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THE MINIMUM MODULUS OF CERTAIN

SMALL ENTIRE FUNCTIONS

BY

P. C. FENTON

Abstract. Suppose that/(z) is an entire function satisfying

min \f(z) I«: C(o) max \f(z) |,
\z\=r \z\ = r

for r » p0 > 0, where a > 0 and

c(q)=n '~exp(~(2/c~')/4q)
V   '     /=\ I 1 +exp(-(2A- l)/4o)

It is shown that

r      maXl--|=rl/(z)|-q0°g,')2_    ,   .    ,        ,       .      rtv
hm -—-3» -2olog(max(p0,|a,|)),

r-* oo

where a, is the first nonzero zero of /.

1. Introduction and result. Suppose that f(z) is an entire function and that

M(r, f) = max|7|=r|/(z)|, m(r, f) = min|z|=r|/(z)|. In [1] P. D. Barry conjec-

tured that if

(1.1) TnïïlogM(/-,/)=g<+o0i

r^oo (lug/")

then, for a sequence of r -* oo,

(12) m(/-,/)       g   il-exp(-(2/c-l)/4a)|2

Uj M(r,f)     Ai=1,ll+exp(-(2iv-l)/4a)j   +0(U-

This was proved by the author in [3] and, under more general conditions, by A. A.

Gol'dberg [4]. In fact Gol'dberg proved that if /has zero order and if

lim- f n(t,f)— *e a < +oo,
— (logr)2jo t

then (1.2) holds on a sequence of r — oo. Here n(t, f) is the number of zeros of /in

|z|</, assuming (as may be done without loss of generality) that /(0) ¥= 0. It

happens that by using estimates developed by Kjellberg [6], the proof in [3] may be
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184 P. C. FENTON

altered in a straightforward way to show that (1.2) holds on a sequence of r -» oo if

only

,.     logM(r,/)
hm —-—v   2J ' = o < +00.

r"-^      (logr)

We shall prove here a sharpened version of this result.

Theorem. Suppose that a is any positive number and that f(z) is an entire function

such that

n^i m(r' f) ^.r(n\- ÏÏ f1 ~ ctp(- (2k - 1)/4p)
K     } M(r,f)^^>     Ai=1.ll+exp(-(2/c-l)/4a)

for all r > p0 > 0. Then

i,  .\ ,■      log Af(/■,/■) —a(logr) _   ,     ,        . ..,,
(1.4) hm Wlo;gr        S   ;   ^-2alog(max(Po,|fl,|)),

r-* oo

where a, Z5 //ze ///■.?/ nonzero zero of f.

An earlier result of the author [2] suggests that if the lower limit in (1.4) is finite

then

(1.5) limlogM(/-,/)-a(log/-)2

r-,X logr

ought to exist. While this remains a firm possibility nevertheless the proof of the

theorem here proceeds by smoothing out the distribution of the zeros of /, and this

inevitably involves a loss corresponding (more or less) to the difference between the

left- and right-hand sides of (1.4). To be a little more specific, if f(z) is a function

with positive zeros satisfying (1.3) and (1.4), with the left-hand side of (1.4) finite,

then any function obtained from / by adding to it a finite number of positive zeros

will also satisfy (1.3) and (1.4); and our proof is unable to distinguish between the

two functions. Such a distinction is evidently essential if (1.4) is to be replaced by

(1.5).
Before turning to the proof of the theorem let us consider an example which shows

that (1.4) is about right in its dependence on max(p0,|a, |). The details of the

required estimates may be found in §6. Let G(z) = (z — l)°P(z), where a = [2a] + 1

and

00

F(z)=  Il (l~ze-k/2°).
k=\

G(z) satisfies (1.3) for r s* p0, for some p0 satisfying 0 < p0 < 1, and the first

nonzero zero for G is 1. Moreover,

a(log/-)2+ O(l) ^ log M(r,F) ^o(logrf + log r + 0(1).
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We therefore have that, for any c > 0, G(cz) satisfies (1.3) for r > p0/c, has \/c as

its first nonzero zero, and

(2alogc+ [2a] + l)logr+ 0(1) < log M(r, G(cz)) -a(logr)2

<(2alogc+[2a] + 2)log/- + 0(1).

Hence

log M(r, G(cz)) — o(logr)~

logr
-2a(log(max(p0/c, 1/c)) - l) < lim

< -2a(log(max(p0/c, 1/c)) - l) + 2.

2. An auxiliary function. Let n(t) = n(t, f) be the number of zeros of /in \z\< t.

We shall assume (without loss of generality) that/(0) = 1, so that n(t) = 0 for small

values of t. We write

(2.1)    M(z) = log|/(z)|,       A(r,u) = logm(r,f),       B(r, u) = log M(r, /),

and, given any R > 0, introduce (cf. [5])

R(t + z)

(2.2)

u*(z,R)= /""log
Jci R2 zt

dn(t)

dt\ R
+ B(R,u)-\[B(R,u)-¡\(t)^\i —

+ z

„, „     ,       cR   , ,dt
B(R,u)~      n(t)-

u* is subharmonic in | z | < R, harmonic off the negative real axis and satisfies

(2.3) A(r, u*) = u*(-r, R) « A(r, u) « B(r, u) < u*(r, R) = B(r, u*),

for 0 « r < R. We choose R' E (0, R) such that n(R') = n(R) and such that

dt
n(t)

(2.4) «o = -   -,   J°   .-^>0
V     ' ° log (P./P-')

is an integer (which is possible since n(R') = n(R) for all R' for which R — R' is

small and positive, and the expression in the middle of (2.4) tends to +oo continu-

ously as R' -» R — ), and define

0, 0<t^Po,

nx(t)=\n(t), Po<t<R',

n(t) + n0,     R'<t<R.

(2.5)

Set

(2.6) u*(z, R) = fRlog
R(t + z)

R2 + zt
dnx(t) + B(R,u).

Then «*(z, R) is subharmonic in | z |< R and harmonic off the negative real axis.

Also

Lemma l.(a)u\*(r,R)> u*(r, R)> B(r,u),for0 < r < R.

(b) u*(r, R) - u*x(-r, R) > u*(r, R) - u*(-r, R) > - log C( o), for p0 <r<R'.

(c) u*(Re'e, R) = B(R, u) = log M(R, f),for -tt<0<tt.
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Proof. Part (c) is evident. For part (a) we have

uî(r,R)=fRlogl«^)dn(t) + nylog(^
Jo       \  R   + rt  I \   R

R(R' + r)

2 + rR'

+    "(Po)iog
RJPo + r)

R2 + rPo /Nf^W<>!

(2.7)

+ B(R,u)

./»,og(^>)*(,) + „„,og(^±^)+B(R,„,
Jo        \   R2 + rt  I \   Rl + rR'  I

u*(r,R) + ^í[B(R,u)-f*n(t)^]i+n0loe¡[

*/     „x í-R-r,    / R \   , ,    / R(R' + r)
»V,R) + »o¥T7log(^)+log(^^

R(R' + /•)

Ä2 + rtf'

The bracketed expression in the last line of (2.7), considered for the moment as a

function of R', has derivative

r(R - R'f(R - r) <Q

R'(R + r)(R' + r)(R2 + rR') ^

The same bracketed expression vanishes when R' = R, and it is therefore nonnega-

tive for any r E [0, R), R' E (0, R). This proves part (a).

For part (b) we have, for p0 < r < R,

u*(r, R) - u*x(-r, R) = f logi^-^) dn(t) - flog
•'o        \   R   + rt I Jo

+ nMog

R2 + rt

R(R' + r)

R(t-r)

R2 - rt
dn(t)

+ «(po)ll°g

R2 + rR'

R(Po + r)

- log
R(R' - /)

R2 - rR'

R2 + rpQ
log

R(Po-r)

R2 - rp0

fPo,     I R(t + r)\      , fP»
/     l0§       D2^ )Mt)-l     log
Jo       \  R2 + rt  I Jo

(2.8) flogi ̂ U(0 "flog
jq        \  R2 + rt  I A>

RÍ /?' 4-  r\ \
log+ "o^log,    „2

+ rt  /

R(R' + r)

R2 + rR'

u*(r,R) -u*(-r,R)

R(R' + r)

R2 - rt

R(R' - r)

R2 - rR'

R(t-r)

+ nMog
R2 + rR'

log
R(R' - r)

R2     rR'

Mi) R + r     R-r

R-r      R + r
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In order to prove part (b) of Lemma 1, then, it is sufficient to show that the

bracketed expression in the last line of (2.8) is nonnegative for p0 < r < R'. To this

end consider the same expression as a function of R' on (r, R), for any r E [0, R).

Its derivative is

1 1 + ±(R + r R

R' + r      R2 + rR'      R' ~ r      R2 - rR'      R' { R - r      R + r J

2r(R - R')2{R'(R2 + r2)2 + 2r2R(R2 + R'2))

R'(R'2 - r2)(R4 - r2R'2)(R2 - r2)

for 0 < r < R' < R. But the bracketed expression vanishes at R' = R and so is

nonnegative for R' E (r, R). This proves part (b) of the lemma.

3. Rearranging the zeros. Here and elsewhere we shall speak of the "zeros" of

u*(r, R), which are to be understood as the unit point masses associated with the

counting function nx(t). Let these zeros be r, < r2 *£ • • • < rN, so that rx > p0,

rN = R' and N = n(R) + n0. From part (b) of Lemma 1 we have

-log C(a) < u*(r, R) - u*(-r, R) = flog
t + r   R1 rt

(3.1)
flog

T(r) + T(t)

T(r) - T(t)
dn*(t) =  2 log

k=\

t-r    R2 + rt

T(r)-T(rk)

dn*(t)

T(r)-T(rk)

where

(3.2) T(r)
Ar

R2-r2'

and A is a constant chosen so that T(rx) = 1. Let us observe that T(rN) < e(N   l)/2°

For in [3] it is shown that the largest value of the minimum of

N

2 log
A=l

T(r) + T(rk)

T(r)-T(rk)

for /-,</•< rN, no matter how r2,.. .,rN_, are distributed in [/-,, rN], is less than

1 +exp(-(2/v- 1)t/2)]z
(3.3)

where

IOgA0,ll-exp(-(2/V-l)T/2)f

logT(rN) -logT(rx) _ log 7^^)

N- 1 TV — 1

If   T(rN)>eiN~X)/2°   then   r > ¿   and   so   the   number  (3.3)   is   -logC(¿)<

-log C(o). But this contradicts (3.1) so we must have T(rN) < e^-1)/2".
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Writer* = J-V*-0'2") for k > N and for k < 1. Then, from (3.1),

oo

2  log
A: = -oo

for /-, < r < rN. The plan is now to fix any p, 0 < p < R (the precise choice of which

turns out to be immaterial) and to rearrange rx, r2,...,rN within [/•,, T~x(e(N~X)/2a)]

in such a way that u\*(p, i\) is maximized while

(3.4) /-, remains fixed,

and

> -log C(a)    forr, <r<rN.

Let /-,' = r, < r2 < • • ■ < r¿ be the positions of the rearranged zeros which maximize

u*(p, R) subject to (3.4) and (3.5), and let us write r'k = rk for k < 1 and for k > N.

Then we have

Lemma 2. T/zere are two possibilities. Either

(i) there exists an integer M such that 1 < M *£ A/ — 1 awci r'x = rx < r2 < • • • < r'M

<r'M+x = r'M+2 = =r'N= T-\e^~x^2'). Further, if for Kp<N-\,

ifr;<r;+x,

'frp = r'p+x,

then Ip= -logC(a), for p= 1,2,...,M- 1, IM> -logC(a) and Ip= +oo, for

p = M + l,...,N - I. Or,

(ii) r[<r2'< ■■■< r¿_, < r'N < r-Vw_I)/2") <"»<* /, = -log C(o), p =

1,2,. ..,N- 1.

Lemma 2 follows from

Lemma 3. (a) Suppose that r[ < r2 < r3 < r4' < • • • < r^. T/ze/z shifting r2 slightly to

the right within (r[, r3) increases I for p > 1, decreases Ix and increases u*(p, R).

(b) Suppose that r[ = r2 = • • • = rj < r'+x < • • ■ < r^. 77ze/z //ze í/rzcz// i/zz/r o//y' to

the right within (r[, r'+x) increases Ip for j < p < A7 — 1, decreases f_x, leaves

/,, 72,... ,/-2 ^e •SC3WC C7/ZC7 increases u*(p, R).

(c) // /•,' < /•„', < r„',+, < r^, then, for small values of k > 1, /Tie ̂ /z//if r'm -» /V_1r^ a/zc/

C+i ~* ̂ rm+i increases Ipforp ¥= m, decreases Im and increases u*(p, R).

Before proving Lemma 3 let us show that Lemma 2 follows from Lemma 3. We

cannot have r{ < r'm = r^+x < r'N, from part (c) of Lemma 3, and we cannot have

r[ = r2, from part (b). Thus the points r'k must be distributed in either one of the

ways described in the two parts of Lemma 2. Concerning the values of / , suppose

that Ix > -log C(o). Then from part (a) of Lemma 3, a small shift of r2 to the right

will increase tz*(p, R) while keeping Ip> -logC(o), for p > 1, and also /, >

— logC(a) if the shift of r2 is small enough. But this contradicts the definition of

T(r) + T(rk)

T(r) - T(rk)
> log C(a),

(3.5) 1    log
k = -

T(r) + T(rk)

T(r)~T(rk)

(3.6)
min 1   log

& — -OO

T(r) + T(r'k)

T(r)-T(r'k)
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r[,...,r'N, so we must have Ix = -logC(a). Now suppose that Iq> -logC(o) for

some q > 1, where q =£ M — 1 in case (i). Then the shift r'q -» k~xr'q, rq+x -» /cr^,

decreases 7 (which may be kept greater than -logC(a) if A: > 1 is close enough to

1), keeps Ip > -log C(a) for p ¥= q, and increases uf(p, Ä). This again contradicts

the definition of r{, r2\...,r'N, and so Iq > -log C(a) can arise only when q^ M in

case (i) of Lemma 2. This proves Lemma 2.

It remains to prove Lemma 3 and we consider the parts in turn. For part (a), if

r > r2 then T(r) > T(r2) and so

2    log
T(r) + T(r'k)

T(r)-T(r'k)
=    2

k =

log

k¥=2

T(r) + T(r'k)

T(r) - T(r'k)
+ log

T(r) + T(rj)

T(r) - 7X>2')

which is increased if r2 is slightly increased since (a + x)/(a — x) is an increasing

function of x for x ¥= a and T(x) is increasing on (0, R). Thus Ip increases for/? > 1.

Similarly, for r[ < r < r2, we have T(r) < T(r2) so

2  log
Ar = -oo

T(r) + T(r'k)

T(r)-T(r'k)
2    log

k^2

T(r) + T(r'k)

T(r)-T(r'k)
+ log

T(rj) + T(r)

T(ri) ~ T(r)

which is decreased if r2 is shifted slightly to the right since (x + a)/(x — a) is

decreasing in x for x ¥" a and T(x) is increasing on (0, R). Thus 7, decreases.

Finally, the effect on u*(p, R) of a slight shift of r2' to the right is (if the final

position is r2)

' Ä(p + r2") \      ,    (R(p + r¡)
log

R2 + r¡'p
log

R2 + r¡p
>0,

since

d ÍR(p + x)

dx\ R2 + pX

R(R2-P2)
>0.

(R2 + PxY

For part (b) observe that 7 _, certainly decreases (since it changes from +oo to a

finite value) and 7,, 72,.. .,7 _2 all remain +oo. The considerations made in the

proof of part (a) show that Ip increases forp >j and that u*(p, R) increases.

Finally we prove part (c). The shift described in part (c) produces a change in

T(r) + T(r'k)
(3.7)

given by h(k) — h(\), where

h(k) = log

2    log
T(r)~T(r'k)

R2-k'x'' r„r

R2 k f'r k~]r'
+ log

kr' R- kr^+lr

R2 + kC+xr kC+>

After a certain amount of simplification we obtain h'(k) = X/Y, where

X=2rk-X(R2 - r2)(kr^x - k~f^)(R2 - r'mr'm+x)

■ {(R4 + r2r'mr'm+x)(r2 + rLrL+x) + R2r2(kr^x + k^C)2}
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and

(r2 k2r¿+x)(r2 - k-2r¿)(R* - r2k2r¿+x)(R* - r2k'2r'2).

Thus, for small k > 1, h'(k) < 0 if r'm < r < /•„',+ ,, while h'(k) > 0 if r > kr'm+, or if

r<-k'xr'm. Thus, for small values of k > 1, the described shift increases (3.7) if

r > kr^+x and if r < k~xr'm (and so increases Ip for p ¥= m) and decreases (3.4) if

r'm < r < r„+x (and so decreases Im). This proves part of part (c) of Lemma 3.

For the second part of part (c), the shift described in the lemma alters u\*(p, R) by

g(k) - g(l), where

g(k) = log
RJp + k-'rL)

R2 + Ä:-1/-/
+ log

R(p + kr„+x)

R2 + kC+xP

Now for k > 1,

*'(*) = /V-'(7?2-p2)
fer' • i

(p + kr^+x)(R2 + pkC+x)

>0,
(p + k-xr^(R2 + pk~xC)

since ¿{i(p + *)(^2 + P^)} = f?(^2 - ^2) < 0 for 0 < x < R. Thus g(k) is in-

creasing for k > 1 and it follows that g(k) — g(l) > 0 for small /: > 1, i.e., w*(p, R)

increases for small k > 1. This completes the proof of Lemma 3.

4. The positions of the zeros. Lemma 2 provides a description of the positions of

the zeros at which zzf(p, R) is maximized, for any p E (0, Ä). We now analyze the

situation a little further and show that r'k = T-\e(k~X)/2°), k= 1,2,...,N. Once

this is done u\*(p, R) may be calculated directly.

Now, exactly as in [3],

T(r) + T(r'k)
(4.1) H(r)=    2    log

/•OG

i/     "r(0-
•'n -  1

-dt,
T(r) - T(r'k)

where vr(t) is the number of points log T(rk) contained in (log T(r) - t, log T(r) + t).

According to Lemma 2 there are three possible graphs for 77(r), one corresponding

to part (i) of Lemma 2, and two corresponding to part (ii). In all cases we consider

the graph only over a selected interval.

For part (i), see Figure 1. (There is also the possibility that the minimum in the

last interval is exactly -log C(o).)

H(r)

-log C (o)

0  =   log T(r')
-logT (r)

logT(r^j)    logT(r^)  (N-l)/2o

=  log T (rM,    k  = M+l.N

Figure
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-log C (o)

0 = logT(r')

— log T(r)

logT(r^.j)    logT(r^) N/2o

Figure 2

For part (ii), either refer to Figure 2 or to a graph the same except that on the

interval (log T(r'N), N/2o) the minimum is > -log C(o). We shall show now that

the disposition of the zeros giving rise to the first graph is impossible, and that the

only disposition of the zeros corresponding to the second graph is in fact the one in

which all minima are —log C(a).

From (4.1) we see that the contribution of the zero rj to H(r) is

'-/.log(7V)/Tïr;))|t?
It

dt,

which is increased if rj is moved towards r and decreased if rj is moved away from r.

Further, the amount of the increase or decrease is smaller the further removed r is

from rj. Thus, for the first graph, by shifting T(r'M+x),.. .,T(r'N_x) slightly to the left

and separating them (while preserving their order) we shall produce a new graph of

the form shown in Figure 3.

H(r)

-logC(o)

0 = log T(r') logKr^j)    logT(r^)  (N-l)/2o
logT(r)

Figure 3
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Now following the procedure described in [3] of "cycling" the points

T(r2),...,T(r'N_x), we shall produce a graph in which all minima are the same, with

a value strictly greater than —log C(a). But from the lemma of [3] the fact that all

minima are the same implies that T(rj) = e^-1)/2°, which gives the exact value of

the minima as —logC(a). This contradiction discounts the possibility of the first

graph.

In the case of the graphs corresponding to part (ii), if the minimum on the last

interval is not —logC(a), a cycling of the points T(r2),.. .,T(r'N_x) will produce a

graph in which all minima are the same, with a value strictly greater or strictly less

than -log C(o). This again leads to a contradiction.

We conclude that all the points log T(r[),... ,log T(r'N) are separated and that all

the minima are equal. From the lemma of [3] it follows that log T(rj) =

(j- l)/2o,j= 1,2,...,N.

5. Completion of the proof of the theorem. We have rj = r'(e(r')/2°) and from

part (a) of Lemma 1,

B(r, u) « u*(r, R) = B(R, u) + f*log( *(* + ^ )dnx(t)
Jo       \  R   + rt  I

{5A) r ,        ,   )
= B(R,u)-Jonx(t){—--rr-t]dt,

for 0 *£ r < R. Also, for rj < t < rj+x,

nx(t) = j = 2alogT(rj+x) > 2alog7(0 = 2alog(       ^       j,

while nx(t) = 0 for 0 *£ / < r'x. Now the number n0 of (2.1) may be made arbitrarily

large by taking R' arbitrarily close to 7?, and this enables us to take N arbitrarily

large. From (5.1), then, since r,' = rx,

(5.2)

where

B(r,u)^B(R,u)-2of*log¡[1^-t-2]l{

= B(R,u)-2o{Ix +72 + 73},

1 >dt
t + r      R2 + rt

(5.3) 71=log^fi7-^-V-)^--log^logf^±^)
Jrx ( t + r      R2 + rt I \   R2 + rrx   j

(5.4) 72=flog/(-4-^~
Jr, [t + r      R2 + rt

i

and

(5.5) ''-O^'-^jh-^í dt.
+ rt
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We estimate 72 and 73 in turn. For r fixed, r > max(l, /-,) and R > 2r,

'H"t£*+°(Íí**)

<"> -Crhi(^'>)*+^7H) + °(j^')/r    l   T    1     Ut   \   A. I \l   -T  lX

2

K) -{¿rA*ï) -ir>"22r,+r\   & /•/       2 7v/   6  7  (, + j)2

+ logrlog(^)+0(^log«)

= *(log*)2 + logrlog/c + 0(l)

= {(logR)2 + 0(l)

as 7? -» 00. Also, as R -> 00,

3 7r| t + r \    R

,2

dt

(5.7)
-*c2'oe*;':gr"^m
2,„gÄ,„g(^)-^MlTi!)„ + 0(l)

21og«log(^^) +0(1).

Combining (5.2), (5.3), (5.6) and (5.7) we obtain, as R -» 00,

(5.8)

£(r, m) <5(ä,m) - a(logfl)
2

-4alQg*log(^) +2alog^log(^-^)j + 0(1).

Since ^ was chosen so that Arx/( R2 — r2) = 1, (5.8) becomes

B(r,u) *ZB(R,u) - o(logR)2

-4alog R\\og(r + rx) - log R + o(^)}

2aJ21og« - logr, + o(-^)J j-logÄ 4- log(r + rx) + o(-^)

+ 0(1)

= B(R,u) - a(\ogR)2 + 2ologrxlogR+ 0(1),

(5-9) +
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as R -> oo. From the construction, r, = max(p0, | ax |), where ax is the first nonzero

zero off, and therefore

(5.10)        B(r, u) < B(R, u) - o(log R)2 +2alog Rlog(max(p0, | ax |)) + O(l)

as /? -» oo. Now, if the conclusion of the theorem is false then we may choose a

sequence of R -» oo so that the right-hand side of (5.10) tends to -oo, for any fixed

r. Thus B(r, u) = -oo for every r and this contradiction proves the theorem.

6. The example. It remains to provide some detail concerning the assertions made

about the example in the first section of the paper. The estimates for M(r, F) follow

from

(0log M(r,F)=f   -f^rdt
J0   t(t + r)

where n(t), the counting function for the zeros of F, satisfies n(t) = 0, for 0 =£ / *£ 1,

and

2alogi < n(t) < 2alog/ + 1,

for / > 1. To see that G satisfies

(6.1) log M(r,G) - log m(r,C)> -log C(o)

for r > p0, where 0 < p0 < 1, we begin with the formula (cf. [3])

/•OO p<

log M(er, G) - log m(er, G) = 2      vr(t)—--dt,
Jo e    — 1

where vr(t) is the number of zeros of G in (er~l, er+') i.e. if the zeros of G are

denoted by r„, vr(t) is the number of points log rn in (r — t, r + t). Now, if r¡r(t) is

the number of integer multiples of l/2a, positive, negative and zero, in (r — t, r + /),

then

«r)=í^í = lt

2  log

k = _xJ\r-k/2o\(e' - 1       e' + 1

1 — exp(-| r — /</2a |)

1 + exp(-| r - fc/2a |)

The minimum value of 7(r) occurs at odd half-multiples of l/2a, and the minimum

value is -log C(o). We shall therefore have (6.1) for r S* p0, where 0 < p0 < 1, if it

can be shown that

(6.2) fViO-ir-T* - /\(0-ir-r* > o
•'o e    — 1 •'o e   — 1

for r > 0. Taking account of the definition of the zeros of G we see that the left-hand

side of (6.2) is

/•oo     y              |«oo              y

(6.3) a/    —--dt-      iTr(t)—--dt,
Jr    e    — 1 •'o e    — 1
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where t]r(t) is the number of strictly negative multiples of 1/2a in (r — t, r + /). We

have

i\(^=if      ~^dx = lr      [l^Adx
Jo     lrK'e2'-l ktXJr + k/2al-e-2x k=iJr + k/2e[J = 0 J

oo     .-(2j+\)r    oo oo       -(2f+\)r 1
_ v £_ V    -(2j+\)k/2a= y £_!-

7fo2y+i ¿xe fi0 2j+l    eay+.)/a-_i

oo    „~(2j+\)r -oo Í   °° ,    ] yoo        p'

Thus (6.3) holds with a = [2a] + 1, and this completes the analysis of the example.
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