n < w. We

specify that n is active for m — 0. Assume that f(n, m') has been defined for

m' < m. If n is active for m then define /according to:

(a) f(n, m) = ¡i.(n)(m) if

3s > m[/»(.),(w)i and Vr <sR((n)2, rx(n)x)]

and

Tr3x

(b) f(n, m) = 0 if not (a) and

Fl-3x

(c) f(n, m) = 1 otherwise.

A (p/<"-'>(x) A<pWm>
i<m

A ,>/<"•'>(*) A <pm(x)
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If n is not active at m then:

(i) f(n, m) = kif

Th A 9/<"'«(x) <Pm(*) A: = 0,1;

(ii) f(n, m) = 1 — k otherwise, where for the least j such that

A qp/(".') G 2, <P«G2 r fc = 0,l.

If the defining condition is (a) then n is active at m + 1, otherwise n is inactive.

First we claim that / is recursive. The only condition that is not immediate is

when n is active at m, since there is an unbounded quantifier in the defining formula

of (a). However, if ¡i(n)(m) Î , then certainly («), is not the index of a type.

Therefore 3r~]R((n)2, r,(n)x), and so the search in (a) would terminate. Next we

claim that every type in A has an index in the range of h. For suppose 3xV>>

R(x, y, v). Then for an r such that Vy- R(r, y, v) it is easy to see that h(3r ■ 2") is an

index for the type in A with index v. Finally, assume that a nonprincipal recursive

type 2- £ A has an index h(n), in order to obtain a contradiction. Fix the least

subscripted such 2,. Since 2- & A, fix a y such that ~lR((n)2, y,(n)x). So by

condition (a), n is not active for m > y. By the choice of j0 there is an s0 > y such

that A (<Jo rjo/'"-'* G 2 -, j <j0. Since 2 • is nonprincipal, there is ayp,p> s0, such

that

Tv A <p/<"•''>(*)

Then for some m < p we must have A /s

This completes the lemma.

0,1.

<p./(n.<) £ 2^.   the desired contradiction.

Corollary 1. // the set of recursive types of a complete decidable theory T is 22,

then T has a prime model.

Proof. First we take A to be empty in the previous lemma. However, we modify

the subsequent proof so that for <pn consistent with T, f(n,j) is defined so that

F>3x A tp/^ix) A v(x) f(n,n)=0.

Then f(n, m) is defined as in the construction for m> n. Thus h(n) will be the

index of a principal type containing <p„, for those <pn consistent with T. By

well-known results this implies that T has a prime model. In fact, by [1] the prime

model of T is then decidable. Note that this corollary is applicable to arbitrary

complete theories, except of course everything must be relativized to the degree of

the theory involved.

Corollary 2. // a complete theory has a recursively saturated model which is

decidable in the degree of the theory, then the theory has a prime model.

Proof. Every type of a complete theory T which is recursive in the degree of T is

realized in every recursively saturated model of T. Also, if a model & is decidable in
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some degree a, then the set of types realized in â is r.e. in the degree a. Now just

apply the relativized version of the previous corollary. Again by [1], the prime model

is actually decidable in the degree of the theory.

Theorem. Assume that the set of recursive types of Th(6E) is 22 and 6E is

homogeneous. Then & is decidable iff the set of types realized in & is a 22 set of

recursive types.

Proof. The 'only if is immediate. For the other direction fix, by Lemmas 1 and 2,

effective enumerations (2, | i < «} and [T¡ \ i < to} of all recursive types of Th(6t')

and of those types realized in 6E, respectively. It is sufficient to construct a decidable

homogeneous model Q realizing exactly the set of types {T¡ \ i < w}. In fact, we will

only construct the complete diagram of such a model. This will be done by a Henkin

construction that a stage / inductively determines a 6, E {xp¡\i < u). The complete

diagram will be {8¡\i<u}. We adopt the abbreviation Xj= df ^/<y^- Partial

recursive functions f¡, g¡¡: u -* {c¡ \ i < <o}, H¡: w-> (T, | / < co} will also be

inductively defined during the course of the construction. In terms of these functions

we define the partial recursive A¡: œ -* {Cj\j < u), i < w by A0(s) = ( ), and

A5l+i(s) is to be the smallest indexed c, such that

A5,+ x(s) = A5t(s)'fl(s);

A5l+2(s) = A5t+X(s)(ct);

^5t + 3\S) = ^5t + 2\s)^

A5t+4(s) = A5t+3(s) gij(s), where v(i,j) = t; and

■^5t + 5(S) = ^*5/ + 4VÄ);

and of course if there can be no such c¡, then A5l+ x(s) is undefined.

Choices during the construction will be influenced by a set of requirements

{R¡ | / < w} having the natural priority ordering. Loosely speaking, the task associ-

ated with requirement R5n+i will be, for

/ = 0: to ensure that Tn is realized in Q;

i = 1,4: to ensure that candidates associated with requirements of higher priority

have their respective types amalgamated by a r, ;

i = 2: to ensure that (c0,..., c„) realizes a F ; and

i = 3: to ensure that G is homogeneous.

Specifically, we say that R5n+i is t-satisfiedfor qo if

i = 0: T„(fn(t)) U {x„ <p) is consistent;

i = l:H3n(t)(A5n+x(t)) U r„'(/„(0) U H3„_x(t)'(A5n(t)) U {x„<p} is consistent;

i = 2: H3n+x(t)(A5n+2(t)) U H3n(t)'(A5n+x(t)) U {X/, <p) is consistent;

7 = 3: If v(k,j) = n and r.((c0,... ,ck) x) U (x,, <p] is consistent, where F; is a

k + «-type for some v > 0, then T.((c0,.. .,ck) gkJ(t)) U {x,, <p} is consistent; or if

either of the previous conditions fail, i.e. r.((c0,... ,ck) x) is inconsistent or Tj is an

w-type for some m < k, then gkJ(t) — ( >;

i = 4: if v(k,j) = n and gkj(t) # ( ), then

H3n+2(t)(A5n+4(t)) U H3n+x(t)'(A5n+2(t)) U Tj((c0,...,ckygkJ(t)) U {x„ <p}

is consistent; and if the condition fails, then the definition automatically holds.
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Notice that to determine whether or not Rm is /-satisfied for xp¡ is a procedure

uniformly effective in m, t, and i, as long as the construction is uniformly effective.

Various requirements and functions will be associated in an obvious way: R5n — /„;

R5n+\  ~fn> #3„> and^5„+i; R5n + 2 ~ H3n+\>A5n + 2> ̂  ASn + i> R5n + 3 ~ &,,' wheI"e

v(i,j) - n; and R5n+4 — H3n+2, A5n+4, and Ain+5. In the construction that follows,

if a function is defined on an argument t and has not previously been specified as

undefined for t + 1, then its value on t + 1 is to be the same as its value on t. Also,

requirements are either active or inactive at a particular stage.

The construction.

Stage 0. All functions are undefined at 0 (except A0), all requirements are inactive,

andö0=df(c0 = c0).

Stage t = 3s + 1. If 8¡x, — 3x o(x), then for the least indexed c¡ not occurring in

et =df a(c,); otherwise 8, =dt(c0 = c0).

Stage t — 3s + 2. Fix the highest priority requirement Rin+¡, i < 5, that is

inactive. This requirement is now active and

i = 0. If r„ is a k-type, then define fn(t) to be the least indexed cm that is a A>tuple

and no Cj occurring in cm occurs in x, or xps.

i = 1. If A3n+¡(3s) is a Ac-tuple, then let H3n(t) be the least indexed Tm that is a

k-type and such that

Tm(A3n+x(3s)) U T?(fn(3s)) U H3n_x(3sfs(A3n(3s)) U {x,}

is consistent.

i = 2. If /73„(3i) is a Ac-type, then let H3n+X(t) be the least indexed Tm that is a

/c + 1-type and such that

^m(A5n+2(3s)) U H3n(3sf(A5n+x(3s)) U {X/}

is consistent.

/ = 3. Let v~x(n) = (k,j). If 1}is an r-typer < A: + 1 or ry«c0,.. .,ck)x) U {x,}

is inconsistent, then gkj(t) =at( )• Otherwise define gkj(t) as the least indexed cm

that is a (/>-/«-1)-tuple, where r is a /?-tuple, and such that no cu occurring in cm

occurs in x, or xj/3s.

i = 4. If o-'(ii) = (A:, y) and gt>y(3i) = ( >, then //3n+2(0 = //3„+2(3i + 2);

otherwise, if A5n+4(3s) is an r-tuple, then let H3n+2(t) be the least indexed Tm that is

an r-type and such that

rm(¿5n+4(») U H3n+x(3sf(a5n + 2(3s)) U T3Í(c0,...,ck)gkJ(3s)) U {x,}

is consistent.

Regardless of the value of i, 8,=d[(c0 = c0).

Stage t = 3s + 3. I. There is an active Rin+2 such that R¡ is i-satisfied for \pk,

k = 0,l,i<5n + 2; R5m+X is not /-satisfied for n((Xf A ^*)*[^5m+1(3j)]) for either

k — 0 or k = 1 (neither value of k produces /-satisfaction), m < n; and R5„+x is

/-satisfied for l((x, A >r'/)*[^5„+2(3-s)]) for at least one of k — 0,1. Fix the greatest

such n. If ^5n+2(3i) is an /--tuple, then let 2m be the least indexed 27 that is an r-type

and such that 1m(Ain+2(3s)) U {x,} is consistent. [R5n+2 will be referred to as the

controlling requirement.]
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A. '2m(A5n+2(3s)) U (x,, xpsk} is inconsistent for some Ac = 0,1 (actually at most

one). For the least such k, 8, =df xpk.

B. Otherwise. Then 8t =df (c0 = c0).

II. Otherwise. Let mk be the least i such that /?, is not /-satisfied for xpk, or mk = /

if no such /' «s / exists, Ac = 0,1. Now let k = 0 if mQ 3= m„ Ac = 1 otherwise, and

After 0, has been defined let /?5m+, be the requirement of highest priority that is

not (/ + l)-satisfied for (c0 = c0). Then /?y is now inactive and all associated

functions are undefined for js= 5m + i, and if /' = 1 or / = 4, then also for

j = 5m + i — 1.

This ends the construction.

Lemma 3. The construction is uniformly effective.

Proof. The details of this will be left to the reader, but we note that all types

considered are (uniformly) recursive and that if q>(x) E L is a formula consistent

with Tl^éE), then there is always an ; < u such that <p(x) G r,(x).

Lemma 4. (0,■ | / < «} U Th(6B) is consistent.

Proof. This is also easy to check, since in fact 8t is always specified so that

T0(A\*) U {x,+ i} is consistent.

Lemma 5. f*, gfj, //*, A* all exist and {8¡ \ i < w}fLUrg/)? is complete, i,j < w.

Proof. The proof is by induction on the index of the associated R¡. Simulta-

neously we will prove that for all n < w there is a / < to such that for all

<pE R|/'<w}fLUrg^+2    Hf„(A*Sn+x)h[Xl^<i>k]    for some Ac = 0,1.

Since R0 has the highest priority it is easy to see from the construction that

/o* = /o(i) and Ho = !• Now> for each ^■ e L u r8 /o* Ro is (t + l)-satisfied for xLk

for exactly one value of Ac = 0,1. Since R0 has the highest priority, it follows from

the instructions at stages 3s + 3 that for that value of Ac, xpk E {8¡ \ i < w}. This

proves the lemma for R0 and Rx. So assume that the lemma is true for R¡, i < 5n.

Thus //*„_!, A*3n exist and {8¡ | / < u}tLUr%A*n is complete. Thus from the construc-

tion it is obvious that {8¡ \ i < u}xLUrgA*n is in fact H^n_^x(A%n). Since //*„_, and Tn

are both types that are realized in 6, there is a Tk such that //,*„_ ,(x) U Tn(y) C

r^(x, y). (By the choice made in the case /' = 0 of stages 3s + 2 for fn(3s + 2), and

the construction, it is not necessary to invoke homogeneity in order to justify what

follows.) Fix the least such Ac = Ac,. Let /0 be a stage after which every R¡ is always

active, i < 5n. Let /, > /0 be a stage such that for each / < kx, H^'_x(x) U T^'(y) (j:

T,(x, y). Then it is easy to see by the above remark, the construction, and the choice

of /0, /, that for all / >/, + 2 H*n = Tk¡, fn(t) = f„(t + 1) and A5n+X(t) =

ASn+x(t + 1). This completes R5n and R5n+X except to show that {8¡\ i < u}tLUrgA.ii+i

is complete. By the induction hypotheses fix t2 > /, such that for all m < n

for all <p G {xp¡ I i < w}r¿urg/f?m+2 there is a Ac = 0,1 such

that//3*„,USm+1)r[x,2-/].



TYPE STRUCTURE COMPLEXITY AND DECIDABILITY 79

Next fix \ps E L U rg/4|n+1 in order to show that xpk E {8¡\i < u) for some

k — 0,1. By the assumption on the enumeration {xp¡ \ i < <o}, we may assume without

loss that s > t2. Now consider stage 3s + 3. It is enough to show that the defining

case is II, since then 83s+3 is xpk for one of Ac = 0,1. Suppose first that for some

m < n R5m + 2 is the controlling condition in case I. Then for some value of Ac = 0,1

~l((X3J+3'r'/)*[^*m+2]) does (3s + 3)-satisfy R5m+X. Thus by the choice of t2 and (*)

it follows that H*m(A%m+x) r x,2 -n((x3j+2 A tf)*[A*m+2]) for that value of Ac. But

then it is easy to see that R5m+X is not (3s + 3)-satisfied for xpk, which contradicts

the instructions in I. On the other hand xpk is in L U rg A*in+X and so no R5m+2 for

m> n can be the controlling condition either, since RSn+x can only be (3s + 3)-

satisfied for x¡/k for at most one value of Ac. Thus the defining case is II.

In order to prove the lemma for R5n+2, note first that A*in+2 = A*5n+X (c„); so

fix /3 > t2 such that for all / > t3 A5n+X(t) = A%n+X. The completeness of

[8¡\i < u}lLUr&A, +2 is the first claim to be established. Therefore choose any

xps E L U rg A*in + 2 in order to show that xpk G {8¡ \ i < co} for one of k = 0,1. Again

we may assume that s > t3 and just as in the last paragraph the only difficulty

possible is that the defining condition at stage 3s + 3 is LB. However, the argument

is identical to the one in the previous paragraph for eliminating the possibility that

R5m+2 is the controlling requirement for m =£ n. Thus the only new alternative is

that R5n+2 might be the controlling requirement. But then since ^ E LU rg ^*„+2»

xpk can be consistent with the appropriate 2m(^4*n+2) in I. for at most one value of

Ac. Thus the defining condition would be I.A. and so the claim is proven.

We next establish the additional inductive assumption that was asserted, i.e. that

(*) holds for m = n. Assume that it fails in order to obtain a contradiction; thus for

every / < u there isa^ELUrg A*5n+2 such that

(t) H*n(A*5n+x)V(Xl^xpk),       Ac = 0,1.

Now by Lemma 1 and what has just been established, {ö,-| / < w}t¿Urg/(. is a

recursive type of Th(6E) and so is a 2¿ for some i < w. Let m be the least such /'. By

the choice of m fix t4 > t3 such that either 2, is not a Ac-type, where A*in + 2 is a

Ac-tuple, or ~2¡(A%n+2) U {x,4} is inconsistent, / < m. By our assumption, there is a

^GLUrg.4|„+2 satisfying ffJU^+iWx,, - *,*). * = 0,1. Fix the least in-

dexed such xps satisfying 3s + 3 > t4. Assume first that there is a leasts, t4 =Sy < 3s

+ 3 such that mn(A%n+x)y[(Xj A 0j) - tf] for some Ac = 0,1. Thus H$J(A^+l)¥
[Xj -» xpk], Ac = 0,1. From the construction it follows thaty = 3r + 3 for some r < s

and that the defining condition at stagey is not LB. Since xps E L U rg A*n+2, it also

follows by the choice of y that

ff3*n(^n+1)"[xy-(x>AÖ.)*[^*fl+2]].

Thus R5n+X is /-satisfied for -,((Xj A 8j)*[A%n+2\). In fact, the claim is now that

Rs„+\ is the controlling condition for stagey. To see this note that by (f) and the

induction hypothesis (*) that Riu+X isy-satisfied for xpk and is noty-satisfied for

-|((xyA**)'[¿S„+2]),       * = 0,l,«<n.

By the instructions in I of the construction it follows that R5n+2 is the controlling

requirement. However, since in the case considered we are not in defining condition
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LB., it follows that 8¡ is specified so that Xj+\ is inconsistent with 2m(^|„ + 2) (since

j > t4). This contradicts the choice of 2m. So we are reduced to the case where

^3*i(^*n+i)b'(X3J+3 ~* "/'/)> Ac = 0,1. But again the same argument as before shows

that the controlling requirement at stage 3s + 3 would then be R5n+2. Of course the

guarantee that the defining condition is not LB. is not the same, but there still is one.

This is simply because xps E L U rg A*in+2 and so xpk can be consistent with

*Zm(A*5n+2) for at most one value of Ac. Therefore 03j+3 is determined so that X3S+4 is

inconsistent with ^m(A%n + 2), which is again a contradiction. This establishes (*) for

m — n.

So let t4 > t3 be large enough that (*) holds at stage t4. Now there must be some T¡

such that H3*n(A*in+x) U T¡(A%n+2) U {x,4+i} is consistent and T¡ is a Ac-type (as

before). Fix the least such i to be r. Then it is easy to see that //*„+, = Tr, since

RSs+2 can never be the controlling requirement for s < n after stage t4.

So now fix /5 > t4 such that for all / > t5, H3*n+X = H3n+X(t) as we move on to

/v5n+3 and R5n+4. Let v~](n) = (Ac0, y0). The choice of v ensures that

{8, | i < w}rz.u{c,|,«*0} C [8, | / < w}rLUrg/l!ii+2

and is thus a complete type r,o for some/0. If T¡o(c0,...,cko) f¿ Th((c0,...,ck¡¡)Ax),

then it is easy to see that g* j = ( > and //*„+2 = H3*n+X. If it is a subset, then since

6? is homogeneous, there is an r such that

ryo«c0,...,c,o)Ax)u^3*n+1(^n+2)crr(^„+2Ax).

For the least such r there is at least t6 > /5 such Z/*„+2 = Tr and A%n+4 = A5n+4(t6).

These claims as well as the completeness of [9¡\i < u}tLVt&A* are similar to

previous ones in their proof and we leave them to the reader. This completes the

lemma.

Lemma 6. {8¡\i < u} is complete and recursive.

Proof. Lemmas 3 and 5.

Lemma 7. {8: \ i < w} is the complete diagram of a decidable model Q.

Proof. Lemmas 4 and 6 and the Henkin construction.

Lemma 8. Every T¡ is realized in Q, i < w.

Proof. This follows from Lemma 5 since in fact T¡ is realized in & by the

equivalence class of f*.

Lemma 9. Only the types in {T¡ | / < w} are realized in Q.

Proof. This again follows from Lemma 5 since by that lemma H* exists for all

i < w. In particular, H*n+X exists for all n < w.

Lemma 10. 6 is homogeneous.

Proof. Suppose rr(x) C F"y(x, y) and (c,o,.. .,c¡) realizes Tr in 6. Then fix ay0

such that Tj((x¡o,x¡t,...,x¡r)Ay) C TJo((x0, x,,.. .,x¡) A y) and <c0,...,c,> real-

izes T (x, y)tf. By Lemma 5 g* jo exists, and by the construction it follows that
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(cr,,... ,c¡ ) g* ¡  realizes T¡ in G, and thus (c,■,... ,c, ) g* ,   realizes T, in (3. This
\     U' '     I,/   Olr,Jo JO \      '0' '      'r'    °'r-Ja J

completes the proof of the theorem.

Corollary 3. Assume that T has a decidable recursively saturated model. Then for

every homogeneous model & of T, & is decidable iff the set of type realized by 6? is a 22

set of recursive types.

Proof. The recursively saturated decidable model provides an effective enumera-

tion of all recursive types of T.
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