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PERMUTATION-PARTITION PAIRS II:

BOUNDS ON THE GENUS

OF THE AMALGAMATION OF GRAPHS1

BY

SAUL STAHL

Abstract. Bounds are derived on the extent to which the parameter p(P, LI) can

fail to be additive over disjoint permutations. This is done by associating an Eulerian

digraph to each such pair and relating the maximum orbiticity n(P, H) to the

decompositions of this digraph's arc set into arc disjoint cycles. These bounds are

then applied to obtain information about the genus of the amalgamation of graphs.

This note extends the theory of permutation-partition pairs to obtain bounds on

the genus of the amalgamation of graphs. While familiarity with [S] would be helpful

to the reader, this paper is essentially self-contained, except for Theorem 7.

We note here that Lemma 3 of [S] makes a false assertion about the winding

number u(P, II). A counterexample to the lemma is obtained by choosing Px =

(123), P2 = (654), andn = {{1,4}, {2,5}, {3,6}}. Here «(/>„ IT.) = co(/>2, II) = 1

whereas u(PxP2, IT.) = 0. This also invalidates the lower bound of Theorem 22 of [S]

on the genus of the amalgamation of graphs over three points.

This article has the following layout. First a digraph T(P,U) is associated to

every pair (P, IT). Then the maximum orbiticity p(P, IT) is related to certain

"admissible" cycles of T(P, IT). A new parameter p*(P, IT) is defined and is shown

to approximate p(P, Tl). The nonadditivity of p*(P, IT) is quantified and this

information is used to bound the nonadditivity of p(P, IT). These bounds are then

used to obtain bounds on the genus of the amalgamation of graphs.

Throughout this paper (P, Tl) will denote a fixed PP(n, k) pair. In other words,

we are given a set S of n bits, P is a permutation of this set, and n is a partition of S

into k nonempty subsets {ITjfL,.

In order to make this note as self-contained as possible, we repeat here the

definition of the maximum orbiticity. If P is any permutation then \\P\\ denotes the

number of orbits of P. If n is any partition of a set S, then S(Tl) denotes the set of

permutations whose orbits equal the members of IT. Finally, p(P, Tl) —

max{\\PQ\\\QES(Tl)}.
In studying these (permutation-partition) pairs it was found helpful to visualize

the relationship between the components P and IT of the pair ( P, Tl ) by means of a

transition digraph T(P, IT). The vertices of this digraph are the members of IT and

each bit b contributes an arc labelled [b, bP]. Figure 1 contains an example.

Received by the editors December 3, 1980.

1980 Mathematics Subject Classification. Primary05CI0.

1 This investigation was supported by University of Kansas General Research Allocation # 3090-xO-O038.

©1982 American Mathematical Society

0O02-9947/82/OOOO-0373/$02.75

175



176 SAUL STAHL

P= (14739a6258),

n={n/)í=I,  n, = {i,2,3}, n2= {4,5,6},

n3={7,8},    n4={9,a}.

Figure 1

Note that in general T(P,T1) is Eulerian in the sense that the indegree of each

vertex equals its outdegree. If c = bP then we refer to b and c as the initial and

terminal labels, respectively, of the arc [b, c]. A sequence of arcs [bx,cx],

[b2,c2],...,[bs,cs] is said to form a circuit of T(P, Tl) if for all i — 1,2,...,s,

c¡ = bi+x (mod IT) (addition mod s). The circuit is a cycle if whenever i ¥=j we also

have b¡ z bj (mod n). A circuit is admissible if for each i = 1,2,...,s, c¡¥= bi+x

(addition modulo s). Thus in Figure 1 the circuit [3,9], [a,6], [4,7], [8,1] is

admissible, whereas the circuit [3,9], [a, 6], [5,8], [7,3] fails to be admissible at II,.

The following two theorems show that each admissible cycle makes a positive

contribution to p(P, Tl). Unfortunately, in making this positive contribution a given

admissible cycle may destroy the admissibility of other cycles; for this reason it does

not suffice to merely count the admissible cycles of T(P, TT).

Theorem 1. Let (P, IT) be a pair and suppose b = c (mod IT). Set

P(bc)(bbP)/(b)    ifb¥=bPandc^b,bP,

P(bc)/(b) ifc = bPandc^b,

P/(b) ifb = bP,

n = n «-{/>)■
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Then

(1) p(P,Tl)>p(P,Tl),_

(2) p(P,Tl) = 1 + p(P, ÏT), ifc^bPandc^b,

(3) ju(P, n) = 1 + n(P, ïî) ifb = bPand{b) EU,

(4) p(P,Tl) = p(P,Tl) ifb = bPand{b) G II.

Proof. First suppose b = bP and {b} E Tl. In other words, (b) is a singleton

orbit of P and of every g e S(I1). Hence, jf Q E S(U) is such that \\PQ]\_=

p(P, n), then if ß = Q/(b), we have ge 5(n),|Pß|| = ||P(6)ß|| = 1 + J|Pß||,
and_ so p(P, Tl) < 1 +_p(P, Tl). Conversely, if ß G 5(11) is such that \\PQ\\ =

p(P, ÏÏ), set Q = (b)Q. Clearly Q E 5(11) and \\PQ\\ = 1 + \\PQ\\. Consequently
p(P, T1)>1 +p(P,U). This proves (3).

Next suppose b = bP, but {b) g n. Let Q E S(U) be such that || PQII = p(P, Tl).
Set Q = (a b)Q where a is an arbitrary bit such that a = /> (mod n). Then

(5) ||/>ß|| = \\P(b)(ab)Q\\ = \\P(ab)Q\\ = \\PQ\\.

Hencep(P, U) 5= p(P, ÏÏ). Conversely, if ß G 5(n) is such that ||PQ\\ = p(P, Tl),

set ß = (a b)Q/(b) where a = bQ x ¥= b. Again (5) holds, this time implying that

p(P,Tl)< p(P, Tl). This concludes the proof of (4). We may now assume that

b^bP^
Let ß G 5(11) be such that ||PQ\\ = p(P, ÏÏ). Set Q = (b c)Q. Then, if c # bP, b,

II Pßll = l|P(/?/3/>)(6c)(/3c)ßl = ||.P(/3/3/>)ß||,

and since /3 is not in the domain of either P or ß it follows that || PQ II = Il PQ ||. On

the other hand, if c = bP and c ^ b, then

(6) HPßll = ||P(/3c)(/Jc)ß|| = \\P(b)Q\\ = 1 + ||Pß||.

Hence, in either case,

p(P, n) ^ HPßH > \\PQ\\ = p(P, ÏÏ).

Finally, to prove (2) note that it follows from (6) that if c = bP ¥= b then p(P, Tl) s*

1 + /x(/\ IT). Hence it suffices to prove the reverse inequality. Suppose ß G 5(n) is

such that p(P, Tl) = \\PQ\\. If cQ = b, set ß = (bc)Q/(b). Then ß G 5(ÏÏ) and

HPßll = \\P(bc)(bc)Q\\ = \\P(b)Q\\ = 1 + ||Pß||,

and so 1 + p(P, ÏÏ) > p(P, Tl).
On the other hand, if cQ = a ¥=b, set Q' = Q(b c)(a b). Then, Q' E 5(11) and

HPß'll = HPß(6c)(a6)||.

But bPQ(b c) = a because cQ ¥= b, c', and hence

HPß'H = \\PQ(bc)(ab)\\ = \\PQ(bc)\\ + 1 > \\PQ\\.

In other words, || Pß'll = p(P, Tl) and cQ' = cQ(b c)(a b) = b, so that the previous

argument applies if ß is replaced by Q'. Hence p(P, Tl) = 1 + p(P, Tl).    Q.E.D.
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We note here that this theorem is both a refinement of Lemma 12 of [S] and a

variation of a technique employed by Walkup in [W]. In order to clarify the content

of the above theorem we offer the following example.

Examples 2. Let n = {{1,2,3}, {4,5,6}, {7,8}, {9}, {a}}, c= 1, b = 2. If

/> = (14739a625 8), then P = (1 4 7 3 9 a 6)(5 8); if P = (1 4 7 3 9 a 6)(2 5 8),

then P = (1 4 7 3 9 a 6 5 8), and in both_cases ÏÏ = {{1,3}, {4,5,6}, {7,8}, {9},

{a}}. If P = (2 1 3 4 5 6 7 8 9 a), then P = (13456789 a) with ÏÏ as above.

Finally, if b = 9 and P = (9)(1 2 3 4 5 6 7 8a), then P = (1 2 3 4 5 6 7 8 a) and

ñ = {{1,2,3}, {4,5,6}, {7,8}, {a}}.

We say that the pair (P, Tl) of Theorem 1 is obtained from (P, Tl) by applying

the reduction b/c (or b/b in the case where b — bP). The reader may find it helpful

to visualize these reductions in terms of their effect on the transition digraph. In the

case where b, c, and bP are all distinct, T(P, Tl) is obtained from T(P, Tl) by

deleting the arcs [cPx, c], [bP~x, b], [b, bP] and adding the arcs [cP~x, bP] and

[bP~ ', c]. If c = bP and c ¥= b, the arcs [bP~ ', b] and [b, c] are deleted and the arc

[bP~x, c] is gained. If labels are ignored, then in both cases two successive arcs of

77 P, n) are replaced by an arc from the initial vertex of the first to the terminal

vertex of the second. Finally, if b = bP the reduction b/b has the effect of

suppressing the loop [b, bP] in the transition digraph.

Theorem 3. // T(P, IT) contains the admissible cycle [bx, cx], [b2, c2],... ,[bs, cs],

and (/", FT) is the pair obtained from (P, Tl) by successively applying the reductions

bs/cs_x,.. .,b2/cx, bx/cs to (P, Tl), then

p(P,TT) > 1 + p(P',W).

Proof. By induction on s. If s = 1, then the cycle is merely a loop [bx, cx] with

c, = bxP, c, = bx (mod n), and, because of admissibility, c, # bx. Hence, by line (2)

of Theorem 1, with bx—b and c, = c, and (P', Tl') = (P, Tl), we have p(P, Tl) = 1

+ KP', no.
Now assume that the theorem holds for all admissible cycles of length s — I.

Apply line (1) of Theorem 1 with bs = b and cs_, = c. The derived transition

digraph T(P, Tl) has the still admissible cycle [bx, cx],[b2, c2],... ,[bs_x, cs] (because

bs_x = cs_xP~x and cs = bsP). Applying the induction hypothesis to the above

cycle, we get p(P, TT)>l+p(P', Tl').   Q.E.D.

Lemma 12 of [S] is simply a restriction of the above theorem to the case s — 2.

We now define new parameters k(P, Tl), c(P, Tl), and p*(P, Tl). It will be shown

that these parameters can be used to bound p(P, IT). The advantage they offer is

that they are theoretically more tractable than p(P, Tl).

The parameter k(P, Tl) denotes the number of orbits of P that are completely

contained in some member of IT. The parameter c(P, TT) denotes the number of

components of the unlabelled transition digraph T(P, Tl).

For the given partition n let 5*(n) be the set of all those permutations a of the

bit set 5 such that each orbit of o is completely contained in some member of IT. It

is clear that 5*(IT) is the direct sum of the symmetric groups on the members of IT.

Define p*(P,U) = max{||Pß|||ß G 5*(n)}.
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Proposition 4. p*(P, IT) is the largest integer m such that the arc set DofT(P, Tl)

decomposes into m arc disjoint cycles.

Proof. We show that each ß G 5*(n) determines a decomposition of D into

||Pß|| arc disjoint circuits and vice versa. Let ß G 5*(I1) be given. For each arc

[b, bP] of T(P, Tl) let the succeeding arc be [bPQ, bPQP). In other words, given an

arc of T(P, TT) into some vertex II,, we apply ß to its terminal label in order to

determine the initial label of the succeeding arc. For example, in Figure 1 the

permutation Q: (1 2 3)(4 5)(6)(7 8)(9)(cz) determines the circuits C, = [1,4], [5,8],

[7,3], C2 = [2,5], [4,7], [8,1], and C3 = [3,9], [9, a], [a,6], [6,2]. Since Q\n¡ is an

arbitrary permutation of II, it follows that each such decomposition of the arc set D

into circuits actually corresponds to some ß G 5*(I1). Finally since every circuit

decomposes into cycles it follows that a maximum decomposition of D must consist

of cycles.   Q.E.D.

Theorem 5. For any PP(n, k)pair(P, Tl),

p*(p, n) - k(P, n) + c(P, Tl) > p(P, Tl)

>p*(P,Tl)-K(P,Tl)-22(i- l)\(k).
1 = 2 V ' '

Proof. By induction on n. If n = 1 then all the parameters take the value 1 and

we are done. Assume now that these inequalities hold for all pairs on less than n bits.

We first deal with the case where T(P, Tl) has a loop [b, bP].

If c = bP ¥= b, apply the reduction b/c to obtain a pair (P', II') such that

p*(P, Tl) = p*(P', Tl') + I,   k(P, Tl) = k(P', Tl'),   c(P, Tl) = c(P', Tl'),   and

p(p,u)= i+M(P',n').
If bP = b and {b} G n then the same reduction b/b now yields a pair (P', II')

such that p*(P, U)= I + p*(P', Tl'), k(P, Tl) = 1 + k(P', IT), p(P, Tl) =

p(P', Tl'), and c(P, TT) = c(P', Tl').
If bP = b and {b} E Tl then the same reduction b/b now yields a pair (P', Tl')

such that p*(P, Tl) = 1 + p*(P', Tl'), k(P, Tl) = 1 + k(P', Tl'), p(P, Tl) = 1 +

p(P', Tl'), and c(P, TT) = 1 + c(P', Tl').
In all of the above three cases the theorem follows by an application of the

induction hypothesis to the pair (P', IT).

Thus we may now assume that T(P, Tl) has no loops. It therefore follows that

k(P, n) = 0. The left inequality is now clear and it remains to show that p(P, Tl) 3=

p*(P, U) - 21k=2(i - l)!(f).

Clearly we may assume that p*(P, Tl) > 22k=2(i — l)!(f ), for otherwise the

inequality holds by virtue of the fact that p(P, Tl) is positive. Let G = {Cm \ m =

1,2,...,p*(P, IT)} be a decomposition of the arc set of T(P, Tl) into arc disjoint

cycles. Since the complete symmetric digraph (with no multiple arcs) on k vertices

possesses exactly 2f=2(z — l)!(f) distinct nonloop cycles, it follows that 6 contains a

set of three cycles {C,, C2,C3) that traverse the same set of vertices of T(P, Tl) in

the same order. Suppose their common length is s. We now construct an admissible
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cycle of T(P, Tl) whose arcs all come from C = C, U C2 U C3. Let [/>,, bxP] be an

arbitrary arc of C. Choose [b2, b2P] from C so that b2 # bxP, but still b2 = ft,P

(mod IT). This is possible because there are three arcs in C whose initial vertex

contains bxP, but only one of them can have bxP as its initial label (in fact the

existence of two such arcs would have also been sufficient). This process is repeated

until we have chosen [bx, bxP],[b2, b2P],... ,[bs_x, bs_xP] so that biP = bi+x

(mod IT) but b¡P ¥= bi+, for z = 1,2,... ,s — 1. Again, because there are three arcs in

C from the vertex containing bs_xP to that containing bx, there is an arc [bs, bsP] in

C such that bs = bs_xP (mod Tl), bx = ¿>SP (mod II) but Z>5 ¥= bs_xP and />, ̂  bsP.

Thus we have constructed an admissible cycle C* E C. Let C2* and C3* be two other

cycles of length s whose union is C — C*. Set G* = [G — {Cx, C2, C3}] U

{Cf, C*, C*}. Now apply Theorem 3 to C* to obtain the pair (P', Tl'). Note that

G* — {Cx*} is a decomposition of the arc set of T(P', Tl') into arc disjoint cycles and

hence p*(P', Tl') > p*(P, Tl) — 1. It follows from the remark preceding Theorem 3

that every cycle of the unlabelled T(P', Tl') is also a cycle of the unlabelled T(P, Tl).

Consequently, since T(P, Tl) has no loops, T(P', Tl') has no loops either. Thus

k(P', IT) = 0. However, the pair (P\ II') has less than n bits and so the induction

hypothesis may be applied to it. Hence,

k

p(p, n) » i + p(pr, W) » i + p*(p\ no - 2 2 U - i)! (*)
i = 2

k

>p*(P,Tl)-22(,-l)\(k).    Q.E.D.
1 = 2

We next go on to study the extent to which p*(P, Tl) can deviate from being

additive over disjoint permutations.

Lemma 6. // P is the product of the disjoint permutations P, and P2, and Tl{,)

(i = 1,2) is the partition obtained from Tl by the suppression of all the bits not in P¡,

then, if k 3* 2,

p*(p, n) ^ p*(px, n(1)) + ju*(p2, n(2)) + (k- 2)n/2k.

Proof. Let X(P, Tl) denote the number of loops in T(P, Tl). In other words,

X(P, Tl) denotes the number of bits b such that b = bP (modn). Since the

permutations P, and P2 are a disjoint factorization of P it follows that

A(p,n) = A(p,,n(1)) + A(p2,n<2)).

Every cycle of T(P, TT) which is not a loop has length at least 2 and at most k.

Hence, since k> 2,

n/k < iti*(P, IT) - A(P, IT) < n/2.

If /z, is the number of bits in P,, then n = nx + n2 and

n,/k *£ p*(P,, n<'>) - \(P„ n<'>) < n,/2,        i = 1,2.
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.-.   p*(p, u) = p*(p, n) - à(p, n) + x(p, u) < n/2 + x(p, n)

= (nx + n2)/2 + \(px,w») + \(p2,nv)

= nx/k + n2/k + (k- 2)n/2k + X(PX, Tlm) + X(P2, n(2))

< p*(Px, n(l)) + p*(P2, n<2)) + (k - 2)n/2k.    Q.E.D.

The above lemma is now applied to obtain bounds on the genus of the amalgama-

tion of graphs.

Theorem 7. Let G,GX, and G2 be graphs such that G = G1 V^G2 and suppose that

U = 1,2,..,,k and n = EuEt/degu; then, for k 5* 2,

y(Gx) + y(G2) + k - l>y(G)

>Y(G') + Y(G2)-l-2Í(z-l)!(f)-^-í-^.

Proof. The left inequality follows immediately by a tube-adding argument. To

prove the other inequality note that it may be assumed that U is an independent set

of vertices since any edge, both of whose vertices are in U, can be subdivided

without affecting the genus of any graph that contains it.

Let R be a rotation system defining a genus embedding of G. Set R'w = Rw

whenever w E [V(G') - U], i =1,2, and Ext = Ext(P, U), Ext' = Ext(P', U). Since

U is independent it follows that Int(P, U) = Rx ° P2 ° ••• ° Rk. Hence, by Theo-

rem 17 of [S]

/•(P,i/) = ||Ext°Int(P,t7)|| = HExtoP, oP2c ... o Rk\\.

Since genus embeddings maximize the number of regions,

r(R,U) = p(Ext,{DJ(G)}k^_x).

Similarly we may define the R'j,j' = 1,2,... ,k, so that

r(R',U)=p(Ext',{DJ(G'))k.= ]),        i =1,2.

Since the set U separates Gx — U from G2 — U, it follows that Ext is the disjoint

product Ext1 ° Ext2. Set p = /¿(Ext, {Dj(G)}k=x) and p,■ = p(Exf, {£»/<?')}*=i).

z = 1,2, and define jti*, k, c and it*, k, analogously. Then, since Ext1 and Ext2 are

disjoint it follows that k = k, + k2. Clearly c *z k. Hence,

r(R,U) =p<p*-K + c

< p.* + p.* + (k - 2)n/2k - k, - k2 + k

= p* - k, + p*2 - k2 + (k - 2)n/2k + k

k

< px + p2 + 4 2 ((' - 1)! (f ) +(k- 2)n/2k + k
1 = 2

= r(Rx,U) + r(R2,U) + 4^ 0 - l)x(')
1 = 2

+ (/c - 2)/z/2/v + k.
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Since I V(G)\ = \ V(GX)\ + | V(G2)\ -k, and \E(G)\ = \E(GX)\ +|£(G2)| , an ap-
plication of the Euler-Poincaré formula yields the desired result.   Q.E.D.

Comments. Let a and co denote the switching number and the winding number,

respectively, as defined in [S]. It is then easily shown that if (P, n) is a PP(n, k)

pair, then

p*(P,Tl)=n ifk=l,

p*(P,U)=n- k(P,TI)-2-o(P,T1) iîk = 2,

p*(P, U) = n- k(P, n) - {o(P, Tl) - x2u(P, n)     if k = 3.

It would be of interest to generalize this to higher values of k. Also, Theorems 10

and 13 of [S] indicate that the bounds given in Theorem 5 of this paper can be

greatly improved.
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