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THE HODGE THEORY OF FLAT VECTOR BUNDLES

ON A COMPLEX TORUS

BY

JEROME WILLIAM HOFFMAN1

Abstract. We study the Hodge spectral sequence of a local system on a compact,

complex torus by means of the theory of harmonic integrals. It is shown that, in

some cases. Baker's theorems concerning linear forms in the logarithms of algebraic

numbers may be applied to obtain vanishing theorems in cohomology. This is

applied to the study of Betti and Hodge numbers of compact analytic threefolds

which are analogues of hyperelliptic surfaces. Among other things, it is shown that,

in contrast to the two-dimensional case, some of these varieties are nonalgebraic.

0. Introduction.

(0.0) The purpose of this paper is to determine the Hodge spectral sequence

associated with a vector bundle with integrable connection on a complex torus. Such

vector bundles typically arise as the hypercohomology sheaves attached to a proper

and smooth morphism /: Y -» X where A is a complex torus. Consequently our

results will have application to the study of those manifolds which admit such

fiberings over tori.

(0.1) In outline, the main result is as follows: Let (%, V) be a holomorphic vector

bundle with integrable connection on a complex torus A = V/L, where L C V is a

lattice in a complex vector space. Let W = %v be the corresponding C-local

system. We compute Hq(X, &?(%)) and Hk( X, W) in terms of harmonic differen-

tial forms via Hodge's theorem.

First we show that % admits a global real analytic frame. Relative to this frame,

C°° differential forms in % may be represented by C°° m-vectors of differential

forms cp on F which are L-periodic (m = rank %). Using the frame, a Hermitian

metric may be introduced into the fibers of û7li in such a way that the harmonic

theory takes on a simple form. Specifically, the Laplace equations Acp = 0 become,

upon Fourier transform, b.(m)q>(m) = 0, m G Z2" (n = dimF). Each of these is a

finite-dimensional matrix equation. We prove (for the choices made):

(a) For Hk(X, W), A(m)q>(m) — 0 has only the zero solution if m ¥= 0. Hence

Hk(X, IF)^kerA(O).

(b) For Hq(X, Qip(%)), only a finite number of m can occur for which det A(w)

= 0 and these are identified by a diophantine condition involving the logarithms of

the periods of A. These m are "singular". Therefore, modulo determining the

singular m, all computations are reduced to a finite amount of linear algebra.
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118 J. W. HOFFMAN

(0.2) The diophantine problem mentioned in (b) above is exactly the same one

that Baker has studied in his papers on the linear forms in the logarithms of

algebraic numbers. By applying his theorems, we can obtain some vanishing theo-

rems for the cohomologies of local systems on complex tori.

(0.3) In the last section, we study some threefolds which are analogues of the

hyperelliptic surfaces. In contrast with the 2-dimensional case, nonalgebraic and

even non-Kaehlerian ones can arise. One challenging problem is to try and use these

methods to obtain more examples of non-Kaehlerian deformations of Kaehler

manifolds.

(0.4) This paper is the essential content of my Ph.D. thesis. I would like to thank

my advisor Heisuke Hironaka as well as Philip Griffiths and David Mumford for

help and encouragement while this work was in preparation.

1. Preliminaries.

(1.0) Let F be a C-vector space of dimension n, and L E V a lattice so that

X= V/L is a compact complex torus. We let z,,...,z„ be coordinates on V.

Zj = Xj + iyJ with i = xl-1. We let ex,...,e2n be a Z-basis of L. Thus, any v E V

may be written uniquely in the form v = 2y=, t>-e • with u G R.

We haveek = (eik,...,enk) = (eJk) = (rjk) + i(vjk) where jjk, vjk E R. Hence,

Í V L   Í V
V =   \    1   TjkVk      + > \    1   "jkVk

\k=\ I \k=\

Or, in matrix form,

(i-o.o) (;)(«)=(?)■

Set (t,u) = (lY1; then

n

vj=  2 (tJkxk + uJkyk).
k=\

Define

(l.o.i) 9a = 3/3za,     dh = d/Yzh,     dj = d/dvj.

Then if Xjk = {(tjk + iujk) we get

2«  _ 2«

(1.0.2) aa= 2Vj    and    3,= 2 A,,*/,.
j=i j=i

We have

(1.0.3) det(A,X)^0.

(1.1) We follow the usual conventions on multi-indices for differential forms, cf.

[9]. Generally,/,/, etc. E {l,...,2n} and A, B C {1,...,«}.

2. Vector bundles on complex tori.

(2.0) A holomorphic rank m vector bundle % on A is given by a collection of

analytic GLOT(C)-valued functions on   V {pK(v)\\ E L)  satisfying the cocycle
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px+x.(v) — px(v + X')py(v) to all pairs X, X' E L. Cohomologous cocycles give

isomorphic bundles and conversely.

Let <¥ be defined by a cocycle px. Let Ap-q(sDS) denote the space of global C°°

W-valued (p, c^-forms on A. An element cp G Ap-q(%') is the same thing as a C°°

C""-valued (p, c¡r)-form on F such that

cp(v + X) = px(v)cp(v)    for all X E L.

(2-0.0) Ak(%) =     0    Ap'"(%).

def p + q=k

(2.1) Let V: % -> &\ ®ox6^ = ß'C5^) be a flat (= integrable) holomorphic

connection. Let W — %v be the sheaf kernel of V whose sections are called

horizontal holomorphic sections of %. This is a C-local system on X of rank = rk( %)

by Frobenius' theorem. It is known that we may choose a cocycle for % so that (a)

Px(v) is independent of v, and (b) the connection matrices of V relative to px are

identically 0. Condition (a) means that À h> px is an w-dimensional representation of

the abelian group L, and condition (b) means that, with the identification (2.0.0),

V<p = dq> where d is the usual exterior differentiation on each entry of the w-vector

of differential forms cp. This understood, we sometimes write d for v.

The representation px attached to (%, V) is called the monodromy representa-

tion. Conversely, given a representation p: L -> GL(W) where IF is an w-dimensional

C-vector space, we obtain a local system W on X, and a vector bundle with flat

connection (% — Wp ®c 0^., v = 1 ® d). We denote by Wp the vector space W

viewed as L-module via p. We set px = p(X).

Because A is a K(tt, 1) with it = L, we get

(2.1.0) Proposition. There is a canonical isomorphism Hk(X,Wp) - Hk(L, Wp)

where the right-hand side is group cohomology.    D

It follows that Hk(X,Wp) is independent of the complex structure on A (i.e. the

position of L in V).

(2.2) Let <¥p = (%, V) be a flat vector bundle on A. We denote by ti*(%p) =

ß*(<¥, V) the de Rham complex (augmented) 0 -» Wp ̂ <¥p ?*&(%) ^

a2(<¥„)

(2.2.0) Theorem. There is a canonical isomorphism Hk(X,Wp) A H^+^A, S2*(û¥p))

and consequently a spectral sequence Ef-" = Hq(X, Qp(%)) => Hp+q(X, Wp) abutting

to a filtration on the limit (Hodge filtration).    D

It is well known that, as a consequence of (2.2.0), one has

¡Hk(X,Wp) = Hk(A*(%),d) (de Rham),

\hi(x,S1p(%)) = /f»(>l''*(eïl)p),8)     (Dolbeault).

Furthermore, the differential in the spectral sequence is 3 where d — 3 + 3.
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(2.3) We have IFp = ©x IFp(x) where Wp(x) E Wis the subvector space on which

p acts via matrices of the form

'X(A)

0 X(A)

with x: L — C* a homomorphism. IFp(x) or IF(x) is called the isotypic component

with diagonal character x- We obtain a decomposition of the local system W and

hence of the spectral sequence according to the x- It is sufficient to study the Hodge

theory of isotypic local systems.

(2.4) Let Pj = p(ej) with p: L -» GL(IF) a representation. Note that [p, pk] = 0

for ally, k ([ , ] — commutator).

(2.4.0) Lemma. There is a unique set of matrices Rj such that

(a) exp Rj — pj, Rj upper triangular if Pj is,

(b)[Rj,Rk] = 0forallj,k,

(c) 0 < lmo(Rj) < 2tt where o(R) = spectrum of R.

It follows from (c) that

(d) det(2TTim + Rj)^0 if m E Z- {0}.    D

In view of (2.3) it is clear that Rj may be chosen to be decomposed into block

form according to the isotypic components, and by (2.4.0)(a) each block taken in

upper triangular form (since we may simultaneously render any commuting family

of matrices in that form).

Now choose R - as above and define, for v = 2e<¡e¡, p(v) — exp(2u-R -). Then,

because [R -, Rk] = 0 for all j, k, we have p(v + v') = p(v)p(v'). In particular

p(v + X) — p(X) ■ p(v) for all X E L. Let r(v) denote the juth column vector of

p(v). Clearly r(v + X) = p(X)r^(v). Because of (2.0.0) this means that rß(v) is a real

analytic global section of % . Since det p(t>) ¥= 0 we have proved

(2.4.1) Proposition. The r(v) for ju = l,...,m constitute a global real-analytic

frame for the bundle eili .

Note that the r(v) are not in general horizontal. We write, for cp G Ap,q(Gí¡S ),

1   <PAj(V)dZA„ A dïB„- VaJÍV  +  A)  =  P(A)<ïW(u),

(2.4.2)

<P
A.B

<Pa,bÍv) =  2    "Pi,4üK(°)
,1=1

where <p% g(v + X) = cp£ B(v) is C00L-periodic.

We have a Fourier decomposition

ep = 2cp(m),        m = (mx,...,m2n) E Z2",

(2.4.3)
q>(m) = 2    2<f>ArB-(ül)e(>ü ■»)»-|l(o))dzApAdzB,

A.B v   m
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where  denotes Fourier transform of the C°° L-periodic function/,

(2.4.4)

2«

We set

(2.4.5)

f(v) = '2f(m)e(m-v),       m-v=2mjvj>
m j — 1

f(m) — I f(v)e(-m -v) dv       where e(z) = exp(2triz),
Jx

I dv = 1,       dv is Haar measure dvx A ■ ■ • Adv2n.

4>(m) = (^,¿",(-^'•••'^,4-))

as column vectors.

Defining

(2.4.6)

gives

(2.4.7)

q>(v) =  2 <pA„B~(v)dzA„Adzi
A,B

E CX(X) ®C(W®C Ap-qv),

Mm) = I ^AÁm)dzAn A dz. EW®CA p-qV
A,B

tp(v) - p(v)y(v) = p(v)'2dy(m)e(m ■ v).

We   have   similar   formulae   and   notation   for  cp G Ak(%)  written   as   cp =

2,(p,k(v)dvft.

(2.5) Since dp(v)/dvk = dkp(v) = Rkp(v) = p(v)Rk, we get

dkrj(v)= % (R^tMv).
i=\

(dkv)~= (dk + Rjcp = Dk<p    forcp G A°(%).

Or

(2.5.0)

Also

(2.5.1)

Taking Fourier transforms yields

(dkcp)(m) =(/Vp)(w) = Ak(m)4>(m),

■ (da<pî(m) = (Da<pî(m) = Qa(m)Hm)>

(dh<p)\m) = (D'h'<p)\m) = Pb(m)xf(m),

j

(K<p)~=(2*jhDj)$ = Dh'$.
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(2.5.3)
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Ak(m) = 2mmk + Rk,       Qa(m) = 2Ayû^y(™),
j

Ph(m) = 2*JbAJ(m).

We deduce from all this:

'Fonp = 2<Ptk(*)*>rteAk(%),

(2.5.4)

V<p = d<p = p(u)2    2Aj(m)Vik('ll)dvj Adv,k)e(m -v);
m  V I,j I

For cp = 2 <pAMdzAt A dz, G Ap<q(%p),
A,B

3<p = (-l)'p(t>)2 (  .2   Pb(m)4>A,4m)dzAf A dzb A dzB)e(m -v).
m  V A,B,b '

Let A*(%p(m)) denote the complex IF ® A * (C2") with differential

C7(w)(w Cg) í/ü/J = 2Aj(Ul)w ® ¿fy A ̂ u/t
y

and let /l'-*(<¥p(m)) denote the complex IF® A^'*(C) = ®AW® A*(C")dz,

with differential

3(m)(w 9 dzAp A Jz-BJ = (-l)PlPh(m)w ® &„   A dz", A d?
6

We see from (2.5.4) that cp -» © cp(m) is an injection of complexes:

f: (A*(%), </) * © {A*(%(m))t d(mj),
m

/, : {Ap-*(%p), 3) A © (^(^„(m)), 3(m)).
(2.6.0)

Recall,

(2.6.1) Definition. Let T — (Tx,...,Tn) be a commuting family of endomor-

phisms of a vector space IF. The Koszul complex of T is the complex W ® A * (C)

with differential

d(w ® eh A ■ ■ ■ Ae,J = 2 Tj(w) ® e¡ A et¡ A - - - Ae,y

Thus, Ap-*(6l\Sp(m)) is  the direct sum (np)  times the Koszul complex of  T =

(/>,(m),...,/>n(rn)).

We shall see that the isomorphisms (2.6.0) are injections of elliptic complexes,

once suitable metrics are chosen.

(2.7) Remark. Generally, we use the basis dv, rather than dzA A dzB when dealing

with the de Rham (rather than Dolbeault) complex. This is purely a matter of

convenience.

(2.8) Noting that the differential in the spectral sequence (2.2.0) is that induced by

3, which on Fourier components acts as 2Qa(m)dza A , we see that the entire Hodge
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spectral sequence (2.2.0) admits of a Fourier decomposition E+ —®mE^(m). This

remark was made to me by Mumford. The key point in all this is that p(v) and

e(m • v) are eigenvectors of all constant coefficient differential operators on V (i.e.

dkp(v) = const p(v)).

(2.9) We put a metric in the fibers of 6l£p as follows: For cp, xp E A0^^ we define

their pointwise inner product as

(2.9.0) (<p(v),xp(v))=,<p(v)-xp(v),

remembering that <p(v) = p(v)(p(v) with cp periodic so that the above expression is a

function on A as it should be. This is also

(2.9.1)      (<p(v),xp(v))='<p(v),p(-v)p(-v)  >P(v)='cp(v)h(v)xp(v)

where h(v) is Cx Hermitian, positive definite on F so that

■p(X)h(v + X)p(X)=h(v).

We let k(v) = 'h(v). Note that the metric h in the fibers of % is just the pull back

under the isomorphism (real-analytic) of % with the trivial bundle of the usual

Hermitian metric 27"-, w„w„ in the trivial bundle.
ft      i       ft    fi

We have a metric ds2 = 1dza ® dza = 1g¡jdv¡ ® dVj on X. Note that the g,- - are

constants. Let co(u) denote the volume element of this metric. Note that u>(v) — c ■ dv

where c is a constant and dv is Haar measure.

Given h and ds2 the spaces Ap,q(%p) have an inner product. In this case, the

dzA A dzB are orthogonal to one another in the metric ds2 and of unit length. So

the inner product on Ap-q(%) = © ABA°(%p)dzA A dzB is given once one knows

what it is on A°(%p). For cp, xp E A°(%p) we have

(9.^) = /*(«p(ü).«/'(«))«(o) = c ■ f (<p(v),xp(v)) dv
Jx Jx

m _

= c- 2 ¡V(v)V(v)do

(2.9.2) *»='

= c ■  2   2(Î,'1(?Z?) ̂(üí)     °y Planc-herel's theorem
p.= 1    m

= c- 2(4>(rn),xp(m)).
m

It is now clear that (up to a universal constant) the injections (2.6.0) are metric

isomorphisms, where the spaces Ak(%p(m)) — W®cAk(C2n) have that metric

which comes from the metric ds2 = 1dza ® dza on C" = ©Cc/za and the usual

Hermitian inner product on the space IF = Cm.

(2.10) Once the spaces Ap,q(sHS ) have an inner product the operators d, 3 have

adjoints S and ■&, respectively, and corresponding Laplace-Beltrami operators V =

d8 + Sd and D = 3# + #3. Let

%£(%,) = {<p<=Ak{%)\up = 0},

(2.10.0)
%pd"(%) = {<peAp-q(%)\n<p = o}.
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Then Hodge's theorem asserts that there is an isomorphism

(2.10.1) Hk(X,Wp) *%£(%),       H<(x,Q'(%))^%tf(%).

We have

[&<p = -k-] *d(k*w),    <pEAp'q(6lti),
(2.10.2) ,      v

[ôcp = -Â:-1 *d(k*<p),     cpEAk(%),

k—'h. * is the usual * operator on each component of cp.

(2.11) Because the injections (2.6.0) are metric isomorphisms, they are also

isomorphisms as elliptic complexes. This means that /°ô°/_l = ©ô(w) and

f\ ° & ° /f ' = ©d(w) and similarly for the Laplacians. Here, S(m) is the adjoint to

d(m) for the inner product in A*(%p(m)) (cf. (2.9)). One could also verify this

directly using (2.10.2). Letting %£(m)(%(m)) denote {cp G Ak(%(m)) | A(w)cp = 0}

we then have isomorphisms

(2.11.0)

g:%^%)^®%^n)(%(m)),
m ~~

gi:XPdÍ%)^®XPdU%(™))-

Similarly, the harmonic projection becomes isomorphic to ©pr(zw) where pr(m) is

the harmonic projection in Ak(% (m)).

(2.12) We will never actually need it, but we include an explicit formula for

D(m):

If

<P = 2 <PA,BdzA A dzB E Ap-"(%)(m)
A,B

then

(U(m)cp)AB^^((PA\mYPh(m))cpAB- 2 \Pb(mY,Pb{m)\vA B(v.b)     '

where B = (bx,...,b„,...,bq), B(v; b) = (bx.b„_x, b, bv+x,...,bq), remembering

that tensors are alternating in their index sets.

3. The theorems.

(3.0) A, %p as above.

(3.0.0) Definition, m E Z2" is said to be singular for A, % (or just for p) in case

det Ph(m) = 0 for b = l,...,n. (Notations as in (2.5.3).) Let S(p) denote the subset

of Z2" consisting of singular indices. An m £S(p) is called nonsingular.

Let W = ffi IF(x) be the isotypic decomposition. As remarked just after (2.4.0),

the Rj may be chosen decomposed into blocks according to the isotypic decomposi-

tion, and each block in upper triangular form. It follows that Ph(m) is upper

triangular, and moreover it is easily seen that the diagonal entry of Ph(m) corre-

sponding to the isotypic x is just the Ph(m) of the one-dimensional local system

defined by x- This is because, if py is in upper triangular form, the diagonal entries of
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Rj are the logarithms of the diagonal entries of Pj. Thus, the condition det Ph(m) — 0

becomes the condition "at least one diagonal entry of Ph(m) is 0". Or

(3.0.1) S(p)=US(x).

(3.0.2) Proposition. Card S(p) < rank(p) = dim IFp.

Proof. By (3.0.1) this is clearly equivalent to card S(\) ^ 1 for a one-dimensional

X. But m G S(x) «* 2, \jb(2ntintj + Rj) = 0 for all b where Ry-= logx(e,). If

n E S(x) there is an analogous equation. Subtracting these gives 2,Ay7)(m — n ) =

0. Taking the complex conjugate, 2\.ft(«i- — «■) = 0. But this is impossible unless

rrij = Hj for ally because det(X, X) ¥= 0 by (1.0.3).    D

(3.1) Let W®c A*(C") be the Koszul complex on T= (TX,...,T„) (cf. (2.6.1)).

The following is well known:

(3.1.0) Lemma. If some Tj E T is invertible, the Koszul complex on T is acyclic.    D

(3.1.1) Theorem.

(a) g:^(%)-5CA(0)(%(0));

(b) g,:3C&'W-    ©    3C&fm)(%(w)).
meS(p)

Proof. To see (a) use (2.11.0). We must show %£im)(%(m)) = 0 if m ¥= 0. But

this is the cohomology of the Koszul complex Z4*(%p(m)) for which T =

(Ax(m),... ,A2n(m)) as was remarked in (2.6.1ff). But m ¥= 0 => Aj(m) is invertible

for some/ by (2.5.3) and (2.4.0)(d). The result follows now from (3.1.0).

Statement (b) is an immediate consequence of (3.1.0) and the definition of S(p).

□

(3.1.2) Corollary. The Hodge spectral sequence (2.2.0) admits a decomposition

g:E* A    ©    E,(m)

where the abutment

(a) ®Ep-qZ     ©    E^q(0)^%k(0)(%(0))^Hk(X,Wp),

p + q = k

(b) Er~     ©    ¿r-    ©    %^m)(%(m))^HÍX,Q"(%)).
mSS(p) meS(p)

The above results give an explicit determination of Hk( X, Wp ) and Hq( X, fip(% ))

in terms of harmonic forms. Everything is reduced to computing in the finite-

dimensional complexes A*(%p(0)) and Ap,*(%p(m)) for m E S(p) and determining

the finite set S(p). This latter will be discussed in the next section.

(3.1.3) Remark, (a) Hk(X,Wp).= ®Hk(X,W(x)) where Wp= ®W(X) is the

isotypic decomposition. I claim Hk( X, IF(x)) = (0) for all k if x =£ 1 -

Proof. W(x) is a successive extension of the one-dimensional local systems

defined by the character x by itself a certain number of times. Using the long exact

cohomology sequence, we are reduced to proving Hk(X,W) = 0 for all k if x ^ 1
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and dimx = 1. But Hk(X,Wx) =* Hk(A*(%x(0))) by (3.1.1)(a) where A*(%x(0)) is

the Koszul complex on the (^4,(0),... ,yl2n(0)). Then, x ¥= 1 => some Aj(0) ¥= 0 so this

complex is acyclic by (3.1.0).    D

(b) (3.1.2) implies in particular that Hk(X,Wp) ^ 0 for some k => 0 G S(p). This

can be seen directly as follows: by remark (a), Hk(X,W) =£ 0 for some k => the

trivial character 1 appears in the isotypic decomposition of p. It is therefore enough,

in view of (3.0.1), to show 0 G S(l), which is completely obvious from the defini-

tions.

(c) Phil Griffiths pointed out to me that if X is any compact, Kaehler complex

manifold, and W is a local system on X whose monodromy representation is unitary,

the Hodge spectral sequence of W is collapsed at Ex. One can prove this directly in

our case as follows: If p is abelian and unitary, p is a direct sum of 1-dimensional

unitary representations. It is enough to treat the case where dim p = 1, p unitary.

When p = 1 this is just the usual theorem in Kaehler geometry. For p^ 1, since by

remark (a), Hk(X,Wp) = 0 for all k, we must prove that Hq(X, Qp(%)) = 0 for all

(p, q). We will do this by showing that S(p) = 0. m E S(p) « lIJ\jb(2-nimj + Ry)

= 0 for all b, where R = log p(e ). p being unitary => R is pure imaginary. Taking

complex conjugate gives -Y1jXjh(2<nimJ■ + Rj) = 0 for all b. But det(A,-A) =

±det(A, X) =£ 0 by (1.0.3), so this implies that 2mimj + Rj - 0 for all/, or Ry G 2t7/'Z

which is impossible because p ^ 1.

(d) When p is semisimple, it may be diagonalized, and hence Aj(m) commutes

with Aj(m)* for all m and j. It follows that the commutator term in (2.12)

disappears. Then (3.1.1)(b) may be deduced from the fact that the Hermitian

semidefinite matrix 2^hPb(m)*Ph(m) is positive definite if at least one Ph(m) is

invertible. The same argument may be made for (3.1.1)(a) if one remarks that A(m)

has exactly the same type of expression as O(m) if the differential forms cp are

expressed in terms of the basis dv, and Ph(m) is replaced by Aj(m).

(e) Warning. If p, and p2 are nonisomorphic representations, the local systems Wp

and Wp are not isomorphic. It may happen though that

%I = MFpl)-e,(FpJ = %2.

This means that a vector bundle may admit inequivalent flat connections.

(3.1.4) Remark, (a) If dim p = 1, then %p = %   where p, is the unitary character

P/|P|-
(b) Let Ê be a line bundle on A of chern class 0; then the above theorem allows

one to deduce the usual results about the cohomology of £ (see [10]).

(c) Let A be an elliptic curve,

p<» = (¿ «,>)

where £: L -> C is an additive map. There is an exact sequence 0^0^

-> %p -» ®x -> 0 whose extension class is

rR G Ext'(0x, 6,) = //'(0A-) - {/: C - C|/is C-antilinear}



HODGE THEORY OF FLAT VECTOR BUNDLES 127

where£R = £ ® R: L ®ZR -> Cand£R = £'„ + £'R where£'R(resp.£'R)isC-antilinear

(resp. C-linear) (see [10, Chapter I]). If p, and p2 are such that the sequence does not

split, one can show that s}Sn ~ %n and, moreover,"     ' Pi Pi

dim H°(X, %) = dim //'( A, \) = 1

if p = p, or p2. These results are contained in those of Atiyah [0].

4. A consequence of Baker's theory.

(4.0) Let Q be the algebraic closure of Q in C. Alan Baker [1] has proved (a more

precise version of) the following

(4.0.0) Theorem. Let ax,...,an E Q*. Let £„... ,£„ G C be such that exp(£y) = a¿.

// the £ are linearly independent over Q, then they are linearly independent over Q.

D

(4.0.1) Corollary (cf. [11]). Let A,,...,A„GQ be Q-linearly independent,

ax,...,an E Q* and {„...,{,GC with exp|y = a7. // at least one £j¥=0, then

IjXjij * 0.

Proof. Assume £, ¥= 0. If n = 1, the proposition is trivial. We do an induction on

n. Assume that the proposition is true for n but false for n + 1. We then have an

equation A,£, + ••• +A„+,£n+, = 0. But then by (4.0.0) we can find a relation

/*i£i + • • • +M„+i£„+i = 0 where all jny G Q, but not all zx; = 0. In fact, there is a

Hk =£ 0 with k > 1 because /x, ¥= 0 and /t- = 0 for all/ > 1 is impossible. Let this

k = 2. Multiply the first equation by ¡i2 and the second equation by A2 and subtract

to get

(m2A, - M|A2)£, + (/*2A3 - ,'*3A2)£3 + • • • + U2A„+i - Mn+iA2)£n+, = 0.

But it is easy to see that the set {(jti2Ay — //,A2)|/ = 1,3,... ,n + 1} is Q-linearly

independent, so the above equation contradicts the induction hypothesis.    □

(4.0.2) Remark. If you assume moreover that 1, A,,... ,Xn are Q-linearly indepen-

dent, you can prove in exactly the same way that ax[ ■ ■ ■ a^" is a transcendental

number.

(4.0.3) Proposition. Let 6bSp be a flat vector bundle on a complex torus X whose

monodromy representation p is isotypic for a character x such that x(A) G Q* for all

X E L and that at least one of the sets (XXk,...,X2n k) ((1.0.1)) is Q-valued and

Q-linearly independent. Then, ifx^h Hq(X, tip(%p)) = 0 for all(p, q).

Proof. We will prove that S(p) — S(x) is empty and apply ((3.1.2)) m E S(x) *=>

ljXJh(2-nimj + log Xj) = 0 for all b. Let £, = 2-nimj + log \j- Then exp(£y) = Xj =

X(ev) G Q*. If x ¥= 1, at least one £, ¥= 0. Hence the result follows from (4.0.1).    D

(4.1) Suppose now that A is an elliptic curve (dim A = 1). We can assume that the

lattice L is generated by 1, z = z, + iz2 with z2 > 0. By (1.0.1) it is easy to see that

2A, = 1 — izx/z2, 2A2 = i/z2. If X has a complex multiplication (is of CM type)

then z is an imaginary quadratic number, so that z, G Q and z2 G Q but z2 G Q.
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Then it is easy to show that A,, A2 G Q are Q-linearly independent. It follows

immediately from (4.0.3) that

(4.1.0) Proposition. Let X be an elliptic curve of CM type, 6liSp aflat vector bundle

on X whose monodromy representation p is isotypic for a character x which is

Q*-valued and nontrivial. Then Hq(X, ilp(%)) = 0/or all (p, q).    D

The result is also true for any euT which is a direct sum of vector bundles of that

form.

5. A geometric application.

(5.0) Let/: A -» 5 be a proper smooth morphism of complex manifolds. The local

system R/*C is the sheaf of horizontal sections in R'/^(fi^/s) for the Gauss-Manin

connection V- Here, üX/s denotes the relative de Rham complex and R/* denotes

the hyperderived functor. If /is algebrizable then so is the Gauss-Manin connection.

The monodromy representation p for this situation preserves the Q-local system

P'f*Q and hence p is equivalent to a representation in GL(Q). In particular, the

eigenvalues of this representation are all Q*-valued. Hence

(5.0.0) Lemma. /: X -» S a proper smooth morphism of complex manifolds where S is

a complex torus. Then the diagonal characters occurring in R'f*C are Q*-valued.    D

(5.1) Let/: A -» 5 be an analytically locally trivial map where S is an elliptic curve

and A" is a smooth compact threefold such that the fiber of / is a 2-dimensional

complex torus A. These are 3-dimensional analogues of hyperelliptic surfaces [12].

We have RJf*C = A-'R'/^C. Note that the monodromy representation p is induced

by an analytic automorphism of fiber A. Such an automorphism must preserve the

Hodge decomposition of the fiber. That is:

(5.1.0) Lemma.

R'fJZ =    ©   H"-q Hp-q = Hqp
p + q=j

where Hp-q is the sublocal system corresponding to the (p,q) part of the Hodge

decomposition of the fiber off.

We can also write

pj =    ©   pP.i, ~p~p^ = pi-p.

p + q=j

In particular, R'/*C = Hx-° © H0A. Let Xi, X2 be the diagonal characters of p1,0.

Then x,, x2 are tne diagonal characters of p0,1.

(5.2) We have the Leray spectral sequence

ElJ = H'(S, R'/*C) =» Hi+J(X,C)

and its sequence of low degree

0 - HX(S, /,C) - //'(A,C) - H°(S, R'/.C) - H2(s, /,C) - H2(X,C).



HODGE THEORY OF FLAT VECTOR BUNDLES 129

We see from this and/^C = C that bx(X) = dim HX(X, C) > 2. But, if bx(X) = 2,

then H°(S, R'/*C) injects into H2(S, /„C) which is 1-dimensional. So bx(X) = 2 =>

h°(Rlf^C) < 1. But, if h°(RxftC) = h°(Hx-°) + h°(H°'x) > 0 then at least one of

the diagonal characters, say Xi, is trivial because of (3.1.3)(a). It follows then that

both Hx-° and H0A contain the trivial character as an isotypic component. But any

local system on a complex torus which is isotypic for a character x is a successive

extension of the one-dimensional local system defined by x- Hence, if a local system

contains the trivial character, the long exact cohomology sequence shows that it

must have at least one global section. We conclude from this that h°(Hx'°) > 1 and

h°(H°-{) 3= 1, or h°(Rxf*C) > 0 => h°(Rxf*C) > 2. Or

(5.2.0) bx(X) = 2~h°(R%c)=0       (~X,,X2^1)-

(5.2.1) Lemma. Situation as above: (a) fßx = 0S; (b) Rxfßx = H0J ®c 6S; (c)

ax/s=f*(ä1'°®c%)-

Proof, (a) Immediate from Stein factorization, (b) Clear from definitions. To see

(c),/is locally over S isomorphic to the second projection^ XA->A,iCSa small

disk. Because the cotangent bundle of A is trivial, it is clear that tlxx/s when

restricted to A X A is isomorphic with H°(A, ttxA) ®c ex = /*(//''° ®c %).    □

(5.2.2) Proposition. Let X be a compact, complex threefold, f: X -> S an analyti-

cally locally trivial fibering where S is a CM elliptic curve and the fiber of f is a

2-dimensional complex torus. Then bx(X) = 2 =* h°(Hllx) = hx(6x) — 1.

Proof. The Leray spectral sequence E^q = HP(S, Rqfßx) =» Hp+q(X, Sx) gives

2 composition factors E¡p and E^x to //'(X, 6x). Since dim 5=1, £20'' = £°-' and

similarly for E2Xfl. To show h\Qx) = 1, it is enough to prove dim^-J'0 © E$A) = 1.

Now E¡'° = HX(S, fjSx) = HX(S, es) by (5.2.1). It is one dimensional. We must

prove E°-x = 0. But E°-x = H°(S, Rxfßx) = H°(S, H°-x ®ces) by (5.2.1). But

(5.2.0) tells us that the diagonal characters of H°-x are nontrivial. As they are also

Q*-valued and S is of CM type, the result follows from (4.1.0)

As to h°(ü]x), we have an exact sequence 0 -> f*Slxs -* üxx -* &xx/s -» 0 which gives

0 - H°(f*axs) - //°(«V) - H°(QX/S) -»,-.. Now, H°(X, f*Vs) =
H°(S, fJ*Qxs) by Leray. But

/*/*«s = /.( f*®s ®e„ ®x) - ßs ®es/A - «s

by the projection formula and (5.2.1). So H°(f^lxs) is one dimensional, and it is

enough to prove H°(Qlx/s) = 0. Using Leray again, H°(X, Sl]x/S) =* H°(S, fjlx/s)-

By (5.2.1) and the projection formula,

/•/•Qîr/5 = /.( f*(äU° ®c %)) - {äK° ®c %) ®eJßx - äU° ®c 65-

As before, Hx'° is a local system whose diagonal characters are Q*-valued and

nontrivial so the result follows from (4.1.0)    D

(5.2.3) Remark. A is a locally trivial fibering of a Kaehler manifold by a Kaehler

manifold. But A need not be Kaehler (in which case (5.2.2) is evident). We will see in

a moment that the condition that S be of CM type cannot be relaxed in (5.2.2).



130 J.W. HOFFMAN

(5.2.4) Counterexample. Let

K = Q(/2 , z) = Q(f ),       s = e2-/8 = xß/2 + ifi/2,

be an imaginary quadratic extension of the totally real field Qd/2 ). Let o = Z[fl, i]

a (nonmaximal) order in K. We have a canonical isomorphism K®qR^>C2 which

comes from the two nonconjugate archimedean valuations of K.lfoE Gal(K/Q(i))

is the generator, the canonical map o^Ä"®QR^C2is given by

a = a + bxfi + ci + di)¡2 -> f ̂ a \

_ la + b]¡2+ci + dixjï \

\a- b]¡2 + ci- difi j

and imbeds o as a lattice in C2. Let A = C2/o.

Let e = -1 + x/2, which is a unit in o. (zx, z2) -* (ez,, e"z2) is an automorphism

of C2 inducing an automorphism of o, so it gives an automorphism of A = C2/o.

Let L — Zex © Ze2 E C, some lattice to be specified shortly. S — C/L. We have a

diagram

AXC      -»       C

iq I p

p is the natural projection, q is the quotient map for the action of L on A X C given

by

((z1(:2))^((ft1,(e')"Z2),w + |l)

for p. = nxex + n2e2 G L. Let Xi(ft) = e"', x2(i*) = (e")"'- Then dearly, p1-0 = Xi ©

X2 = p0,1. Since the identity character does not appear in p10 © p01, we have

h°(Rxf*C) = 0 so ¿>,( A) = 2 by (5.2.0).

Now, we will find an L such that h°(H°-x ®c 0S) > 1. By the argument in (5.2.2)

this gives hx(6x) > 2. Because Z/0,1 is the direct sum of two 1-dimensional local

systems, to get a holomorphic section, we need only insure that one of the characters

X| or x2 has a singular index relative to L. (If a one-dimensional local system has a

singular index, then it has a holomorphic section. This is easily proved from the

definitions.) We must find an L so that A,(27rzw, + loge) + X2(2"rrim2) = 0 for

some mx, m2 G Z. Set A, = -27rz, A2 = loge, m2 = 1, mx = 0. Note that A,, A2

correspond to a lattice under (1.0.2) because

The crucial point here is that the monodromy is not unitary. For in that case, log e

would be pure imaginary and the above determinant would = 0.

(5.2.5) Questions. (Hironaka) (a) Is there a Kaehler manifold among the X in

(5.2.2)? If so, the above counterexample might provide another example of a
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non-Kaehlerian deformation of a Kaehler manifold. One knows that such examples

exist, but the ingenious construction in [8] is quite complicated.

(b) Are there algebraic threefolds X which admit a fibering /: X -> S of the type

discussed above with infinite monodromy? This never happens in the case of

hyperelliptic surfaces for a trivial reason. (The automorphism group of any elliptic

curve is finite.)

(5.3) Remarks, (a) Deligne has proved [4] a degeneration theorem which asserts

that if A" is Kaehler, or if /: A -» 5 is a proper smooth morphism of smooth schemes,

the Leray spectral sequence (5.2) over Q degenerates. This has (5.2.0) as an

immediate consequence.

(b) If X is algebraic, and / is a proper, smooth morphism of schemes, Deligne has

proved [3] that the monodromy representation is semisimple. This means that p

decomposes as a direct sum of one-dimensional representations, and the main

theorems of this paper may be deduced from the one-dimensional case in that case.
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