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UNIVERSAL BUNDLES FOR DEFORMATIONS

OF ASYMMETRIC STRUCTURES
BY

PAUL R. DIPPOLITO1

Abstract. Riemannian parallel transport of frames and Cartan connections can be

considered as special cases of a type of structure in which the connection form on

the principal bundle can transform by an arbitrary extension of the adjoint represen-

tation of the fiber group; there always exist universal deformations for asymmetric

objects in any of these geometries.

The purpose of this paper is to give an elementary proof of the existence of

universal objects for deformations of infinitesimally asymmetric, globally asymmet-

ric structures in a wide range of geometries.

The class of geometries we consider is a generalization of linear connections and

Cartan connections in which the connection form may transform by a more general

representation of the fiber group. Within these geometries, we always require the

structures under study to be both infinitesimally and globally asymmetric. Starting

with a fixed geometry and a fixed principal bundle Y -> M over a compact base, we

construct a Y-bundle S00 -» 91t00, with a connection on each fiber, such that any

deformation of asymmetric structures of the given type can be uniquely described by

mapping its parameter space into <Dlt0C.

Let H be a Lie group of dimension n and 8 a representation of H on Rm+" which

preserves {0} X R" and restricts so as to be isomorphic to the adjoint representation

there. A 8-structure on an w-manifold M is then a principal //-bundle Y -> M with a

1-form co on y with values in Rm+", such that each ay. TyY -» Rm+" is an

isomorphism and (Ra)*co = 8(a'x)u for a E H, and such that {0} X R" always

corresponds to the vertical subspace of TyY. For example (§1B), linear connections

can be viewed as ^-structures where 8 is the sum of the standard representation of

H C GL(m) on Rm and the adjoint representation on R" = b.

A 0-structure (Y, co) is called infinitesimally asymmetric if there is no pointy G Y

such that either (i)/*co — (Ra)*u vanishes to infinite order at y for some a E H not

the identity and some local diffeomorphism / fixing y, or (ii) there is a vector field Z

in T with Z ¥= 0 such that £zco vanishes to infinite order at v. A different definition,

given in §1C, is shown to be equivalent to this one in §1E. The A-structure is globally

asymmetric if there is no nontrivial equivariant diffeomorphism Y -» Y preserving co.
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The main result can then be precisely stated as follows:

Theorem. Let M be a compact m-manifold and Y a principal H bundle over M.

Then there is a Y-bundle &°°(Y,8) -» 91L°°(y, 8) with a smooth 6-structure on each

fiber which is infinitesimally and globally asymmetric, and on which the connection

forms and all their higher order invariants are continuous, such that any other such

objects can be obtained uniquely as a pull-back from this universal one.

Our methods are quite simple. We construct an abstract jet space for fields of

frames, parametrized by their local invariants. Considering the connections as

framings of T^Y, we show (§2D) that infinitesimally asymmetric structures' in-

variants-mappings are immersions, and thus can be given normal bundles. The

coordinate charts used in constructing the above bundle are then defined using the

spaces of sections of these normal bundles (§3). Finally, these charts are glued

together to form the global bundle (§4A), which is then shown to have the universal

property (§4B).

1. Frame field descriptions of various types of connections. This section has two

purposes. First, it combines Cartan connections, linear connections, and other

geometric constructions into one natural family, described at the end of §1B.

Secondly, it illustrates the extent to which the information in any of these geometries

(for instance, the principal bundle structure itself) is contained in the framing of the

total space Y which is provided by the connection. Writing the connection as a

frame field of N vectors, we see that the geometry is specified by conditions on their

Lie brackets, and we describe in terms of these vector fields the hypotheses which we

place on the geometry ("geometry A") whose deformations are analyzed in this

paper.

A. Cartan connections. To define a Cartan connection, one must first specify a

symmetric space to use as a model geometry. Suppose then that G D H are

connected finite-dimensional Lie groups, G/H is a manifold of dimension m, and g,

i) are the Lie algebras.

Definition. A Cartan connection modelled on G/H is a g-valued 1-form co on an

H principal bundle Y over a smooth m-manifold M such that: (1) cox: TXY -» g is an

isomorphism of vector spaces for all x E Y; (2) if A E b and A* is the associated

invariant vector field on Y, then w(A*) = A; (3) (Ra)*u = ad(a-1) • w for a E H,

where (Ra: Y -* Y, a E H) defines the action of H.

An equivalence of these structures is a commutative diagram

h
Y      -      Y'

I I

h
M     -»     M'

where h, h are diffeomorphisms and h*(u') = co. Here the vertical arrows are the

projections.
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Up to equivalence, the entire structure can be reconstructed from the pair (Y, co).

That is, the condition h*(u') = co implies that the vector fields A*, and thus the

action of H, are preserved by h. Up to equivalence we can thus replace M by the

orbit space of H on Y, and we are free also to forget the H action itself since it can

be reconstructed from co.

Suppose now that we choose a vector space basis ex,...,eN for g, so that

em+x,. ■ -,eN span Í) C g, and define vector fields A,,... ,XN on y by

(co, X¡)x = e„       i=l,...,N,   xEY.

These vector fields define a frame at each point of Y from which we can recover co.

We have now simplified the situation substantially; our picture now consists of

just a manifold with N vector fields satisfying some conditions. It is reasonable to

ask what the local consequences of these conditions are.

In general, the lowest order local invariants of a frame field XX,...,XN are the

functions y'jk which are defined as the coefficients in

[Xj, Xk] = y'jkX,

(where the summation convention is used). One instance is the definition of the

structure constants of g by the formula

[ej,ek] =c'Jke,.

The infinitesimal version of condition (3) of the above definition is simply

(3') y'jk = c'jk for j > m,k and / arbitrary.

The germs of actual connection forms, written in this notation, are the same as the

germs of frame fields satisfying (3'). To verify this, one chooses a frame field (A,) in a

neighborhood of OGR" satisfying (3'), and notes that H acts locally (in the

pseudogroup sense) so that (3) holds. Using (3) and the group law, it is then possible

to piece together an actual connection form on a neighborhood of{0} X // c R™ X

H whose germ (regarded as a frame field) at (0,1) is isomorphic to that of (A,) at 0.

Note that from this point of view the geometry depends on the Lie algebras rather

than the Lie groups.

Now we must discuss the possible auxiliary defining conditions for the geometries

we will consider. First it is reasonable to restrict ourselves to inhomogeneous linear

conditions on the y'jk, and these conditions must certainly be satisfied by the model

geometry, i.e. by the structure constants cljk. Second, we note that H acts on a frame

field XX,...,XN by its adjoint representation on the vectorspace (namely g) gener-

ated by the e¡; this action induces transformations of the y'jk under which the

conditions should be invariant.

The limitation to homogeneous linear conditions on the quantities y'jk — cL is

motivated by the fact that these quantities are precisely the coefficients of the

curvature

fl = du — [co A co]

of the Cartan connection.
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B. Linear connections and other equivariant geometries. Clearly other geometrical

entities besides Cartan connections can be described in terms of framings of

principal bundles. We next discuss the case of linear connections.

Given a principal H bundle Y0 of linear frames on M (H E GL(w)) and a

connection co0 on Y0, the horizontal subspace at each y E YQ is tautologically framed

since y is a frame. If Y0 is replaced by a diffeomorphic manifold Y and co0 by the

corresponding co, we will need these frames on the horizontal subspaces in order to

recover (Y0, co0). A frame field on Y is given at y E Y by these horizontal vectors

(Xx,...,Xm) and the Ay = S»j\ej) for a basis em+x,...,eN of b. As in the case of

Cartan connections, the manifold M, bundle Y0 -» M, and connection co0 can then be

recovered up to equivalence from (Y;XX,...,XN). The only real difference in the two

sorts of geometries lies in the conditions that the yljk and the action of H must

satisfy.

The structure constants appearing in (3') are only defined here if j, k, and / are all

more than m; the corresponding equations must be combined with y'k = 0 for

j, k > m and / < m to maintain the bundle structure on Y. The action of H on the

horizontal vectors must be that given by the inclusion H ■*» GL(m); this specifies the

y'jk for j> m, k «£ m, and Km. Finally, parallel translation must preserve the

group structures on the fibers, so the y'jk must vanish for j > m, k ^ m, and I > m.

In all, we have fixed the y'jk withy > m, just as in the case of Cartan connections; for

notational convenience we will write cL for the constants in these formulas.

These equations are again the infinitesimal form of an equation similar to

condition (3) in §1A which describes the behavior of a Cartan connection under

translation by an element of H.

Just as before, we can impose auxiliary conditions on the other yjk (here the

torsion and curvature) to obtain other geometries, e. g. Riemannian metrics, vacuum

general-relativistic space-times, and so on.

Now consider the properties held in common by the two cases of Cartan

connections and linear connections.

In each the group H has a representation 8 given on R^ = R"' X RN~m such that

(i) 8 induces a representation of H on Rm by projection to the first factor, and

(ii) some vectorspace isomorphism /: {0} X R^-"1 -♦ b carries 8 to the adjoint

representation of H on its Lie algebra b ■

The geometry is then given by a 1-form co on Y with values in R^ such that

(iii) co takes the tangent space of the fiber to {0} X RN~m,

(iv) for each A E b, the vectorfield A* on Y given by differentiating the action of

H is taken to A by / ° co, and

(v) for x E Y and a E H, we have (Ra)*u = 8(a~x) ■ co where Ra is the map

giving the action of a on Y.

The infinitesimal version of condition (v) then states that if we write vectorfields

XX,...,XN on T with (co, X)= e¡,j = 1,...,7V, then certain of the quantities y'jk in

[A", Xk] = yljkX¡ must equal the corresponding structure constants c'jk of the repre-

sentation of b on RN associated to 8.
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For the remainder of this paper, geometry A will be any geometry defined in terms

of connections of the above sort with auxiliary conditions similar to those discussed

in§lA.

Where there are additional conditions imposed on the geometry which are not of

this type, these can be simply held to one side until the construction of deformations

for the less-restricted geometry is completed.

C. A remark about the kernel of 8. If, in the above construction, the representation

8 of H on RN has nontrivial kernel, then for any a in the kernel, we have

(Ra)*u = co: Ra is always a global symmetry of the 8 structure (Y, co). Thus we

include here some remarks concerning the extension of our deformation theory to

this case.

Let 1 -» H0 -* H -» H' -> 1 be an exact sequence of Lie groups, where H0 is

perhaps the kernel of 8. Writing b' for the Lie algebra of H', suppose that 8

preserves the fibering of Rm X b (s RN) over Rm X b' (s RN'), and that the induced

action of H on R^ factors through H'. Let 8' be the representation of H' on RN' so

obtained. If we construct Y' = Y/H0 and the 1-form co' which makes the diagram

T,(Y)      "      RN     s     RmXf)

I I

Tm(Y')     "-*     R"     s    RmXb'

commute, we obtain an H' principal bundle Y' -> M with 8' structure co'.

To carry out the deformation theory of this paper in the case where ker(0) ¥= 1,

we might begin by "reducing" the 8 structure (Y, co) to the 8' structure (Y', co'),

where Y' = Y/HQ, co', and 8' are as above with H0 equal to the kernel of 8. An

advance is made by this simplification, since as 8' is faithful, no Ry. Y' -* Y' for

a' E H' will be a symmetry of co'. On the other hand, the functor from (Y -» M, co)

to ( y -> M, co') is forgetful of the components of curvature lying in the Lie algebra

of H0, i.e. of the yjk for j, k < m and / > N'. These extra invariants will of course be

well defined on Y'. Thus to extend the deformation theory to nonfaithful 8, we

restrict to the part of jp (§2) on which HN,+ x,...,i;N vanish and then search for

immersions of Y' rather than of Y in the construction of §§2 and 3.

2. Invariants, jet spaces, and normal forms. In this section, we develop the basic jet

space techniques in the context of abstract frame fields, and discuss the consequence

of infinitesimal asymmetry. The invariants of arbitrary finite order for frame fields

parametrize a jet space J™; this jet space has certain structures defined on it, and

there is a subspace JA E jp> of formal geometry A structures. Infinitesimally

asymmetric structures are discussed from the viewpoint of their invariant mappings,

and it is seen that the latter can be easily distinguished among the mappings of Y

into /f.
A. Normal forms for abstract frame field jets. We have seen in §1 that Cartan

connections and linear connections are essentially just fields of frames in the
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principal bundles. These fields can be written locally as ordered A'-tuples XX,...,XN

of vectorfields on (a coordinate neighborhood) RN (in Y). We now investigate the

invariants of finite order at the origin for such TV-tuples of vectorfields under the

equivalence relation given by diffeomorphisms of (R^, 0).

These invariants are precisely the coefficients y'jk in the relations [Xj} Xk] = yjkX¡

evaluated at the origin and their derivatives for any multi-index a = (ax,...,aN)

given by the formula

ljk;a        Al AN  Yjk

where the ordering of the differentiations is of significance. If two such frame fields

have the same invariants at the origin, then there is a diffeomorphism of (RN, 0)

taking the Taylor series of one family of vectorfields to the Taylor series of the other,

as we shall see below.

To establish this claim that the above form a complete family of invariants of the

Taylor series (or infinite jets) of the frame fields at the origin, we provide a normal

form for any germ of frame field. This is very easy to construct. We choose new

coordinates (xx,...,xN) in a neighborhood of 0 G R^ by a simple procedure. First

we parametrize the integral curve of XN through the origin as the xN axis so that XN

will equal d/dxN when xx = • • • = xN~x = 0. Next we use XN_X to similarly extend

the definition of coordinates to the (xN~l, xN) plane, so that (near the origin)

XN_X = d/dxN'x,       xx = • • ■ = x"-2 = 0.

By induction coordinates can be constructed on a full neighborhood of the origin so

that

A, = d/dx',       xx = • • ■ = je''-1 = 0,    all i.

The coordinates are thus uniquely defined by the frame field itself, and thus the

frame field is in a normal form in the new coordinates.

If the normal form expression for the frame field ( A,) in terms of* = (xx,...,xN)

is

Xj = d/dxJ + a}(x)d/dxk,        1 <j < TV,

then the (normal form) conditions on the a* are simply

(*) af(x) = 0   whenjc1 = ••• = xJ~x = 0.

Writing (for each multi-index a)

4« := <M = (3/3*r<(0),
the infinitesimal form of (*) is given as

(*') A)a = 0   when a, = 0 for all i <j.

The Aj a for which a¡ ¥= 0 for some /' < j can thus be used as invariants in place of

the y'k.a. In fact, since for any a the operators Af1 • • • X^» and (d/dx)a agree at the

origin by (*), we easily compute

fjk;a — ^j,(k) + a ~ ^k,(j) + a "*"    2/    \^k,a-ß^j,(m) + ß ~ ^j,a-ß^k,{m) + ß] '
ß<a
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the conditions (*') then permit us to solve recursively for the Aka in terms of the

Y/,;o.Here(;), = Ô/._

Definition. Let Jp be the vectorspace consisting of germs at 0 G RN of frame

fields A,0,...,XJ$ which are in normal form with polynomial coefficients of order no

greater than (r — 1). Let Jp be the projective limit

•> rr JF ■JF J'h

where the map Jp+ ' -» // is given by deleting the rth order terms in the coefficients.

To any frame field XX,...,XN on an TV-manifold Y and any x E Y, the above

constructions associate invariants Akja and thus a point of Jp (or of //). The

equivalence classes under the relation of mapping to the same point of Jp (resp. of

Jp) are called infinite jets (resp. r-jets) of abstract frame fields and form a space J¡?

(resp. Jp) called the infinite jet space (resp. the r-jet space) of abstract frame fields.

B. Jets for geometry A. Let "geometry A" be one of the geometries described in §1.

The conditions defining the geometry (and other conditions which can be formally

derived from these) will be used to define for each r a subspace JA of // describing

candidates for jets of frame fields that describe objects in geometry A.

For each condition ejkyjk = c in the specifications of geometry A there are

conditions on the frame field jets of the form

E/   \AJ.(k)       A'k,(j)) C,

where (j) is the multi-index with (j)¡ = 8/, and the derived conditions

«/*IK.(*)+«lk,U) 4 =,jk
2(    \Ak,a-ßAj,( m)+ß 1Ak,(m) + ßj

These conditions will be called frame field jet conditions for the geometry A.

Definition. The infinite jets (resp. r-jets) of abstract frame fields satisfying the

frame field jet conditions for geometry A will be called the infinite jets (resp. r-jets)

of abstract connections and form a subspace of Jp" (resp. of Jp) which will be denoted

Jf (resp./;).
From the representation of H on R^, which is called 8 in §1B, we obtain

consistent actions of H on all the // by replacing A, by (8(a~x)){Xj in the equations

which define the invariants. These actions restrict to actions of H on the JJ¡ for

r = 2,3,..., oo.

We should now stress that the above definition is quite formal, and does not

mention existence of an actual connection with the given jet. It would perhaps be

better to have the actual spaces of r-jets of smooth or analytic connections. However,

we have no need to compute these spaces for general geometries in order to make

our constructions. The spaces

JÁ.2 = {j ^.Jf'- tne 2-jet of j is in JA)

will do as well in the constructions of §3, since any actual frame field r-jet invariant

mapping with image in J¿ 2 will have image in JJ¡.
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C. The canonical vectorfields on the jet space. Infinitesimal asymmetry. There is a

structure on the jet space JA analogous to that structure on the space of infinite jets

of maps Rv -» Ry which is given by the Pfaffian forms d(y) - (y') d(x), d(y') -

(y")d(x),..., or as a better analogy, by the "vectorfield" d/dx + (y')(d/dy) +

(y")$ß(y')) +... which generates the nullspace of this infinite Pfaffian system.

The structure on J™ is the restriction of a similar one on Jp° which we will examine

first.

For/ G Jp, let (A,0,...^) be the corresponding polynomial frame field in Jp

defined in a neighborhood U of 0 in R^. There is a smooth map i0: U -» Jp~ ' giving

the invariants of (Xk) of order up to (r — 1) at points of U. Define vectors

fp1,... ,£ff} m the tangent space to Jf~ ' at z'0(0) by

er, = 'o*(3/^*)u=o-

The coordinates of these vectors are invariants of (Xk) at 0 of order no more than r,

so the same vectors would be obtained in this way from any representative of jr; it is

also evident that the vectors depend smoothly onyr.

If we write y E Jf as a projective limit j = lim(jr), we have for each r < oo and

k — 1,... ,7V the vectors ¡-k E TfJp) ~ // and thus the projective limit vector

€k = lim({i)G7}(J3?).

We may thus consider the £A as "smooth" vectorfields defined on Jp°.

If i: Y -* Jp is the natural mapping giving the invariants of a frame field XX,...,XN

on Y, then i^( Xk) = $kfark = 1,... ,7V.
The higher-order conditions among the frame field jet conditions for the geometry

are exactly what is needed to assure that the £k will be tangent to JA ; thus we can

restrict the i-k to obtain a similar structure on J¿.

Definition. An infinitesimally asymmetric jet in 7J° is a jet which (a) is a point of

trivial isotropy for the action of H on J¿ and (b) is not a point at which the vectors

£k are linearly dependent. An infinitesimally asymmetric connection in the geometry

A is one for which the image of the invariant mapping contains only infinitesimally

asymmetric jets.

D. Immersions into Jf We wish to simplify the recognition of invariant mappings

of infinitesimally asymmetric frame fields by some construction based on the vectors

£k. A point x E Jf determines the vectors IJT1 at -n(x) E J£~], and thus also their

linear dependent or independence, but at one stage of the discussion we will need

two derivatives, so we introduce the following open set.

Definition. For r > 4, let W E Jp be the set of points x E Jp such that

(1) the vectors ££~2 at tt2(x) E Jf~2 determined by n(x) EJ£~X are linearly

independent, and

(2) the isotropy of H at ir(x) E Jf  ' is trivial.

On W there is a Pfaffian system xpx,...,xpK of rank (dim(7/"') — TV): the null

space {xp¡ — 0} at x E W consists of all vectors t> G Tx(Jp) with ir#(v) a linear

combination of the vectors ££"' at ir(x) determined by the point x.
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Lemma. (1) For some neighborhood of any given point in an infinitesimally asymmet-

ric frame field in geometry A, there is r < oo for which the r-jet invariant mapping has

image in W.

(2) Given a smooth map f of an N-manifold U into W,f is the invariant mapping of

a frame field if and only if it ° f is an immersion and f satisfies the Pfaffian system in

the sense that (xP„ f*X)= 0 for all X G TJJ and i = l,...,K.

Proof. Statement (1) is trivial, as is the "only if" part of (2). Thus let/satisfy the

Pfaffian system and let tr ° /be an immersion. By dimension-counting, D(tt ° f)(u)

must have image spanned by the ££~' for each u E U. There is then certainly a

frame field A,,..., A^ on U with ( it ° f )„, Xk = ££~ ' ; we must check that / is in fact

the r-jet invariant mapping for this frame field. Applying the identities which define

the vectorfields l-k, we see that it suffices to check only the y'jk at each point of U.

This is no more difficult: we know the second derivatives Isjk and Ukj of TV

quantities Is (invariants of order *s r — 2) for which the Ifx form an invertible

matrix.

E. The geometrical characterization of infinitesimal asymmetry.

Proposition. A frame field ( A,,..., XN ) on RN i s infinitesimally asymmetric at 0 if

and only if there is no nonvanishing smooth vectorfield Z on RN with the Lie derivatives

£Z(A~) all vanishing to infinite order at 0. For fields in geometry A, infinitesimal

asymmetry at 0 is equivalent to this condition plus the nonexistence of a diffeomorphism

h: (R^, 0) -» (R^, 0)/or which Dh(0) = (h{) is a transformation in the representation 8

of H and hjXj — hJ(X¡) vanishes to infinite order at 0 for all i.

Proof. The second part of the statement is clear given the first, since in the case

of infinitesimal symmetry arising from H isotropy the diffeomorphism H can be

constructed as the transformation from normal form coordinates for (A,) to those

for (h{Xj).
Now we introduce an auxiliary variable t and lift the X¡, i — 1,... ,7V, "horizon-

tally" to vectorfields X¡ = X¡ + 0(3/3í) in R^ X R;. Suppose Z is a vectorfield on

R^ as in the proposition, and introduce XN+X = Z + (3/3;) on R^ X R, to com-

plete the (TV + l)-frame field (XX,...,XN+X); note that the [X¡, XN+X] vanish to

infinite order at (0,0). Putting this field in normal form using a diffeomorphism h of

(R^ X R, 0), we note that h preserves the t variable and that for each value of t, a

frame field in normal form is induced on RN X {t} by restricting the h^(X¡). The

invariants of these induced frames are equal to those of ( X¡) along the flow line of Z

through the origin. The t derivatives of these invariants at 0 are invariants of

(Xx,. ..,XN+X) at (0,0) which involve t, and thus vanish by the Lie derivative

condition. Thus (XX,...,XN) is infinitesimally symmetric.

The converse is similar; we suppose that Z0 is a vector which is annihilated by the

invariant mapping of (XX,...,XN) at the origin and write X%+x for the constant

vectorfield Z() + 3/3/ on RN+X. To construct the vectorfield Z, we put

(XX,...,XN, Â^+1) in normal form at the origin by a diffeomorphism/!: (RA/+I,0) -»

(R/v+1,0)andset



110 P. R. DIPPOLITO

where tt(x, t) = x for (x, t) ERN X R. After writing XN+X — Z + 3/3/ and trans-

forming to normal form for (À,,.. .,XN+X), it is easy to compute the required

brackets [Z, X¡] and their derivatives.

3. Deformations of an infinitesimally asymmetric, globally asymmetric geometry A

structure on a compact manifold. The purpose of this section is to provide the

constructions which are summarized in the following theorem. Here the concrete

objects (Y -* M, co) in geometry yl are first given the topology of (2°° convergence of

connection forms on compact subsets of Y.

Theorem 1. Given an infinitesimally asymmetric, globally asymmetric object (Y -*

M, co) in gemoetry A, with M compact, there are

(1) a finite-dimensional vector bundle E -» M,

(2) a system of differential equations on E, and

(3) a subset EA E E

such that those solutions of the system (2) which are in a ß00 neighborhood of the zero

section and have values in EA are in one-to-one correspondence with the equivalence

classes of those objects in geometry A which are C°° perturbations of the given one.

Choosing (Y -» M, co) as in the theorem, we begin by writing the structure as a

family of TV vectorfields A,,.. .,XN on Y. There is then as in §2A a mapping iy.

Y -> Jp° describing all the finite-order local invariants of this TV-frame field on Y:

this map has image in the subset J¿ described in §2B. By infinitesimal asymmetry

and compactness of M there must be r < oo such that the r-jet invariant mapping iry.

Y -> Jp has image in the open set W of §2D.

Define V as the space of orbits of H on W, and let VrA = (W n JA)/H C V.

There is a mapping of principal //-bundles

y      'Z      W

I I

•o
M     ->      V

(this diagram defines iQ), and i0(M) C VA. This map i0 clearly determines up to

equivalence the bundle Y -» M and the connection co.

The Pfaffian system xpx,... ,xpK on W which was described in §2D is easily seen to

push down to a Pfaffian system tj,,. .. ,rxK on V which has the same rank, since the

xp¡ annihilate tangents to the //-orbits and the system (xp¡) behaves apropriately under

the action of H. Any immersion V: M -» V which satisfies the Pfaffian system (tj,-)

and is homotopic to ¡0 clearly lifts to an //-equivariant immersion/: Y -* W which

satisfies (i//,).

Remembering the immersion condition on (tr ° f) in Lemma (2) of §2D, we put

additional structure on V. Since the action of H preserves the fibering of Jp over

Jp~], there is a well-defined submersion ñ: V -» ir(W)/H, and it ° fis an immer-

sion if and only if % ° i' is an immersion. Then by §2D we have
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Lemma 1. A smooth map /': M -* V which is homotopic to i0 lifts to the invariant

mapping of a connection on Y in geometry A if and only if

(1) (xp¡, i'tX)= 0 for all X E T+M and i = l,...,K,

(2) -ñ ° /' is an immersion, and

(3) i'(M) C VA.

Now we will make use of the global asymmetry to choose a particular immersion

V of this type to represent each equivalence class of structures which approximates

the given one. To make this choice we use a "tubular neighborhood of the immersed

submanifold" to pull back xp¡ to a system on the normal bundle. Our procedure will

automatically eliminate compositions of allowable immersions with diffeomorphisms

near the identity. However, new discrete global symmetries can appear in the

deformed structures unless we take some care in limiting the size of the tubular

neighborhood. Thus we need the following estimate:

Lemma 2. Let V = V and M be given Riemannian metrics so that i0 is an isometry.

Then there is 80 > 0 such that each {y: d(x, y) < 280} is a disk embedded by i0, and

such that if 0 < 8 < 80 and i', i": M -» V are maps with d(i0(x), i'(x)) +

d(i0(x), i"(x)) < 8/3 for all x E M, then any diffeomorphism h: M -> M with i' ° h

= i" must satisfy d(x, h(x)) < 8, all x E M.

Proof (by contradiction). Suppose 0 < 8X with d(i0x, i0y) > f d(x, y)

whenever d(x, y) < 8X, and suppose also that the first condition on S0 holds for all 8

with 0 < 8 < 50,. Choose 82 > 0 so that for each x E M, each path component of

[y E M: d(i0x, i0y) < 82) is contained in a ball of radius 5,/3, and let 83 satisfy

0 < 6S3 < 82. Choose a finite set A E M such that each point of M is within a

distance of 83 of some point of A. Now for each k = 4,5,..., choose maps i'k, i'k and

diffeomorphisms hk which contradict the condition in the conclusion for values 8k of

8 with 8kl0; by taking a subsequence we may assume that the sequence hk(a)

converge for a E A.

Since i'k ° hk — i'k we know for each x E M that

d(i0(x), i0hk(x)) < d(i0(x), i'¿(x)) + d(i'khk(x), i0hk(x)) < fóV

Thus if d(x, hk(x)) < 8X for all x E M, then the first condition on 8X implies that

d(x, hk(x)) < 8k, contradicting the hypothesis on hk. It follows that hk(x) cannot be

a Cauchy sequence for all x E M: in fact, the limit would then define a covering

map hx =£ id with i0hx = i0, and hx would be one-to-one since only finitely many

sheets of i0(M) pass through a given point of V. In particular, we cannot have large

k0 such that for k, k' > k0, d(hk(x), hk.(x)) < 8X for all x, for then the above

estimate and the first condition on 5, would imply that d(hk(x), hk,(x)) < 8k + 8k,,

for all x.

For a E A, where the hk converge, we have d(hk(a),hk(a)) < 8x/3 when

3(0^ + ó^,) < 8X. For arbitrary x E M, choose a path xt, 0 =£ t < 1, with x0 = a E A,

xx = x, and d(a, xt) < 83 for all /. We can show that the path hk(xt) is contained in

the ball of radius 8x/3 about hk(a), so that the absurd estimate d(hk(x), hk.(x)) < 5,
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holds when 3(0^ + 8k.) < 8X. In fact, if we note that

d(i0(a), >0hk(x,)) < d(i0(a), i0(x,)) + d(i0(x,), i'¿(x¡))

+ d(i'khk(x,),i0hk(x,))

<83 + 8k + 8k,

so that d(i0hk(xQ), iQhk(xt)) < 653 < ô2 for all t, 0 < t < 1, then we can use the

condition on components of sets {y: d(i0(y), i0(x)) < 82}. This proves the lemma.

The normal bundle of an immersion i0: M -» V is the vector subbundle E of

i$(T*V) given by

Ex = [i*(8): 8 E T*(X)(V), (8, i0*(v))= 0 for all v E TX(M)}.

We write pE for the projection of E and a0 for the zero section. Without specifying a

metric on V, we can define a tube of i0 as an immersion <p: U -+ F of a neighborhood

of m(a0) C £ into V such that <p extends smoothly to U so as to be injective on each

Ex n Ü and such that (0,(d/dt)<p(i$(t0))t=o) is positive for all 8 E E. If

^('o/,¿(>')' "PCy)) < ö for ally G U, in the metric used in Lemma 2, then we will call

<p a 8-tube. As a straightforward consequence of Lemma 2 we then have

Lemma 3. // tp z'i a 8-tube of i0 for 0 < 108 < 80 where 80 is as in Lemma 2, and if

o', o" are distinct sections of E with image in U, then there is no diffeomorphism h:

M — M (i.e. distinct from the identity) for which <p°o'°h = <p° o".

To complete the proof of Theorem 1, we now observe that condition (2) of Lemma

1 does not need to be reflected explicitly in the final formulation:

Lemma 4. A tube <p of i0 can be chosen so that ñ ° <p ° a is an immersion for each

section a: M -» U.

Proof. Construct a tube first for 77 ° /0 and use the fact that € is a submersion.

For later reference we also note that there is a principal //-bundle Ü -* U to which

the tube cp lifts in an equivariant fashion. In fact, the action of H on Y lifts naturally

to an action onp*(E) -» Y; thus (p*E) -» E is itself a principal //-bundle. A tube <p

of ir(Y) then can be easily constructed so that the diagram

(p*E)     D     Ü     ^      W

E D       (J      -       Fr

commutes and cp is //-equivariant. A specific equivariant immersion of Y is thus

associated with each section a of £ with image in U by the correspondence

a>->tp • (/?*a). If <p o a satisfies the conditions of Lemma 1, this specific immersion

cp • (p*a) is the invariant mapping of a connection in geometry A.

4. The universal bundle.

A. Coordinate transformations. In the preceding section, we described a coordinate

chart in a moduli space and associated to each point a particular geometric structure

on y. By studying the coordinate transformations, we will now fit these together to
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form a y-bundle over the global moduli space (of asymmetric objects) with a

structure on each fiber.

Choosing an H principal bundle Y over a compact manifold M of the right

dimension, we construct the asymmetric part 91L°°(y, A) of the moduli space of

geometry A structures on Y -» M. As a set, 9H00 = <DH°°(y, A) consists of the classes

of infinitesimally asymmetric, globally asymmetric geometry A structures on Y -» M

under the relation of equivalence defined in §1. 9H°° is filtered by subsets 9114 C

91L5 c • • • C 91t°°, where 9ft/ consists of the classes of those structures whose r-jet

mappings have images in W.

To topologize 91t00, we will define the basic open neighborhoods of its points in a

noninvariant way and later justify our definition by showing its independence of

choices. For [co] G 91tr C 911e0, we choose a tube cp: TJ -> V of an immersion z'0:

M -» V representing the equivalence class of /4-objects [co]; we write {i0} '■= [co].

For each (300 open neighborhood % of the zero section in the space of sections of the

normal bundle E (§3), a basic neighborhood of [co] in 9ft,00 is given as the set of all

classes {cp ° a) represented by immersions cp ° a: M -* V with a6% and (im a) C

EAnu.
Given that this is a consistent definition of the topology, it will be appropriate to

call the maps cp.,,: an» {cp ° a} coordinate charts. The required justification amounts

to showing that the "coordinate transformations" are homeomorphisms. The same

must be checked for the bundle coordinate transformations, so we first describe the

bundle.

There is a coordinate chart of the bundle for each of the lifted tubes cp described

in the last remark of §3. We make the bundle space out of these charts by gluing, so

we must specify the identifications. For each coordinate chart cp+ : % -> T in 'Dit00

and lift cp: TJ -» W of cp as in the remark above, we obtain a map of % X y to W

given by

(a, y)y*{q>° p*(o)}(y).

If r' ^ r and another chart cp',.: %' -» T' is given with TnT^ 0, where cp':

TJ' -» V, then let <p(%0) = Tn T' = q>'(^i'0). The points (a, y) E (%0 X Y)~

and (a', y') E (%¿ x y V wil1 then be identified if and only if:

(i) a and a' correspond by <p*(o) = <p'*(o');

(ii) {cp o p*(a)}(y) = pry{xp ° P*(o'))(y') wherepry Jf' -* // is the projection.

Once we know that the maps (%0 X Y)- -> (%¿ X y)., are homeomorphisms, we

can define the total space &co(Y, A) of our bundle as the space obtained from the

disjoint union of the (% X Y)~ by identifying as above. The coordinate charts will

then be the natural identification maps cp^: %, X Y -» &°°(Y, A), and the group of

the bundle will be Difl^y)7'. That is, to complete the proof of the following theorem

we now need only check certain continuity requirements.

Theorem 2. Let Y -> M be an H principal bundle over a compact manifold of the

appropriate dimension. There exists a topological space 91L°°(y, A) whose points are

the equivalence classes of infinitesimally and globally asymmetric geometry A structures

on Y ^ M; convergence in this space means 6°° convergence on compact sets for some

representative connection forms on Y.
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Over 91t°°(y, A) there is a bundle with fiber Y, group Diff(y)w, and projection TJ:

S°°(y, A) -» 9H°°(y, A). This bundle has the additional structure of a continuous

mapping inv: $X(Y, A) -» JA such that for each class [co] G G)\i0C(Y, A), the restric-

tion (inv | n_1{[co]}) is the invariant mapping for a geometry A structure on n_1{[co]}

s y which represents [co].

The structure on each fiber is of course well defined due to the asymmetry.

We have reduced the theorem to a few easy estimates which we now make explicit.

By continuity of addition of sections of E, p*(E), etc., we can restrict our attention

to continuity at the zero section for those coordinate transformations which fix the

zero section. Moreover, we need only consider the case of the total space transforma-

tions, since then the result about the base will follow. Each such transformation is a

composition of two types: those with r — r', and those where r = r' — 1 and the

tube cp' is obtained from cp in a trivial fashion (or vice versa).

When r = r', the map h = cp'"' o cp is defined in a neighborhood (say TJ) of the

zero section of E as an //-equivariant but nonlinear diffeomorphism which fixes the

zero section. Write || • \\rK for the pointwise norm on the partíais of order < r on

compact K, where the differentiations are with respect to the vectorfields XX,...,XN

on y given by the structure for the zero section. We then need only the obvious

estimate that II h ° o \\ r K =£ C II a || rK for small a.

Now let r = r' — 1 and define <p' from <p by using the product structure on

Jp ~JfX R', first to lift cp to Jf' so that <p(p~x{y} n TJ) is horizontal for y E Y, p:

E -» y, and then to extend this lift vertically by means of an isomorphism E' s E X

R'. In one direction the coordinate transformation is then norm-decreasing. In the

reverse direction, a section a of £ is mapped to a section a X / of £ X R'. The

function/is defined by differentiating the function (cp ° o — <p ° o0) with respect to

the vectorfields Xk(o) on Y given by the structure associated with <p ° a; a0 is here

the zero section. As the Xk(o) are bounded relative to the X- — Xj(o0), there is again

no difficulty with Qx continuity, and the theorem is proved.

Note that the connection forms on the fibers combine to form a continuous

function from a 7", Y bundle over 9H°° to RN.

B. Universality. We now describe the characteristic property of the object we have

just constructed in Theorem 2.

Definition. A deformation of infinitesimally and globally asymmetric geometry A

structures on an H principal bundle Y -* M is a bundle with fiber Y and with an

infinitesimally and globally asymmetric structure on each fiber, such that each of the

invariants of these structures defines a continuous function on the total space.

Theorem 3. For any deformation D -» X as above, there is a unique map of bundles

D    -    s°°(y, A)

I I

X     1   W°(Y,A)

for which h pulls back the canonical connection on the fibers o/S00 to the given one on

the fibers of D.
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Proof. It is clear that the map h is uniquely defined as a function, and that there

exists a unique function h so that the diagram commutes and (inv) ° h restricts to the

invariant map on each fiber.

Given r < oo, let Dr -» Xr be the restriction to the largest X' C A mapping to

9ft/, and let/r: Dr -» W be the map zh»[r-jet of in\(h(x))\. We know, for every

r < oo and z E Dr and every open neighborhood Qr of jr(z) in W/r, that z has an

open neighborhood in Dr which maps into Qr byjr.

Continuity of h will follow quickly from continuity of h since the topology on a

bundle chart is the product topology, and since the charts in S00 are given by tubes

in W. Continuity of h can be expressed in terms of h with fiberwise-saturated open

subsets of £°° and D.

If Yx is the fiber over x E X, let <py. % -» S00 be a chart centered along the fiber

h(Yx), where cp is a tube in W. The basic open fiberwise saturated neighborhoods of

h(Yx) are given, using the equations of Lemma 1 of §3, by Qs neighborhoods of the

zero section of the source bundle of cp, for varying 5. The solutions of these equations

satisfying a Qs estimate are, however, the same as the solutions satisfying the

condition that their natural lifts to Wr+S satisfy a G° estimate. The fiberwise

saturated neighborhoods of h(Yx) are thus determined by //-invariant open neigh-

borhoods Qr of jr(Yx) where r > r0 is allowed to vary.

Suppose such an open set Qr is given, and let K E Yx be a compact subset which

meets each //-orbit in Y^. Each point of K has an open neighborhood mapping into

Qr; we may take a finite subcover Vx,..., Vq of K. The intersection of the images of

the Vj in A is an open neighborhood of x which is mapped by h into the appropriate

open neighborhood of h(x). That is, if p: D -> X is the projection, then h maps

p-x(njP(Vj))mtoQ'.
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