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TREES, GLEASON SPACES, AND COABSOLUTES OF ßN ~ N
BY

SCOTT W. WILLIAMS

Abstract. For a regular Hausdorff space X, let &( X) denote its absolute, and call

two spaces X and Y coabsolute (S-absolute) when &(X) and &(Y) (ß&(X) and

ß&(Y)) are homeomorphic. We prove X is S-absolute with a linearly ordered space

iff the POSET of proper regular-open sets of X has a cofinal tree; a Moore space is

9-absolute with a linearly ordered space iff it has a dense metrizable subspace; a

dyadic space is ë-absolute with a linearly ordered space iff it is separable and

metrizable; if X" is a locally compact noncompact metric space, then ßX ~ X is

coabsolute with a compact linearly ordered space having a dense set of P-points; CH

implies but is not implied by "if X is a locally compact noncompact space of

w-weight at most 2" and with a compatible complete uniformity, then ß X ~ X and

ßN ~ N are coabsolute."

A tree T is a POSET (partially ordered set) in which ]<-,/[, the set of predeces-

sors of /, is well ordered for each / G T. The trees most familiar to topologists are the

Cantor tree, the Souslin trees, and the Aronszajn trees [Ku], [Ru]. In §1 we study

conditions under which a given POSET contains a cofinal tree.

Recall [Po], [P.S.] that if A' is a space,1 then the absolute S( X) of X is the unique

(up to a homeomorphism) extremally disconnected space that can be mapped

irreducibly onto A" by a perfect map. Following [C.N.2] call ß&( X) the Gleason space

of X and denote it by @(X). Two spaces X and Y are coabsolute (^-absolute)

whenever &(X) and &(Y) (respectively, §(X) and S(Y)) are homeomorphic. Desig-

nate ^l(X) for the Boolean algebra of regular-open sets of A-then it is known that

@(X) s §(Y) iff <3L(X) = ft(y).

In §2, we begin an application of §1 to topology with several theorems. We prove:

(2.1) Ais S-absolute with a linearly ordered space if, and only if, (<3l(X) ~ {X}, D )

contains a cofinal tree.

(2.3) ((2.8)) A first countable (Moore) space is S-absolute with a linearly ordered

space iff it has a dense linearly ordered (metrizable) subspace.

(2.10) A dyadic space is S-absolute with a linearly ordered space iff it is separable

and metrizable.

We also give (2.6 and 2.7) sufficient conditions (dependent on certain cardinal

functions) for a space X to have a dense linearly ordered subspace.
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In §3 we consider coabsolutes of Stone-Cech remainders. For a noncompact

completely regular space A, let A* = ßX ~ X. We prove

(3.5) A locally compact noncompact metric space A has A* coabsolute with a

linearly ordered space having a dense set of F-points.

(3.9) If A is a locally compact noncompact metric space of density at most 2",

then A* is coabsolute with one of N*, R*, or N* + R*.

(3.13) The following is implied by CH, and consistent with and independent of

-,CH: If X is locally compact noncompact, has mw(X) < 2", and if X admits a

complete uniformity, then X* is coabsolute with N*.

A result of importance in §§2 and 3 is the Stone duality theorem [C.N.2]. The

Stone space of a Boolean algebra B is denoted by St( B ). " = " between POSETS or

Boolean algebras means "is isomorphic to".

We assume ZFC. CH is the continuum hypothesis, SH is Souslin's hypothesis, and

MA is Martin's axiom. All cardinals and ordinals are von Neumann ordinals, so

ß < a means ß E a. w0 is denoted by to and if k is a cardinal, 2" is the cardinal

number of the set of subsets of k. | X | means the cardinality of A. If A and B are sets

AB denotes the set of functions from A to B. The standard binary tree [Ku] of height

À, an ordinal, is {/Ga2: a G A) ordered by /< g when /= g\ dom(/) and is

denoted by TREE(A).

N is the space of natural numbers, Irr is the space of irrationals, and R is the space

of reals, "int" and "cl" are the interior and closure operators. " s " between spaces

means "is homeomorphic" and A ~ B means the complement of B in A. "2" and

" + " denote free union.

1. Trees in POSETS. Suppose F is a POSET, p E P, and Q C P. Q is cofinal if

r E P => 3q E Q with r < q. Q is a filter if p >qEQ=*pEQ. p E P is compatible2
with Q if, for each q E Q, 3r with p < r and q < r. P is separative if, for each pair

p, q E P, p 4 q =■ 3r 3= q with r and p incompatible. If F is a cofinal filter in a

separative POSET P, then each maximal incompatible family of F is a maximal

incompatible family of P. On the other hand, if / is a maximal incompatible family

of P, then {p E P: 3i E I, i *£ p] is a cofinal filter of P.

Suppose F is a tree and a is an ordinal, then

lv(F, a) = {/ G T: ] «- , /[ has order type a)

is the ath level of F also denoted by lv(a) when there is no confusion. T(a) =

U {lv(yS): ß E a} is the ath subtree. The height of Fis

h(T) = inf{a: lv(a) =0}.

A branch b of F is a maximal linearly ordered subset of T and ord(¿>) denotes the

order type of b.

If every linearly ordered subset of a POSET P is bounded above, then Zorn's

lemma provides P with a cofinal tree of height 1. However, within any POSET P we

may build a tree F, recursively, by the subtrees T(a), having special properties:

2 This is the first of several traditional [Bu], [Je] definitions (also separative, it-distributive, K-closed) for

which we have reversed the usual order relation to maintain the orientation upwards for trees.
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1.1. Lemma. If P is a POSET, then there is a tree T E P satisfying:

(1) lv(0) is a maximal incompatible family of P.

(2) If, for a E h(T), b is a branch of T(a) bounded above in P, then l\(a) contains a

maximal incompatible family of Fl {]/,-> [: / G b), where each ]t, -> [ = {p E P:

t<p).

(3) Pi {]/, -> [: í G ft} Ç T for each branch b of T.

Whenever a tree T satisfies 1.1(1)—(3) in a POSET P, T will be called an

unbounded tree of P. Since a cofinal tree in a POSET will be unbounded it is useful

to define the ordinal invariants (under isomorphism)

#(P) =inî{h(T): Fis an unbounded tree of P)

and w#(P) = inf{#(\p, - [): p E P).

1.2. Theorem. For a tree Tin a POSET P the following hold:

(1) T is unbounded if p E P, (p ^ /V/G T) => p is compatible with at least two

incompatible elements of T.

(2) // P is separative and T is unbounded, then (p 4 FV/ G F) =>p is compatible

with two elements of some level of T.

(3) IfP is separative, then #([p, - [) *£ #(P) V/> G P.

(4) [Ny] // every compatible pair of elements of P is linearly ordered and if T is

unbounded, then T is cofinal in P.

Proof. (1) Certainly F satisfies 1.1(1), for otherwise some element of P would be

compatible with no elements of T. If A < h(T) and if p is a successor of each

member of a branch b of T(\), then b = {/ G T(X): p and / are compatible}. So

1.1(3) is immediate while 1.1(2) uses, as well, the observations for 1.1(1).

(2) We note that if / is a maximal incompatible family of a separative POSET P

and if p E P is compatible with precisely one / G /, then i ^ p. Otherwise, we may

find q E P so that/7 < q with q and i (and hence / U {q}) incompatible.

So if p E P is compatible with at most one element of each level, then 1.1(1) and

(2) force/» to be an upper bound of a branch of T.SopE T, by 1.1(3).

(3) Suppose i/is an unbounded tree of P, #(P) = h(U), and p E P. If p < u for

some u E U, then U D \p, -» [ is an unbounded tree of [p, -> [. So assume p 4 «Va

G U. From (2) 3 a first a0 G h(U) such that p is compatible with two elements of

lv(i/, a0). We may find a maximal incompatible family / of {q E P: 3u E lv((7, a0),

u < q, p < q). Starting with

T(a0+ 1) — U(a0) U / U {w G lv(U, a0): p and u are incompatible)

we can build, using (2) to obtain each level, an unbounded tree T of P such that if

a E h(T) and / G lv(F, a), then there is a m G lv(U, a) 3 / < u. So h(U) = h(T).

Since / Ç \p, -» [, 1.1 shows that T Fl [p, -> [ is an unbounded tree of [p, -* [.

Therefore,

h(\p,->[)*h(T)=#(P).

(4) This generalization of "every linearly ordered set has a well-ordered cofinal

subset" is proved similarly to (2).    D
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For a POSET F and a cardinal k, F is called K-distributive if each intersection of at

most k cofinal filters in P is cofinal; P is K-closed whenever each increasing sequence

of length at most k is bounded above. In forcing arguments the above properties

have seen considerable activity [Bu].

1.3. Lemma [Bu, 3.11]. Let P be a POSET and k a cardinal.

( 1 ) If P is K-closed, it is K-distributive.

(2) If\ is the first cardinal such that P is not X-distributive (or X-closed), then either

X = os orX is a successor cardinal.

1.4. Lemma. Suppose P is a POSET with no maximal elements, T is an unbounded

tree of P, and k is a cardinal.

(1) If P is K-distributive and has no maximal elements, then k+ ^ h(T) and lv(F, a)

is a maximal incompatible family of P Va G k+ .

(2) If P is K-closed, k < cf(ord(6)) V branches b of T.

Proof. As (2) is obvious, we suppose P is «-distributive. Let a be the first ordinal

such that lv(a) is not a maximal incompatible family of P. If a E k+

C= Fl {U {[t,^[:tEly(ß)}:ßEa]

is a cofinal filter of P. Given c E C we may choose tß E lv(/F)Vß G a such that

tß < c. As F is a tree, c is an upper bound of the branch b — {tß-. ß G a] of T(a).

From 1.1(2), c is compatible with some element of lv(a) bounding b from above.

Thus, lv(a) is a maximal incompatible family of C, and hence, of P. As this is

absurd, we must have a > k+ .    Ü

1.5. Theorem. // P is a separative POSET without maximal elements, then

w#(P) = sup{K+ : P is K-distributive).

Proof. We denote the right-hand side of the above equation by X. Then 1.4(1)

shows X ̂  #(P). We consider two cases.

Case 1. w#(P) = #(P). Suppose {Fa: a E X} is a family of cofinal filters in P.

Let p G P be arbitrary and J = {q E P: p and q are incompatible}. We build,

recursively, a free Fin ]p, -» [.

Let F(0) = 0. Suppose we are given an ordinal a, a<X, such that for each

ß < À, we have found T(ß) subject to the restriction

(*) If y < ß, then lv(F, y) is a maximal incompatible family of Fy n ] p, — [.

If a is a limit ordinal, we must set T(a) = U {T(ß): ß < a). If a is a successor

ordinal, then | a \ < X since À is a cardinal. Set

F=F„n(n {U {]t,-*[:tElv(T,ß)}:ß+Ka}).

So / U F is a cofinal filter of P. Now suppose r E J U F and r > p.

Clearly r G F and 3rß for each ß < a such that rß < r and r E lv(T, ß). Since

T(a — 1) is a tree, {ry. ß + 1 < a) is a branch of T(a — 1). Since F is now a cofinal

filter of ]p, -» [, there is a maximal incompatible family / of ]p, -* [ contained in F.

Set T(a) = F U T(a — 1). As our hypothesis (*) is now met, the construction of Fis

complete when we let F = T(X).
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Now let us suppose that X < #(P). Then F is not an unbounded tree of ]p, -> [.

From (*), each lv(F, a) is a maximal incompatible family of ]p, -» [, so 1.1 implies

that F has a branch b bounded above. If ord(b) < X, then there is a / G lv(F, ord(b))

compatible with every element of b. Since F is a tree, / is an upper bound for b. As

the latter is impossible, ord(Z>) = X. Now if í is an upper bound for b, then (*)

implies p < s and seil {Fy. a < X). Asp was chosen arbitrarily, D {Fa: a < X) is

a cofinal filter of P. So X <j: X+ . This is a contradiction. Therefore, X = #(P).

Case 2. w#(P) < #(P). Choose a maximal incompatible family I E P with

"#(]/>,-[) = #(]/>,-[)V/> G/.

Since U {]/>, -»[:/> G 7} is a cofinal filter of P, #(P) = sup{ #(]/>, -* [): p E I}.

On the other hand, we may add U {]/>,-»[:/> G /} to any family of cofinal filters.

So, from case 1, #(]p, -» [) « X Vp G /. Therefore, X = #(F).    D

We observe that case 2 of 1.5 also shows

1.6. Corollary. #(P) is a cardinal whenever P is a separative POSET.

1.7. Theorem. Suppose P is a separative POSET for which #(P) = w#(P). If P

has a cofinal family the union of #(P) incompatible families, then P has a cofinal tree

of height #(P).

Proof. WLOG we assume U{/a: a E #(P)} is cofinal in P where each is a

maximal incompatible family of P containing no maximal elements of P. We

construct an unbounded tree T, modifying the successor ordinal steps in 1.1, as

follows:

Ifa< #(P),\a\< #(P)from 1.5. By 1.4

C=(U {[/,-[: i G /„})

H (Fl {U {[/, -[:/elv(r(a- l),ß)}:ß<a-l})

is a cofinal filter of P. So there is a maximal incompatible family / of P 3 / Ç C.

Set T(a) = T(a - 1) U /.

It is clear that F is cofinal and h(T) = #(P).    □

1.8. Corollary. (1) (Weiss) If P is a separative K-closed POSET V/c < X and P

has a cofinal family which is the union of X incompatible families, then P has a cofinal

tree. (2) (Davies) If P is a separative ^-distributive POSET and \ P |< w,, then P has

a cofinal tree.

Proof. Observe that both results follow from 1.7 even if "separative" is removed

from their hypothesis since we only used "P is «-distributive Vk < #(F)" in the

proof of 1.7.    □

1.9. Theorem. If a separative POSET has a cofinal tree, then it has a cofinal tree of

height #(P).

Proof. In proving 1.5, we observed that there is a maximal incompatible family /

of F such that, V/ G /, tv#([i,-* [) = #([/', ^ [) and

#(/>) = sup{#([/, ->[):/ G /}.
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So WLOG we may assume P has no maximal elements and #(P) = w#(P).

Suppose F is a cofinal tree in P, U is an unbounded tree in P, and h(U) = #(P).

From 1.4 each lv(U, a) is a maximal incompatible family of P. So we may choose a

maximal incompatible family of P,

IaE(U {[/,-[:/ G lv(t/,«)})nF.

If U{/a:aG#(F)}is cofinal, the theorem follows from 1.7. So suppose / G F

such that / 4 'Vf G /„Va G #(P). Since P is separative, we have, from 1.2(2),

3a G h(U) and uQ, «, G lv(U, a) 3 t is compatible with each un. Again using

separativity 3, for each n E {0,1}, a tn E T such that t < t„ and un < /„. 3 for each

n, in E Ia such that un < /'„ and /„ is compatible with in. Since F is a tree, either

in s* /,, 3= / (a contradiction) or /'„ < /„. In the latter case, / and in are compatible so

¿0 < / and /', < / (a contradiction).    D

From 1.7, 2" = k+ implies each K-distributive POSET of cardinality at most 2" has

a cofinal tree. Our next theorem represents an attempt at removing the set-theoretic

hypothesis from this result.

1.10. Lemma. Suppose k is an infinite cardinal, P is a separative K-closed POSET,

and p E P has no maximal successor; then p has 2" incompatible successors.

Proof. We can construct a tree in \p, -» [ isomorphic to TREE(k + 1) by applying

"separative" at successor ordinals to get two incompatible elements, and "K-closed"

at limit ordinals to get a single successor of a branch. The final level of TREE(k + 1)

contains 2" incompatible elements.    D

1.11. Lemma. Suppose k is an infinite cardinal and P = {p(Ç): f G 2"} is a K-closed

separative POSET. If I = {i(a): a E 2") is an incompatible family in P, then there is

a family J E P subject to

(\)J = {j(a,Ç):(a,Ç) G 2" X 2"}, where i(a) < j(a, ¿) for each £.

(2) Ifp(Ç) is compatible with an element of J but p(Ç) 4 JY/ G J, then

| {/ G /: p(Ç) and i are compatible) | < | f | .

Proof. J is constructed recursively via a diagonalization argument-we examine

the/8th step:

Suppose ô is the first element of 2" such that, Va G 2", p(S) 4 i (a) and Vy G

ß V£ G 2" p(S) ^ j(y, £), but p(8) and i(ß) are compatible. For some q E P with

p(S) < q and i(ß) < q we choose a family {j(ß, £): £ G 2"} of maximal incom-

patible successors of i(ß) to which q belongs.    G

1.12. Theorem. Let k be an infinite cardinal. If P is a separative K-closed POSET

with | P | < 2", then P has a cofinal tree.

Proof. From 1.10, | P |< 2" => P has a cofinal tree of height 1. So WLOG assume

P has no maximal elements and we have a listing of P, {p(Ç): f G 2"}.

We can construct, as in 1.1, using 1.10 and 1.11, an unbounded tree T of P subject

to the additional conditions:

(4) lv(0) contains a successor of p(0).
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(5) If a G h(T) and b is a branch of T(a) bounded above in P, then | lv(a) n

(Fl {[/,-[:* G b})\=2\
(6) If p(Ç) 4 /Vi G F(a)fora G ¿(F), then a < f and | {/ G T(a): p(£) and / are

incompatible} |<| f |.

Suppose p = p(Ç) E P and p 4 f V/ G F; then there is, by 1.2(2), a first a0 such

that p is compatible with two elements of lv(a0). Using 1.4(2) and following the

proof of 1.10, we may build a tree SET consisting of elements compatible with p,

each of whose levels is contained in a level of T, and which is isomorphic to

TREE(k + 1). Since 3X E h(T) such that the last level of S is contained in lv(A), p

causes (6) to fail for a = X.    D

1.13. Lemma [Je, 29B]. If P is a separative POSET, then there exists a unique (up to

an isomorphism) complete Boolean algebra %(P) for which P is cofinally embedded in

($(/>) - {0}, >).

If B is a Boolean algebra such that (B — {1}, ^) or, equivalently, (B — {0}, >),

possesses (resp. a cofinal set P satisfying) the properties defined in this section for a

POSET, we say for simplicity that B (resp. cofinally) possesses said property;

therefore:

(i) Every Boolean algebra is separative.

(ii) No atomless a-complete Boolean algebra is to-closed.3

(iii) ®(TREE(w,)) is cofinally co-closed.

1.14. Corollary. Suppose k is an infinite cardinal. If k+ = 2", then <S(TREE(2lt))

is the only complete atomless Boolean algebra which is cofinally K-closed and has a

cofinal set of cardinal 2K. // 2" = 2", then there are at least two complete atomless

Boolean algebras cofinally K-closed and having cofinal subsets of cardinal 2".

Proof. The Pressing Down Lemma [Ku] shows that, for each k, ®(TREE(k+ )) ^

■3d(TREE(k+ +)). On the other hand (v) in the construction of Fin 1.12 shows that if

k+ = 2" and F is a K-closed separative POSET without maximal elements of

cardinality 2", then P has a cofinal tree isomorphic to U {1v(TREE(k+ ), A): X is a

limit ordinal in k+ }.    D

1.15. On products. Suppose k is a cardinal and P(a) is a POSET for each a G k;

there are two traditional definitions for partial orders on the Cartesian product

II = U{P(a):a G k}:

(1) The lexicographic product, lexll, is ordered by "/< g whenever 3a G k with

/(a) < g(a) and f(ß) = g(ß)Vß G a". It is easy to see that lexll has a cofinal tree

whenever P(a) has a cofinal tree Va G k.

(2) The usual product on Ü, denoted by X {P(a): a G k}, is ordered by "/< g

whenever/(a) «s g(a)Va G k". An easy application of the Pressing Down Lemma

shows TREE(co) X TREE(co,) has no cofinal tree. However, 1.7 shows that P X Q

has a cofinal tree whenever each of P and Q have a cofinal tree and w#(P) = w#(Q).

1.16. Remarks. (1) Is it consistent that "every co-distributive POSET of cardinality

to, is co-closed?" Not in a model of ZFC +       SH; however, Franklin Tall has

3 In [Wo2], [Wo3] cofinally u-closed Boolean algebras are called Cantor-separable.
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communicated to the author Peter Davies' affirmative answer under the assumption

of the consistency of certain large cardinal axioms.

(2) For the POSET F of nonempty clopen subsets of ßN ~ N (under "D ") 1.5,

1.9, and 1.12 were proved, independently, in [B.P.S.].

(3) 1.8(2) is due to Peter Davies. 1.8(1) is an observation William Weiss made

from one of our early results.

(4) Is it consistent with ZFC + CH that "there is precisely one complete

atomless cofinally co-closed Boolean algebra with a cofinal set of cardinality 2W?" See

3.13.

(5) For many POSETS P, #(P) is well defined by considering cofinal subsets of

P. With proof similar to 1.2(3) and (4), this is true when P is either separative or

when every compatible pair of elements of P are linearly ordered or when P is

directed.

2. Q-absolutes of linearly ordered spaces. Recall [Ju2] if ( A, t) is a space, then a

cofinal subset of (t — { 0 }, D) is known as a tr-base ( pseudobase in [C.N.2]) and the

tr-weight, -ïïw(X), is the least cardinal possessed by a w-base for X. The weight, w( A),

is the least cardinal possessed by a base for t.

2.1. Theorem. For a space X, the following are equivalent:

(1) X has a m-base with a cofinal tree.

(2) Every it-base of X has a cofinal tree.

(3) A is ^-absolute with a linearly ordered space.

Proof. If F is the set of isolated points of X, then F is a subset of every w-base for

A, Y is the set of atoms of <3L( A"), and

<3l(A) =<3l(rÙint(A~ Y)).

Since the free union of linearly ordered spaces is linearly ordered, we need only

prove the theorem for X ~ Y. WLOG we assume X has no isolated points.

(1) => (2). Let F be a w-base for A. Since a cofinal subset of a 7r-base is a w-base,

we suppose that (F, D) is a tree of nonempty open subsets of A such that F has the

minimum possible height for a tree 7r-base for X. Since A has no isolated points,

h(T) and ord(b) are limit ordinals whenever b is a branch of F. We now construct,

recursively, two trees Sx E T and S2 E P.

For i E {1,2} let S¡(0) = 0. Suppose we are given an ordinal a =s h(T) such that

Sfß) has been found, for each ß < a and each /' G {1,2}, subject to the restriction

Y</3-
(a) lv(S,, y) is a pairwise-disjoint family of nonempty open sets.

(b) If b is a branch of Sx(y) and if int( (lb)¥= 0, then

int(n&) Qcl({p Elv(S2,y):p C Ob}).

(c)lv(Sx,y)ET~T(y).

(d) Up E lv(S2, y), then/; Ç cl({/ G lv(S„ y): t Ç p)).

If a is a limit ordinal, we set Sfa) = U {Sfß): ß < a] Vi. If a is a successor

ordinal, the choice of lv(5,, a — 1) is straightforward (given a w-base Q of a space Y
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and a nonempty open set G of Y, G has a dense set which is the union of a family of

pairwise-disjoint members of Q). Let S¡(a) = S¡(a - 1) U lv(5,-, a — 1). Our recur-

sion hypothesis is clearly met. So our construction of 5, V/ G {1,2} is complete when

we set each 5, = S¡(h(T)).

Now (b) and (d) imply S2 is a w-base for A iff Sx is cofinal in T. (b) and (d) also

imply that if a < h(T) and if b is a branch of Sx(a), then

int(n¿») Çcl({/Glv(S,,a):/Ç Ob}).

From (c) and 1.1, 5, is an unbounded tree of T. 1.2(4) shows Sx is cofinal in F.

(2) => (3). Since an infinite Hausdorff space contains an infinite family of non-

empty pairwise-disjoint open sets, we suppose Fis a cofinal tree in <3l( A) satisfying

(iv) if a G h(T) and b is a branch of T(a) bounded above in ?Sl(X), then lv(F, a)

contains infinitely many elements each of whose closure is a subset of D b.

Following the standard [Ku] collapsing of Souslin and Aronszajn trees, order each

lv(F, a) so that lv(a) and in the case of (iv), the successors of b in lv(a), form a

discrete linearly ordered set without endpoints.

Set L = L(T) = {b: b is a branch of T] and for b0, bx G L define b0 < bx if for

some a G h(T)

(b0 n lv(F, a)) < (bx n lv(F, a))    while b0 D T(a) = bxC\ T(a).

Thus, L is linearly ordered. Set xp(t) — {b E L: t E b) for each t E T.

Since xp(t) has no endpoints, xp(t) is clopen; further, if in L, b0 < bx < b2, then by

(iv), 3/ G bx ~ (bQ U bx)B xp(t) E ]b0, bx[. So x\> embeds F cofinally within 6X(L).

Now apply 1.13 and the Stone duality.

(3)=>(1). Suppose L is a linearly ordered space without isolated points; then

P = [G E <3l(L): G is an open interval of L} is cofinal in %(L). Suppose F is any

unbounded tree of P and ]x, y[ E P such that / (j: ]x, y[Vt E T. According to

1.2(2) 3ß E h(T), ]x¡, y¡[ E lv(F, ß) for i G {0,1}, such that ]x, y[ Fl ]x¡, y¡[ ̂  0,

(*) x0<x<y0<y,       x<xx<y<yx,

and there are no points between y0 and xx. Since <3l(L) is closed under intersection,

]x, y0[ E P. Again applying 1.2(2) 3a G h(T), a > ß, 3]xj, yf[ E lv(F, a) for j E

{2,3}, such that ]xQ, y0[ Fl ]xj, y\=fc 0, x2 < x < y2 < y0, x < x3 < y0 < y3, and

there are no points between^ and x3. In particular, >>0 G ]x3, y3[ ~ ]x0, y0[. Since F

is a tree, ß < a, and L has no isolated points, ]x3, y3[Ci]x0, y0[ — 0 which

contradicts (*). So F is cofinal in P. Now apply the Stone duality.    D

2.2. Corollary. For a space X, the following are equivalent:

(1) X has a o-disjoint -n-base.

(2) <3l( A") has a cofinal tree and #(&( A)) < w.

(3) 3 a metric space M %-absolute with X.

Proof. (1)=>(2). This is a corollary of 1.7 since *3l(A) is «-closed V finite

cardinals n.

(2) =» (3). In 2.1 (2) => (3) the tree F may be assumed to have height co (from 1.9).

Thus, the space L is metrizable via p(b0, bx) = 2~" when b0 Fl lv(/i) ¥= bx D lv(n)

andb0 n T(n) = bx C\ T(n).
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(3) => (1). Every metric space has a a-disjoint base.    D

2.3. Theorem. Suppose X is a space whose every point has a well-ordered local base;

then X is ^-absolute with a linearly ordered space iff X has a dense linearly ordered

subspace.

Proof. We need only show "=> ". WLOG assume A has no isolated points. For

each x E A let %(x) C 61( X) be a well-ordered, by "D ", local base at x. From 2.1,

C:H(X) has a cofinal tree U. We construct a tree F and a function xp: T -> A as

follows:

Let F(l) = U(l) and xp(t) E t be arbitrarily chosen for each / G F(l). Suppose we

are given an ordinal À such that T(a) and xp(t) G / have been constructed Va G À V/

G T(a) subject to the restrictions:

(i) F(a) satisfies 1.1(1) and (2).

(ii) T(a) satisfies (iv) of 2.1(2) => (3).

(iii) If ß < a and b is a branch of T(ß), then

| {/ G l\(T(a),ß): t E FU and/ G U] |< 1,

where equality holds only if xp is constant on a tail of b.

(iv)Ifß<aand/ G T(ß), then T(a) has a branche with / G bandxP(b) = [xp(t)}.

(v) If s, t E T(ot), t C s, and if xp(t) = xP(s), then / G 9l(xp(s)).

If À is a limit ordinal, set T(X) = U [T(a): a E X). If X is a successor ordinal,

then we will assign to each branch b of T(X — 1) a family 1(b) and we will set

F(A) = T(X- 1) U (U {1(b) : b is a branch of F( A- 1)}).

For / G F(A) ~ F(A — 1) and t E Pib, we assign xp(t) = xp(s) ifxp is constantly xp(s)

on a tail of £ and if / G ?fl(xp(s)); otherwise, xp(t) E t may be arbitrarily chosen.

Let 1(b) — 0 whenever int( Flb) — 0. If int( (lb) ¥= 0 and xp is not constant on

a tail of b, we may choose, since A has no isolated points, a pairwise disjoint

subfamily 1(b) of (7 with U{c1(h): u E 1(b)) a dense subset of int((lb). If

int(Flft) 7e 0 and xp is constantly if(.s) on a tail of /? with s E b, then (v) implies

int(FU) is a nbhd of >^(s). Choose / G 9l(tKí)) with cl(/) J int(Dè). Then /(ft)

will be the union of {/} and an infinite pairwise disjoint subfamily of U such that

U{cl(w): u G 1(b) ~ {/}} is a dense subset of int( Flb) ~ cl(t).

As the induction hypothesis is clearly satisfied, we can continue it until we have an

unbounded tree T. Since xp(t) E /V/ G F, xp(T) is dense if Fis cofinal in <3l(X). So

we suppose u E U such that / <£ »Vi G F. By 1.2(2) there is a first ordinal

ß E h(T) such that u Fl t0, m Fl /, G bJ{ (X) ~ {0} for two distinct elements /„,

/, G lv(F, ß). So u E (lb for a branch b of T(ß), and i0 U tx Q (lb. Since (7 is a

tree, neither >0 nor /, is in U. This contradicts (iii) for a — ß + 1. So F is cofinal in

('fl ( A).

From (iv) and (v) there is for each / G F precisely one branch b(t) of F such that

/ G b(t) and b(t) is a local base at xp(r). So when {b(t): t E T) inherits the order

given in 2.1(2) =» (3), the map b(t) -» xp(t) gives »//(F) a linear order generating the

subspace topology inherited from A.    D
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2.4. Corollary [Wh]. A first countable space has a o-disjoint tr-base iff it has a

dense metrizable subspace.

Proof. In 2.3 each %(x) can be assumed to have order type co, and, according to

2.2, h(U) = co. So h(T) = co. Following the proof of 2.2(2) => (3) we see that xP(T) is

metrizable.    D

As a Souslin line has no dense metrizable subspace, it is consistent with ZFC that

"a-disjoint ir-base" cannot be replaced by "S-absolute with a linearly ordered space"

in 2.4. However, it is replaceable for the class of first countable spaces A which have

#(b%(X)) < co. Therefore, we consider some cardinal functions which affect

#(&(*)).

Henceforth, we shall use #[w#] to denote #(b\(X)) [w#(b\( A))] when there is

no confusion. A topological translation of 1.5 and 1.9 yields

2.5. Lemma. Let X be a space and {Iy. a E k} be a collection of families of

pairwise-disjoint nonempty open sets such that cl( U Ia) — A"Va G k. // k *£ w#, then

there is an unbounded tree TofSl(X) satisfying:

(l)h(T)=#.

(2)s,t E T, s £ /=.c1(ä) E t.

(3)cl(Ulv(a)) = AVa G w#.

(4) T satisfies (iv) o/2.1(2) =» (3).

(5) ; G /„ => 3 / G lv(a) Bt Ci.

Further, if X is %-absolute with a linearly ordered space, then T may be assumed to be

cofinal in ^(X).

Recall [C.N.2] that for a cardinal k, a space A is K-Baire if the intersection of at

most k many open dense subsets of X is dense [so Baire = co-Baire]; and x E X is a

PK-point if it has a local base A-closed VA < k [so F-point = FWi-point]. A is an

almost PK-space [Le] if the intersection of less than k many nonempty open subsets of

X has nonempty interior (equivalently, if "31(A) is cofinally A-closed VA < k). A

base (or w-base) for a space will be called K-disjoint when it is the union of a

collection of k many families of pairwise disjoint sets (WLOG each family may be

assumed to have union dense in A').

The following should be compared to [C.N.I, 3.1] and [C.N.2, 6.15].

2.6. Theorem. For a space X with a K-disjoint ir-base B,

(1)k3* # (sottw(X)> #),

(2) if k — w#, X is K-Baire, and if B is a base, then X has a dense subset of PK-points

which is linearly orderable.

Proof. (1) From 1.6 there is a family J of pairwise-disjoint nonempty regular-open

subsets of A such that U/ is dense in A, w#(<SL(G))= #(&(G))VG G /, and

# = sup{#(6A(G)): G E J}. From 2.5(5) k> #(<&.(G)) for each G.

(2) Let B = U{/a: aGK}, where each Ia is pairwise-disjoint and has dense

union. Let F be the tree guaranteed in 2.5 and set D = {(lb: b is a branch of F,

ord(b) = k, and (lb ¥= 0 }. Since Ais K-Baire, 2.5(3) implies UF> is dense. Since B

is a base and F is a tree, 2.5(5) implies b is a well-ordered local base at (lb and
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| (1 b | = 1 whenever Fl b G D. To see that U Z) is linearly orderable, follow the last

paragraph of 2.3.    D

2.7. Theorem. Suppose X is a space whose diagonal is the intersection of k many

open subsets of X X X; then k > #. Further, if k = w#, X is K-Baire, and if X is the

intersection of at most k many open subsets of ßX, then X has a dense subset of

PK-points which is linearly orderable.

Proof. Let {6(a): a G k} be a collection of open sets of A X A whose intersec-

tion is A = {(x, x): x E A}. Given x G A and a G k, there is a nbhd G of x such

that G X G E 6(a). Hence, for each a G k there is a pairwise-disjoint collection

Ia E ift ( A) such that cl( U /„) = A and G X G E 0(a) VG G /„. Let F be the tree of

2.5 constructed from {/„: a E k}. If A < w#, then 2.5(5) implies A ¥= (1 {6(a):

a G A}. Following 2.5(1) shows # =s k.

For the further, let {H(a): a G A} be a family of open subsets of ßX whose

intersection is X, and suppose A < k. For a G k ~ A set H(a) = ßX. For each a G k,

let

Ja={H(a)nmtßX(clßX(G)):GEla).

Let S E ^(ßX) be the tree of 2.5 constructed for ßX from {Ja: a E k}. Using

2.5(2) we see D b is a nonempty compact subset of ßX whenever b is a branch of

S(-q) for 0 < i) < k. So b is always a local base for (lb when 17 is a limit ordinal.

Since Fl {//(a): a G A} = A, 2.5(5) implies (lb E A whenever b is a branch of S(-q)

for A < t] < k. Since A = Fl {6(a): a G k}, 2.5(5) implies | (lb\= 1 whenever b is a

branch of S and ord(è) = k. As A is K-Baire, 2.5(3) implies {x G Fl b: b is a branch

of 5, ord(b) = k} is dense in A. Now follow the last paragraph of 2.3.    D

2.8. Corollary. A Moore space is %-absolute with a linearly ordered space iff it has

a dense metrizable subspace.

Proof. A Moore space is 1st countable so 2.3 applies. As it also has a Gs-diagonal

2.7, and hence 2.2, applies.    D

2.9. Corollary. For a Cech-complete space X, the following hold:

(1) Ifw#(lA ( A)) > co, then X has a dense open locally compact subspace.

(2) If #(<$ (A)) > co and X is perfectly normal, then X is not u>x-Baire.

(3) If X has a Gs-diagonal, then X has a dense metrizable linearly orderable Gs-set.

Proof. (1) Consider lv(F, co) in the "further" of 2.7. (2) The Pressing Down

Lemma implies lv(F, co,) = 0 in the "further". (3) This follows immediately from

the "further" and 2.2.    D

Recall [Jul] the cardinal k is a caliber for a space A if each collection of k many

nonempty open subsets of X contains a centered subfamily of cardinality k. [Jul,

A2.2] shows that if X =K2 is given the Tychonov product topology, then co, is a

caliber for A whenever k > co,.

Suppose A is a space for which k is a caliber; if Y is the image of A under a

continuous surjection and F is an unbounded tree of 6Jl(F) satisfying 2.5(2) for Y,

then I F|< k since the inverse image of F satisfies 2.5(2).
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The next theorem is essentially the theme of [Gv]. The preceding paragraph yields

for us a shorter proof.

2.10. Theorem. A dyadic space is ^-absolute with a linearly ordered space iff it is

separable and metrizable.

Proof. (=>) D is a dyadic space, if, by definition, D is a dense subset of a

continuous image Y of "2, where, by [Jul, 4.9] k = ttw(Y) = w(Y). From 2.1 and

the above k = co and so F is a compact metric.    D

2.11. Corollary [Po]. // a dyadic space is coabsolute with a metric space, it is

metrizable.

2.12. Remarks. (1) A space is non-Archimedean (see [Ny] for a survey) provided it

has a base in which every pair of members are either related by C or disjoint. By

virtue of 1.2(4), these are spaces having inverted trees as bases. Observe that the

space L of 2.1(2) => (3) and xp(T) of 2.3 are non-Archimedean, while the dense

subspaces in 2.6 and 2.7 are actually K-metrizable. A technical modification of

2.1(2) => (3) shows that "linearly ordered" in 2.1(3) can be replaced by "subspace of

linearly ordered".

(2) Is there (in ZFC) a compact first countable space not the compactification of a

linearly ordered space? We observe that the Pressing Down Lemma shows that if X

is a Souslin line, then A X [0,1] has no dense linearly ordered subspace.

(3) In [Ta] methods for recognizing Souslin trees in topologies are investigated,

and equivalences and implications of SH are given. We observe (from 1.6 and 2.9)

that SH is equivalent to the statement "if A is an co,-Baire Cech-complete perfectly

normal space, then #(°%(X)) < co".

(4) Does every compact almost F-space of weight 2" contain a dense linearly

ordered subspace? From [C.N.1] the answer is yes if CH is assumed. From 1.12 and

2.3, a compact almost F-space of ^-weight 2" contains a dense non-Archimedean

linearly ordered subspace whenever it contains a dense set of points with well-ordered

local bases. The last condition is necessary as every linearly ordered subspace of

&(ßN ~ N) contains no isolated points.

(5) 2.7 (for k = co) and 2.8 were originally proved independently of White's result

2.4; however, 2.4 motivated 2.3. We observe that "Cech-complete" in 2.9 can be

replaced by "/»-space in the sense of Ar'hangelskii", and a similar generality works

in 2.7.

3. Coabsolutes of Stone-Cech remainders. If Z is a zero set of a completely regular

space A, then we let Z* = {x E ßX ~ X: Z E x). So A* = ßX ~ X. It is well

known (see [En]) that A* can be nearly anything for a suitable pseudocompact space,

and if A* is dyadic, then A is pseudocompact. Thus, 2.10 especially encourages us to

restrict our attention to a class of spaces in which every pseudocompact closed

subspace is compact-in this case we consider the class of spaces with a compatible

complete uniformity (which we will call complete spaces).4 Further, if X is nowhere

4Shirota's theorem says that when we assume no measurable cardinals exist, a space'is complete iff it is

realcompact. So the reader may wish to replace "complete" with "realcompact" throughout this section.
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locally compact, then A* and A are dense in ßX. Therefore, we restrict our attention

to complete locally compact noncompact spaces. With minor changes in proof the

following is [Wo2, 3.2]:

3.1. Lemma. If X is complete, then X* and (S(A))* are coabsolute.

3.2. Lemma. // A is a locally compact extremally disconnected noncompact space,

then 3k > 2" and a family {D(a): a E k} satisfying:

(1) Each D(a) is the union of countably many pairwise-disjoint compact open

subspaces of X.

(2) Either D(a) = N or D(a) has no isolated points.

(3)ß<a^ D(ß)* Fl D(a)* = 0.

(4) A = cl( U {D(a)*: a E k}) and each D(a)* is open in A*.

Proof. Let F(0) = {{x}: {x} is open in A} and choose, by local compactness, a

maximal collection F(l) of pairwise disjoint nonempty open compact members of

<ft(int(A~ UF(0))). For each «£{0,1} let {e(a, n): a E k(«)} be a listing of

E(n) with a cardinal k(«).

If K(n) is finite, let I(n) = 0. If k(h) is infinite, then choose I(n) to be a

(maximal almost-disjoint) family of countably infinite subsets of k(«) maximal w.r.t.

"every intersection of distinct members is finite". We may choose | I(n) \> 2" since

it is well known [Ru] that co contains a maximal almost-disjoint family of cardinal

2".

The desired family will be

{/)(/, n): i E I(n), n E {0,1}},    where D(i, n) = U {e(a, n): a E /'}.

Its cardinality is at least 2W since X is not compact. (1) and (2) are certainly satisfied.

(3) follows since /(«) is almost-disjoint or empty and (UF(0)) Fl (U£(l)) = 0. If

C is clopen in X and 0 ¥= C*, then 3« G {0,1} and a countably infinite set

j Ç k(«) such that C Fl e(a, n) ¥= 0 for each a E j (otherwise,

U(£(0) U F(l)) would not be dense in A). As I(n) is infinite and a maximal

almost-disjoint family, ; Fly is infinite for some i G /(«). (4) follows since

0^(U{Cn e(a,n): a E i Fl j})* E C*D(i,n)*.    D

3.3. Lemma [F.G., 3.1]. If X is realcompact and locally compact, then X* is an almost

Pu -space.

3.4. Theorem. If X is a complete locally compact noncompact space each of whose

nonempty open sets contains a nonempty open set of ir-weight at most 2", then A* is

coabsolute with a linearly ordered space having a dense set of P-points.

Proof. From 3.1 we may assume A is extremally disconnected, locally compact,

noncompact with the same w-weight conditions. Thus, in 3.2 we may assume

■nw(e(a, n)) < 2", and hence, from extremal disconnectedness 2" < -nw(D(a, /')*) <

(2U)U = 2". Since each D(a, i) is a-compact, each D(a, /)* is an almost P^-space.

From 1.3(2) and 1.12, each b\(D(a, /')*), and hence, <3l(A~*) has a cofinal tree F

whose branches fail to have countable cofinality. The desired space is the Dedekind

completion (with endpoints) of the space L in 2.1(2) => (3).    D
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As each locally compact metric space is the free union of a-compact spaces which

must have 77-weight at most co, and as every locally compact metric space admits a

complete uniformity, we have shown

3.5. Corollary. A locally compact noncompact metric space X has A* coabsolute

with a linearly ordered space having a dense set of P-points.

3.6. Lemma. // A is a locally compact, extremally disconnected, noncompact space

with ttw(X) = co, then X* is homeomorphic to one o/N*, (S(R))*, or N* + S(R)*.

Proof. Following the proof of 3.2, -nw(X) = co yields X= E(0) U £(1), where

£(0) is the closure of all of the at most co isolated points of X and £(1) = A ~ £(0).

As A" is extremally disconnected A* = £(0)* U £(1)*.

When £(0) is not compact, each clopen set free ultrafilter on £(0) traces to an

ultrafilter on int(£(0)) s N; therefore, £(0)* s N*. When £(1) is not compact, it is

the disjoint union of co many (since -nw(X) = co) compact spaces of w-weight co

without isolated points. From [Si, 9c] each of the spaces is homeomorphic to

S (Cantor set). Applying the same argument to R, we have £(1) = ê(R).    D

3.7. Lemma. // K is a compact space and if, for each n G {0,1}, X(n) is the free

union of a cardinal k(«) many copies of K, where co < k(h) *£ 2", then X(0)* and

X(l)* contain homeomorphic dense open subspaces.

Proof. Write X(n) = 2{K(a): a E k(«)}, where K(a) ~K for each a. Since

k(m) < 2", k(m) contains precisely 2" countably infinite subsets. Hence, following

the argument in the proof of 3.2, we may choose a maximal almost-disjoint family

I(n) of countably infinite subsets of k(«) such that | /(«) | = 2". Then

{ [x E X(n)*: ((2 {*(<*): a E i}) ~ K(y)) E xVy G i) : i G /(«)}

is a pairwise-disjoint family of clopen subsets of X(n)* whose union is dense in

X(n)* and whose members are homeomorphic to(S{A'(a):aGco})*.    D

3.8. Theorem. // X is a complete locally compact noncompact space of tr-weight at

most 2", and if every nonempty open set of X contains a nonempty open set of countable

tr-weight, then X* is coabsolute with one o/N*, R*, or N* + R*.

Proof. Following the proof of 3.4, we observe that each D(a, i) may also be

assumed here to have countable ir-weight, and from their construction in 3.2 there

are precisely 2W of the sets D*(a, i) each of which is homeomorphic to one of the

three spaces above by 3.6. Now apply 3.7 with K = N* and K = R*.    D

3.9. Corollary. Suppose A is a locally compact noncompact metric space of density

at most 2"; then X* is coabsolute with

(1) N*, if X has a dense discrete subspace,

(2) R*, if the set of isolated points of X has compact closure,

(3) N* + R*, otherwise.

In [Wol, Wo2] it is shown that if CH is assumed X* is coabsolute with N*

whenever A is locally compact, noncompact, and either metric of density at most 2")
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or with |9L(A)|= 2W; however, this follows from 1.14 which shows CH implies

¿rl(N*) = Çjl(y") whenever Y is an almost P-space with trw(Y) = 2" and no isolated

points. We end this section with an example which shows 2" is essential in 3.4 and

which allows us to remove CH from the hypothesis of Woods' results.

3.10. Example. Suppose k > co is a cardinal and ^(k) = ^{^(k, n): n E co},

where each ^(k, n) s "2 given the Tychonov product topology. If K denotes the

linearly ordered space obtained from ordering W|2 lexicographically, then the follow-

ing are equivalent:

(1)k<2".

(2) ^(k)* and K are coabsolute.

(3) ^(k)* is coabsolute with a linearly ordered space.

Proof. For each ordinal a < co,, we set

A(a) = {Z(/):dom(/) = a},    where Z(/) = {g E "2: g\ a =/},

and L(a) = {int((U{Z(/, n): n E co})*): V« G uZ(f, n) E A(a) and Z(f, n) E

D(k, n)}. Then F = {L(a): a E co,} is a tree in ^(^(k)*) whose ath level is L(a).

We claim that F is an unbounded tree.

First we observe that ^(k)* has a w-base F(k) of sets of the form int(Z*) such

that for each « G co 3hn E K2 and a countable set Cn E k such that g G Z Fl ^(k, n)

iff gl Cn = hn. So if a < co, is the first ordinal with co, Fl ( U {Cn: n E co}) E a, then

int(Z*) intersects two elements of L(a + 1). From 1.2(1), Fis unbounded.

(1)=>(2). From 1.9 and 1.12 ^(^(k)*) has a cofinal tree of height co, since

■7tw(sÙ(k)*) = 2U. From 3.3 it has a cofinal tree order isomorphic to the union of the

limit ordinal levels of TREE(co,). If L is constructed as in 2.1(2) => (3), then L is

homeomorphic to a dense subspace of K.

(2) => (3). Obvious.

(3) =» (1). As ^(k) has caliber co,, it follows that every pairwise-disjoint family of

P(k) has cardinality at most 2". On the other hand, ^»(^(k)*) is at least 2" + k. So

if ^(k)* is coabsolute with a linearly ordered space, then ^(^(k)*) has a cofinal

tree S of height co,. Since | S \= 2" ■ co, = 2" and 5 is a tr-base of ^(k)*, k < 2".

D

3.11. Lemma. If X is a locally compact complete noncompact space, then #(b%(X*))

=£ #(<3l(N*)).

Proof. From 3.1 and 3.2 A = 2{A"(n): n E co}, where each X(n) is compact and

extremally disconnected, can be assumed. One readily observes that the map

X(n) -» n induces a function from <3l(N*) to <3l( A"*) which takes unbounded trees to

unbounded trees isomorphic to their pre-images.    D

3.12. Theorem. The following are equivalent statements in ZFC:

(1) N* and F>(co,)* are coabsolute.

(2) #(ft(N*)) = co,.

(3) // A is a locally compact complete noncompact space and if ttw(X) ^ 2", then

A* and N* are coabsolute.
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Proof. Since #(CÜ(6D(co,)*)) = co,, (1)=*(2). From 3.11 #(<&(X*)) = co, so

(2) => (3) is similar to 3.10 (3) => (1). (3) =» (1) is obvious.    D

As we have observed before CH implies #(<3l(N*)) = co,. However, as remarked

in [B.P.S.] there are numerous models of ZFC + -,CH in which #(<3l(N*)) = co,,

for example in any model 911 for which 9Hi=uco to have an co,-scale [He] and

<31Uco, < 2". On the other hand, MA + -,CH implies <3l(N*) is cofinally K-closed

Vk < 2" [Ru], and hence, #(&(N*)) = 2" > co,. Therefore, we have

3.13. Corollary. The following statement is implied by CH, and is consistent with

and independent of —,CH: // X is a locally compact complete noncompact space with

ttw( X) < 2", then X* and N* are coabsolute.

3.14. Remarks. (1) 3.7 was communicated verbally to the author by S. Broverman

for the case \K\= 1. The proof he gave is similar. R. G. Woods has informed us that

3.9(2) can also be proved using a recent result of E. K. van Douwen on remote

points and a theorem in [Wo3].

(2) Are N* and R* coabsolute'! As N* is an almost FK-space iff R* is an almost

FK-space [vDl], we observe that a proof similar to that of 3.12 (2) =» (3) shows N*

and R* are coabsolute whenever N* is an almost FK-space Vk < #(b%(N*)). The

latter is true in a variety of situations (including MA). However, we do not know

whether a negative answer is consistent.

(3) 3.10 was motivated by an example in [vD.vM.] called here 6Í>(2U).

(4) In the first draft of this paper we used a result in [vD2] to show 3.11. Originally

we obtained 3.13 prior to 1.12 (and independently of [B.P.S.]); however, our proof

was longer while a key lemma to our short proof in the first draft of this paper was

false.

The author owes an appreciation to a large number of people for their comments,

suggestions, and answers to queries. We acknowledge especially F. D. Tall, who

communicated [B.P.S.] and advised us of relevant works in the Soviet Union; E. K.

van Douwen, whose comments on [Wi] and whose preprints were timely; and the

referees who waded through numerous terse arguments and frequent typographical

and grammatical errors.

Added in Proof. The answer to the questions in 2.12(2) is "yes" (Todorcévic); in

2.12(4) is "not ^(coj)" (myself) and it is consistent that A"* has no dense linearly

ordered subspace for every non-pseudo-compact space X.

References

[Bu] B. J. Burgess, Forcing, Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp.

403-452.

[B.P.S.] B. Balear, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets,

Fund. Math. 110(1980), 11-24.
[Gv] G. Certnov, On spaces with the Martin property which are co-absolute with linearly ordered spaces,

Vestnik Moskov. Univ. Ser. I Mat. Meh. 28 (1973), 10-17.

[C.N.I] W. W. Comfort and S. Negrepontis, Homeomorphs of three subspaces of ßN ~ N, Math. Z. 107

(1968), 53-58.
[C.N.2] _, The theory of ultrafilters, Die Grundlehren der Math. Wissenschaften, Band 211,

Springer-Verlag, Berlin and New York, 1974.



100 S. W. WILLIAMS

[vDl] E. K. van Douwen, Martin's axiom and pathological points in ßx ~ X, unpublished.

[vD2]_, Transfer of information about ßN ~ N via open remainder maps, preprint.

[vD.vM.] E. K. van Douwen and J. van Mill, Parovicenko's characterization of ßu — w implies CH,

Proc. Amer. Math. Soc. 72 (1978), 539-541.

[En] R. Engelking, General topology, PWN, Warsaw, 1977.

[F.G.] N. J. Fine and L. Gillman, Extensions of continuous functions in ßN, Bull. Amer. Math. Soc. 66

(1960),376-381.
[He] S. H. Hechler, On the existence of certain cofinal subsets o/w^,, Proc. Sympos. Pure Math., vol. 13,

Part II, Amer. Math. Soc, Providence, R.I., 1974, pp. 153-173.

[Je] T. Jech, Lectures in set theory. Lecture Notes in Math., vol. 217, Springer-Verlag, Berlin and New

York, 1971.

[Jul] I. Juhasz, Cardinal functions in topology. Math. Centre Tracts no. 34, Mathematisch Centrum,

1971.

[Ju2]_Consistency results in topology. Handbook of Mathematical Logic, North-Holland,

Amsterdam, 1977, pp. 503-522.

[Ku] K. Kunen, Combinatorics, Handbook of Mathematical Logic. North-Holland, Amsterdam, 1977,

pp. 371-401.
[Le] R. Levy, Almost P-spaces, Canad. J. Math. 31 (1977), 284-288.

[Ny] P. Nyikos, Some surprising base properties in topology. II, Set-Theoretic Topology, Academic Press.

New York, 1977, pp. 277-305.

[Po] V. Ponomarev, On the absolutes of a topological space, Soviet Math. 4 (1963), 299-302.

[P.S.] V. Ponomarev and L. Sapiro, Absolutes of topological spaces and their continuous maps, Russian

Math. Surveys 31 (1976), 138-154.

[Ru] M. E. Rudin, Lectures in set-theoretic topology, CBMS Regional Conf. Ser. in Math., no. 23, Amer.

Math. Soc, Providence, R.I., 1977.

[Si] R. Sikorski, Boolean algebras, Ergebnisse der Math, und ihrer Grenzegebiete, Band 25, Springer-

Verlag, Berlin and New York, 1969.

[Ta] F. D. Tall, Stalking the Souslin tree-a topological guide, Canad. Math. Bull. 19 (1976), 337-341.
[Wh] H. E. White, First countable spaces having special pseudobases, Canad. Math. Bull. 21 (1978),

103-112.

[Wi] S. W. Williams, An application of trees to topology. Topology Proc. 3 (1978), 523-525.

[Wol] R. G. Woods, A Boolean algebra of regular closed subsets of ßX ~ X, Trans. Amer. Math. Soc.

154(1971), 23-36.
[Wo2]_Co-absolutes of remainders of Stone-Cech compactif¡cations, Pacific J. Math. 37 (197!),

545-560.
[Wo3]_Ideals of pseudocompact regular closed sets and absolutes of Hewitt realcompactifications.

General Topology Appl. 2 (1972), 315-331.

Department of Mathematics, State University of New York, Buffalo, New York 14214


