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SIEGEL DOMAINS AND REPRESENTATIONS OF

JORDAN ALGEBRAS

BY

O. S. ROTHAUS1

Abstract. In the analysis of infinitesimal automorphisms of arbitrary Siegel do-

mains, a certain class of nonsemisimple Jordan algebras occurs. The description of

all the infinitesimal automorphisms of the domain may be based on a study of

representations of the associated Jordan algebra satisfying a certain "strange iden-

tity". In this paper, all the possibilities for the Jordan algebra and representations

satisfying the identity are given.

0. The infinitesimal automorphisms of arbitrary Siegel domains are now rather

well understood as a result of the investigations in [2, 4-9], save for some technical

questions concerning representations of Jordan algebras satisfying a "strange"

identity [8, 9]. In this paper we will elucidate these remaining questions, drawing

freely on the definitions, notations, and results of our papers [6-8].

U is a real finite dimensional vector space, Uc= U ® C its complexification. Q is

a regular convex cone in U. F is a finite dimensional complex vector space, and

F(-, •), complex linear in the first variable, is an Í2-Hermitian form on V. The set of

points D = {(u,v) E Uc X V\lmu — F(v, v) E fi} is a Siegel domain of Type II.

Let g denote the Lie algebra of the group G of holomorphic automorphisms of D.

As is well known [4, 5, 8], g is graded.

g = g-i ® g-i/2 ® So ® g\/2 ® £i> and anY x G g\ may be written

X = R(u)u^- + S(u)v^-
au ov

(there is a slight notational change from that in [8]). For an X of the above form, the

necessary and sufficient conditions that X E gx are that:

(1) The multiplication u ° u' = R(u)u' endows U with structure 6E of real Jordan

algebra,

(2) The map u -» S(u) is a representation of <3, in End V; i.e.

S(u o u') = {S(u)S(u') + {S(u')S(u).

(When necessary, we extend the representation to the complexification of &.)

(3) (&, ñ) is a Jordan pair, and 5 is 77-related to 6B, i.e.

a ° F(v, w) = i-F(S(a)v, w) + {F(v, S(a)w),
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and

(4) F(S(F(v, w)v, w)) = F(v, S(F(w, v)w)).

A 5-tuple (Ci, ß, V, S, F) satisfying (1) to (4) above will be called an admissible

data set. (The notion of Jordan pair in (3) above should not be confused with that

introduced by O. Loos in Jordan pairs, Lecture Notes in Math., vol. 460, Springer-

Verlag).

Number (4) above is the so-called "strange" identity, whose implications we

explore in this paper. The reader will soon see that it carries a considerable amount

of structural information. (A study of the case in which ÉE is semisimple is carried out

in [1, 9].)

The general structure of the algebra & is revealed in [6-8]. It is known to contain a

principal idempotent e, with respect to which it has a Pierce decomposition Ci = Cix

© Cix/2 © 6Î0 such that:

(l)dx is semisimple and e is the unit,

(2)radCi = Cfx/1®Ci0,

(3) Cix/2 is stable under multiplication by Cix, and

(4) Multiplication by 6E0 always gives 0.

We define P(r, s) = r ° s, r, s E &x/2. Define 77(x) for x E eE, as the endomor-

phism of &x/2 given by H(x)r = 2x ° r. Then x -> H(x) is a real unital representa-

tion of &x, and P(H(x)r, s) = P(r, H(x)s).

We let ß, and ß0 be the projections of ß into Cix and Ci0 respectively. Then ß, and

ß0 are regular convex cones in Cix and Ci0. Moreover, ß is precisely the set of points

x + r + k, x E ß,,r G Cix/2,k E &Q, such that k - P(H~x(x)r, r) E ß0.

It will be useful for us later to note now that the Jordan pair (6E0, ß0)—a pair in

our sense even though 6?0 is a trivial algebra—is uniquely determined by (&, ß). For

if <?' is another principal idempotent for f£, it is known [6] that there exists r G &x/2

such that <?' = (exp R(r))e, and exp R(r) is both an automorphism of & and an

automorphism of ß.

We will call (£0, ß0) the base of (&, ß).

It is known [7, 8] that the element X E gx may be selected as a "maximal"

element, which guarantees that X together with g_, © g-x/2 © go generates all of g.

And also X may be chosen to insure that Ci, is a compact Jordan algebra, and ß, is

the associated domain of positivity; i.e. (Cix, ß,) is a positive pair [7]. We will assume

throughout this paper that X has been selected to satisfy the latter requirement. In

this event, it is easy to see that ß (closure of ß) is precisely the set of points

(x + r)2 + k, where x E &x,r E Ci x/2, and k E ß0.

Our strategy in this paper is essentially as follows. Given the algebra Ci, principal

idempotent e, and the representation S in End V, since S(e) is idempotent, we have

an eigenspace decomposition V = Vx © V0. Using additionally the existence of the

ß-Hermitian form F, it follows that, [8], S(dx)Vx C Vx, S(&)V0 = 0, S(Cix/2)Vx C V0,

and S(S0) = 0. A representation of & satisfying the four above requirements will be

called special. It is clear that F(VX,VX) G éB, ® C, F(VX,VQ) E &x/2 ® C, and

F(V0,V0)Eâ0®C.

Because ($, is semisimple, the possibilities for the form F restricted to Vx can be

described precisely. We investigate the remaining necessary and sufficient conditions
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on Ci and the special representation S which insure that a given restriction of F on Vx

can be extended to an admissible one on all of V.

To accommodate this strategy, we introduce the following notation. Let (Ci, ß) be

a positive Jordan pair, and S a special representation of Ci in complex vector space

V. Given a principal idempotent e, we split V = Vx © V0. (V0 does not depend, as a

matter of fact, on the choice of e.) We suppose, moreover, we are given a

ßrHermitian form F on Vx such that S is F-related to Cix and satisfies the strange

identity. We will say then we have an incomplete data set (Ci, ß, V, S, F) and will call

the incomplete data set admissible if the definition of F can be extended to all of V,

and with the extended F the data set becomes admissible.

With the extended F in hand, we have a Siegel domain D, and an element X E g,

which gives us back both Ci and S. We postpone to a subsequent paper the question

whether the X we thus arrive at is indeed maximal for the given domain D.

1. In this section we are going to limit the possibilities for V0, and reduce as well

to the case Ci, simple.

Define V¿ = S(Cix/2)Vx. We know V¿ E V0. Let p be any linear form in the

interior of the dual cone to ß0, and consider the Hermitian definite form Q(-, ■) on

VQ given by Q( ■, ■ ) = p( F( ■, ■ )). Let V¿' be the orthocomplement of V¿ with respect

to Q. Clearly V0 = V¿ © V'¿.

Lemma. V¿' = {c E V0\ F(v, c) = 0 Vo G Vx).

For the proof, define W = {c E V0\F(v,c) = 0 Vu G Vx). If c E V¿', then

Q(S(r)v, c) = p(F(S(r)v, c)) = 0 for r E Cix/2, v G Vx. But F(S(r)v, c) =

2r o F(v, c). It is known [7] that for any nonzero r E dx/2 that r2 G ß0 — 0, so

p(r2) t^ 0. Putting in turn then r equal to the real and imaginary parts of F(v, c), we

conclude F(v, c) = 0. Hence c E W.

If c EW, then F(v, c) = 0 for all v E Vx => r ° F(v, c) = 0 for all r E dx/2,

=» F(V¿, c) = 0, => c E V¿', completing the proof.

Now put V = Vx © V¿, so that V = V © V¿'. If v = v' + v'¿, w = w' + <, then

/'(ü, w) = 7*l(o', w') + F(v'¿, w¿'). Thus T*1 is ß-Hermitian if and only if its restric-

tions to V and V¿' are, and, as is readily verified, will satisfy the strange identity if

and only if its restriction to V does.

It is now clear that the role played by V¿' is superfluous. For the sequel then, we

will always assume V¿' = 0; i.e. we may identify V0 with S(Cix/2)Vx. Put another

way, we will assume S(Ci)V = V, which shows the requirement independent of the

choice of principal idempotent. Accordingly, we will call (Ci, ß, V, S, F) a reduced

admissible data set if S(Ci,)V = V. All data sets hereafter occurring will be assumed

reduced. The notion of reduced data set also being applicable to incomplete sets, we

will also assume all incomplete data sets are reduced as well.

Next, we want to reduce to the case &x simple. Write t?, = ©f 6?,(/'), the

decomposition of Cix into simple compact components. Put e = 2f e(i), the corre-

sponding decomposition of the unit element of dx. Since H(e(i)) are a family of

orthogonal idempotents summing to the identity operator, we get a joint eigenspace

decomposition &x,2— ®xpCix/2(i). It follows readily that dx/2(i) ° Cix/2(j) = 0

and Cix(i) ° dx/2(j) = 0 if i ^j. Put Ci(i) = Cix(i) © Cix/2(i) © Ci0, and ß(z) the
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relative interior of the set a2 + k, a E d(i), k E ß0. Then it is easy to see that

(d(i), ß(z)) is a Jordan pair with base (d0, ß0).

Since S(e(i)) are a family of orthogonal idempotents summing to the identity on

Vx, we obtain a joint eigenspace decomposition Vx = ®fVx(i). It is clear that

F(Vx(i),Vx(j)) = 0 if i^j; moreover, F(Vx(i),Vx(i)) E dx(i) ® C. Also, if r E

dx/2(i), vEVfj), then S(r)v = 0 if ii-j. For S(r)v = 2S(e(i) o r)v =

S(r)S(e(i))v + S(e(i))S(r)v = 0 + 0 = 0. So put V0(i) = S(dx/2(i))Vx(i), and put

V(i) = Vx(i) © V0(i). Clearly now, V0 = ®(V0(i), and also F(V(i), V(j)) = 0 if

i ¥=j, while F(F(z), F(/)) G d(i) ® C.

Let S(z') be the restriction of 5 to V(i) and F(i) the restriction of F to K(z). Our

remarks above imply that (d(i), ß(z'), V(i), S(i), F(i)) is a reduced admissible data

set, and the base of (d(i), ß(z')) is (6B0,ß0). If we have, on the other hand, a

collection of reduced admissible data sets all over a common base (6B0, ß0), they can

obviously be reassembled by reversing the analysis above. Consequently we confine

our attention in the sequel to reduced admissible data sets, or reduced incomplete data

sets, for which d x is simple compact.

If (d, ß, V, S, F) is reduced admissible or reduced incomplete, and Vx = {0},

then S(dx/2)VX = V0 = {0}, so V = (0} and F = 0. To avoid this trivial case, we

suppose in the sequel all data sets have V =£ {0}.

In summary then, all our data sets, unless otherwise noted, whether complete or

incomplete, will be assumed reduced, to have V^ {0}, to have dx simple and

(dx, ß|) a positive pair.

2. We will need shortly a description of all admissible data sets (d, Q, V, S, F) for

which d is simple compact, ß is the associated domain of positivity. It will also be

convenient to list, for each simple d appearing in an admissible data set, its distinct

nontrivial irreducible real representations, denoted h, operating in real vector space

U, and its distinct nontrivial irreducible complex representations, denoted 5, operat-

ing in complex vector space W. Each irreducible complex representation has a

unique (up to real scalar multiple) invariant Hermitian form, denoted /.

F(•, ■) being an element of d®RC we write where convenient, F(v,w) = Fx(v,w)

® 1 + 7*2(0, w)®/.

The relevant facts can be extracted from [1,9], but see also [2, 3].

(I) d = R, e the unit, V = C, S(x)v = xv, F(v, w) = Q(v, w)e, Q any positive

Hermitian form onC,

U = R,       h(x)u = xu,

W= C,       s(x)w = xw,       f(v,w) = vw.

(II) d= n X n complex Hermitian matrices, n>2. (We identify <2®RC with

n X n complex matrices, the conjugation being transpose conjugate.) V = C" ®cCp,

(i) S(x)(v ®a) = xv®a, F(v ®a,w®ß) = Q(a, ß)vw*, or

(ii) S(x)(v ® a) = xv ® a, F(v ® a,w ® ß) = Q(a, ß)wv'. In both cases Q is any

positive Hermitian form on C.

l/=R",      h(x)u = xu,

W=C,     (i)    s(x)w = xw,   f(v,w) = w*v,    or

(ii)    s(x)w = xw,   f(v,w) = w*v.
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(III) d = n X n quaternionic Hermitian matrices, n > 3. V = H" (complex scalars

acting on right), S(x)v = xv. Fx(v, w) = ri(vw* + wv*), and F2(o, w) = Fx(v, wi), 17

any positive scalar

77= H",       h(x)u = xu,

W = H",       s(x)w = xw,f(v,w) = w*o — z'w*oz.

(IV) d = 2 X 2 quaternionic Hermitian matrices, K, S, and F as in (III) above.

But also,

t7=H2,      (i) h(x)u = xu   or

(ii) h(x)u = xu,

W=H2,     (i) s(x)w = xw,   f(v,w) = w*v — iw*vi,   or

(ii) s(x)w = xw, f(v, w) = w*v — iw*vi.

(V) d = Jordan algebra of dimension 8 based on a sum of seven squares. Since we

do not need details here, we give only general description. There is only one

nontrivial real irreducible representation, which acts in C8. This real representation

splits over the complexes into two inequivalent complex representations, each acting

in C8, each of which leads to reduced admissible data sets with a uniquely

determined (up to real scalar multiple) ß-Hermitian form. There are no other

reduced admissible data sets.

3. Let (d, ß, V, S, F) be a five tuple which satisfies all the requirements for

admissibility except the strange identity. We construct, as usual, the subspaces Vx

and V0. Then:

Lemma. 77ze necessary and sufficient conditions that F satisfy the strange identity

F(S(F(v, c))v, c) = F(v, S(F(c, v))c) are

(1) it is true when both v and c E Vx,

(2) ifvEV,cE V0, then S(F(v, c))v = 0.

If the strange identity holds, then obviously (1) holds. But the strange identity is

known [8] to be equivalent to the somewhat stronger statement F(S(F(v, c))v, d) =

F(v, S(F(d, v))c). If we pick c in V0, the right-hand side is zero since V0 is

annihilated by S. But then the vanishing of the left-hand side for any d implies

S(F(v,c))v = 0.

Now supposing (1) and (2) are satisfied, we must show F(S(F(v, c))v, c) =

F(v, S(F(c, v))v). Writing c = cx + c0, c, G V¡, it will suffice to show that

F(S(F(v, cx))v, c0) = F(v, S(F(c0, v))cx), and F(S(F(v, cx))v, cx) =

F(v, S(F(cx, o))C|). The first equality above follows by computing F(v, cx) ° F(v, c0)

in two different ways, using commutativity of Jordan multiplication. Writing o = o,

+ o0, the second will hold if we show F(S(F(v0, c,))o,, c,) = F(v0, S(F(cx, ü,))C|),

which follows as before by computing F(vx, cx) ° F(v0, cx) in two different ways.

Corollary. 77ze second condition in the last lemma may be replaced by (2')

F(v, c) o F(v, c) = 0 if v E V, c E V0.

For if (2) holds then F(v, c) ° F(v, c) = {-F(S(F(v, c))v, c) = 0. While if (2')

holds, then by polarizing, T^o, c) ° F(v, d) = 0 if v E Vx, c, d E V0. And then
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0 = F(v, c) o F(v, d) = {-F(S(F(v, c))v, d). Since S(F(v, c))v G V0, we conclude

S(F(v,c))v = 0.

As a consequence of this lemma we see that with S restricted to dx, and F

restricted to Vx, (âx,Qx,Vx, S, F) is admissible. Consequently, we need only con-

sider d | in one of the cases described in §2. The remainder of the paper studies these

five cases. Before proceeding, however, we need a few more results.

The next pair of lemmas cover a technical situation we meet repeatedly. Let

d = d, © d x/2 © d0 be one of the algebras we have been considering, and let S be a

special representation of d in a vector space V, V = Vx © V0 as usual. Let s and s' be

two complex irreducible representations of d, in W and W respectively, the first

having invariant Hermitian form /(•, •). Suppose, moreover, that 5 and s' are real

irreducible when W and W are viewed as real vector spaces. Furthermore, we

suppose that S, restricted to Vx, contains s as a subrepresentation. And dx/2, which

is a real representation space for dx, contains s' operating in W as a real

subrepresentation.

Lemma. Let r E W be an element of dx,2 and w E W be an element of Vx. If s and

s' are inequivalent as real representations then S(r)w = 0.

Let 6 be any linear form in the dual space to V0 considered as a real vector space,

and consider the real bilinear form Q(-, ■) on W X W defined by Q(r,w) =

6(S(r)w). If/, is the real part of/, there exists a real linear map L: W -> W such

that Q(r, w) =fx(Lr,w). But for x E dx,

S(s'(x)r)w = 2S(x o r)w = S(x)S(r)w + S(r)S(x)w

= S(r)S(x)w = S(r)s(x)w,

whence Q(s'(x)r, w) = Q(r, s(x)w), from which it follows that Ls' = sL. By Schur's

lemma, L = 0, which gives the conclusion of the lemma.

Continuing the notation of the last lemma, we next suppose W = W, s = s'. W,

considered as real representation space for s, always has s-equivariant complex

structure. It may have s-equivariant quaternionic structure. Then:

Lemma. If W has only s-equivariant complex structure there exists unique X E V0

such that S(r)w = f(w, r)X. If W has s-equivariant quaternionic structure, there exist

unique X and p E V0 such that S(r)w = f(w, r)X + f(w, rj)p.

Suppose W has only s-equivariant complex structure. Consider real valued bilinear

forms on WX W (W considered as real vector space) which are s invariant. It is

easy to see that a real basis for such forms is given by/,(w, w') and/,(vv, iw').

Repeating the analysis of the last lemma, we infer the unique existence of p, and

p2 G V0 such that S(r)w = fx(w, r)px + fx(w, ir)p2. But since S(r)w is C linear in

the variable w, p2 = ipx, and the desired conclusion follows.

If W has i-equivariant quaternionic structure, then the real bilinear forms on

W X W which are s invariant have as basis fx(w,w'), fx(w,w'i), fx(w,w'j), and

fx(w, w'k). The analysis now proceeds as in the former case.
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The last lemma of this section refers to an arbitrary admissible data set

(d, ß, V, S, F), not necessarily satisfying any of the special stipulations we have

introduced.

Lemma. Let v G V, r E dx/2. Then S(r)v = 0 if and only if r ° F(v, o) = 0.

For r o F(v, v) = ^F(S(r)v, v) + \F(v, S(r)v), so S(r)v = 0 => r ° F(o, o) = 0.

On the other hand, r ° (r ° F(v, v)) = iF(S(r)v, S(r)v); since F(w, w) = 0 if and

only if w = 0, the reverse implication is clear.

4. Let (d, ß, V, S, F) be an admissible data set with dx the Jordan algebra in case

V of §2. Vx may be taken as the action space of either of the two complex irreducible

representations of éE,, say s acting in W~ C8. S restricted to dx is s. For dx/2 we

may take dx/2 = W®RRP; if x E dx and r = w ® a E &x/2, then x ° r = ^s(x)w

® a. From a lemma of the last section, we know for o G Vx that S(w ® a)v =

X(a)f(v, w), where X(a) E V0.

Select ex and e2 primitive orthogonal idempotents in dx, e = ex + e2. Select o ¥= 0

in Vx such that S(ex)v = s(ex)v = v. It is clear that for this o, F(o, o) = r/e,, for

some r¡ > 0. Select if possible a so that X(a) i 0. Then for w ® a E dx/2,

S(w ® a)v = 0 if and only if f(v, w) = 0, and by the last lemma of the last section,

if and only if (w ® a) ° F(v, v) = 0; i.e., if and only if s(ex)w = 0. Since ex and e2

may be interchanged by an automorphism of 6B,, and there is only one real

irreducible representation of dx, it is clear that the null space of s(ex) is of complex

dimension 4. But the complex dimension of the set of w E W such that/(o, w) = 0

is 7.

This contradiction shows that X(a) = 0, and by our convention on V0 that

Va = {0}. Thus S restricted to dx/2 is trivial. We will show dx/2 must be zero. Let

F(v, w) = F,(o, w) ® 1 + F2(v, w) ® i, the decomposition into real and imaginary

parts. We know for all r E dx/2 that r ° Fx(v, w) = 0. But the real linear span of

Fx(v,w) is an ideal in &x; since &x is simple, e belongs to this ideal. Hence

r ° e = {r = 0.

Thus dx/2 = {0}. We now have

Theorem. Let (d, ß, V, S, F) be an incomplete data set with d x the Jordan algebra

of case V. Then the-data set may be completed if and only if dx/2 = {0}.

We have proved the necessity above. The sufficiency is obvious.

5. Now we take an admissible data set (d, ß, V, S, F) with dx in case II. For Vx

we may take C" ®CC and for x E dx, v ® ß E Vx we take either the action (i)

S(x)(v ® ß) = xv ® ß or (ii) S(x)(v ® ß) = xv ® ß. Since the discussion in the

two cases is parallel we stick to the first. For dx/2 we may take C" ®RR'?, and for

x Edx, r® a E dx/2, x o (r ® a) = \xr ® a. The complexification of dx/2 will be

identified with C" ®RR? ®RC, the last factor in the tensor product carrying both

the complex structure and the conjugation.
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By a lemma of §3, we know S(r ® a)(v ® ß) = (r*v)X(a, ß) for a unique

X(a, ß) E V0. Hence S(ir ® a)(iv ® ß) = S(r ® a)(v ® ß). It follows that

S(r® a® 1 + ir® a® i)(v ® ß) = 2S(r ® a)(o ® j8),

while S(r ® a ® I - ir ® a ® i)(v ® ß) = 0.

Let w ® y G F,. We know that

F(o ® /?, w ® y) = iQ(ß, y){(vw* + wo*) ® 1 + (zwo* - ivw*) ® /},

where g is a positive Hermitian form on C.

Thus we find

(r® a ® 1 + zr® a ®/) ° F(o ®/?,w® y) = F(S(r® a)(o ® ¿8),w® y)

= 20(0, y){wo*r ® a ® 1 + iwv*r ® a® /}

= > ® ag ® (/5, y)(/-*o) + in- ® a ® zg(/?, y)(/"*o)

= > ® a ® g((/-*o)/?, y) + ¿w ® a ® zg((r*o)/3, y).

Notice that the formula above determines F on VQ X Vx solely in terms of Jordan

algebra 6, and the values of F on Vx X Vx. Moreover, since F(o0, o,) = 0 for all

o, G Vx if and only if o0 = 0, we see that 2„S(rp ® ay)(v„ ® ß„) = 0 if and only if

2, a„ ® g(ß„, y)/"„*o„ = 0 for all y E C. It follows that we may identify V0 with

W ®RC in such a fashion that S(r ® a)(v ® ß) = a ® (r*v)ß.

Let (6?, ß, V, S, F) be an incomplete data set with dx/2 and Vx identified as

above. Then

Theorem. For any choice of F there exists (uniquely) an admissible completion if

and only if V0 may be identified with Rq ®RC in such a fashion that S(r ® a)(v ® ß)

= a ®(r*v)ß.

(In case (ii), the identification of dx/2 and the action of dx on dx/2 being the

same, the corresponding statement is that V0 may be identified with R9 ®KC in

such a fashion that S(r ® a)(v ® ß) = a ® (r'v)ß.)

The necessity has already been shown. As for the sufficiency, our hypotheses

enable us to well define F on V0X Vx by

F(S(r® a)(v ® ß), w ® y) = > ® a ® (/-*o)g(/?, y)

+ iw® a ® i(r*v)Q(ß, y).

F is then defined on K, X K0 by conjugation. Let s ® 8 E dx/2. F is defined on

V0 X V0 by

(s®0) o F(5(r®a)(o®/ß),w®Y)

= ^F(5(r ® a)(v ® ß), S(s ® 8)(w ® y))

= i(r*v)Q(ß, y)P(s ®8,w®a) + j(r*v)Q(ß, y)P(s ® 8, iw ® a).

We have yet to show that F satisfies the appropriate conjugacy relation on

V0 X VQ, that F satisfies the strange identity, and that F is ß-Hermitian. Now we

knew that for any x E dx that P(xs ® 8,w® a) = P(s ® 8, xw ® a). Put/,(s, w) =

(s*w + w*s)/2. An argument similar to one we have used before will show that
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there exist uniquely 6(8, a) and cp(5, a) G dQ such that P(s ® 8,w ® a) =

/,(i,w)fl(fi,a)+/l(j,w)ç)(«,o). _

It is now easy to show that the Fwe have defined satisfies F(o0, ü¿) = F(v'0, o0).

F restricted to Vx X Vx satisfies the strange identity, so we have only to show that

S(F(vx, o0))o, = 0. But it is easy to see that S(F(w ® y), S(r ® a)(v ® ß)) = 0,

which is more than enough.

We should also check that for x E d x

x ° F(S(r ®a)(v® ß), w ® y) = \F(S(r ® a)(v ® ß), xw ® y),

but this is trivial.

It remains to show that the extended Fis ß-Hermitian. First, take a = 1v(rv ® a«)

G dx/2 and compute P(a, a). We will suppose that a„'s are linearly independent in

R?. An easy calculation gives P(a, a) = 2„j/l(/v*r/l){ô(a„, a^) + zcp(a„, aß)}. Putting

for arbitrary scalars c„, rv = cvr, r EC, we see that 6(al,,a¡l) + z'cp(a„, a^) is

Hermitian positive in the obvious sense, since P(a, a) = a2 E ß0 and is 0 if and

only if a = 0.

Pick an orthonormal base ßx, ß2,... ,ßp for C such that Q(ßt, ßj) = 8¡j. To show

that F is ß-Hermitian, it will suffice to show that F(u, u) E ß — 0, where u is any

nonzero element of o of form u = v ® ßk + 2„ S(ry ® av)(vv ® ßk), or u =

2» S(rp ® a„)(vf ® ßk). Taking the second case first, one calculates that

F(u, u) = 2,j/i(/-/oJ(o;/;){ö(a„ aj + i<p(av, olJ}. Putting Av¡í = (r*oF)(oM%),

take a spectral decomposition of A, , APtll = I^X^c*, to obtain F(u, u) =

2,,,,,,, À/^{(9(a„ olJ + z'cp(a„, aM)}, so F(z/, w) G ß0 C ß and is zero if and only if

Xv = OVju which implies r*vv = OVv, which implies u = 0.

For u of the first form, with o ¥= 0, another easy calculation gives (o*o)F(zz, u) =

[oo* + 2„(üü*/-„ ® ap)]2, which belongs to ß — 0. The proof of the sufficiency is

now completed.

6. We take an admissible data set (d, ß, V, S, F) with dx in case IV. For Vx we

may take H2, so that for x G éE,, o G Vx, S(x)v = xv.

We may suppose dx/2 = H2 ®RRi © H2 ®RRi', and for x E dx, r ® a + s ® 8

Edx/2, x ° (r® a + s® 8) = {xr ® a + jxs ® 8. A lemma of §2 shows that

S(s ® 8)v = 0. Hence if w G Vx, we have (s ® 8) ° F(v, w) = 0. As in an earlier

argument, the real linear span of Fx(v,w), since an ideal in &x, contains e. Thus

(s ® 5) o e = {-s ® 5 = 0. Hence «*/' = 0.

The remainder of the discussion of this case is incorporated into the next section.

7. We take an admissible data set with d, in case III or IV. For Vx we may take

H", and for x G éE,, o G Vx, S(x)v = xv. For w E Vx, F(v, w) is determined up to

real scalar multiple. Accordingly, we may take Fx(v, w) = vw* + wv*, so that

F(v,w) = Fx(v,w) ® 1 + Fx(v, wi) ® i. As invariant Hermitian form Vx we take

f(v, w) = w*v — iw*vi.

Using the result of the last discussion, we may for all n > 2 identify dx/2 with

H" ®RR?in a manner so that for x E dx, r ® a E dx/2, x ° (r ® a) = \xr ® a.
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By a lemma of §3, we know that S(r ® a)v = f(v, r)X(a) +/(o, rj)p(a) for

unique X(a) and p(a) in V0. Computing (r ® a) ° F(o, w) = jF(S(r ® a)v, w) +

{F(v, S(r ® a)w) in both ways, and comparing real parts, we obtain

(vw*r + wv*r) ®a = Fx(X(a), wf(r, v)) + Fx(p(a), wf(rj, v))

+ Fx(X(a),vf(r,w)) + Fx(p(a), vf(rj,w)).

Put o = w = r to obtain Fx(X(a), v) = {v ® a. Put v = w = rj to obtain Fx(p(a), v)

— - {vj ® a. Accordingly, one finds F(S(r ® a)v, w) = {w ® a ® f(v, r) — {wi ®

a ®/(o, rz) — {wj ® a ®/(o, rj) — \wk ® a ®/(o, rk). Using the same argument

as in the last section, one sees that V0 may be identified with R? ® R H, whose C

module structure arises from right action by complex scalars on H, in such a fashion

that S(r ® a)v = a ® r*v. This is the end of the story. Indeed:

Theorem. Let (d, ß, V, S, F) be an incomplete data set with dx in case III or IV.

Then with dx/2 and Vx identified as above, the data set nay be completed (uniquely) to

an admissible one if and only if V0 may be identified with R? ® R H in such a fashion

that S(r ® a)v = a ® r*v.

We will not give the proof, since it follows very much the same lines as the proof

of the last section. The only slightly new ingredients are as follows. Define g(v, w) =

f(v,w) + f(w, v). Then one shows by a familiar argument that P(r ® a, s ® ß) may

be uniquely written P(r ® a, s ® ß) = g(r, s)0(a, ß) + g(r, si)<p(a, ß) +

g(r, sj)o(a, ß) + g(r, sk)r(a, ß). Additionally, one needs the spectral decomposi-

tion theorem for q X q quaternionic Hermitian matrices, which follows readily from

the decomposition of the elements of the Jordan algebra of q X q quaternionic

Hermitian matrices into linear combinations of primitive idempotents.

8. The only case remaining is dx = R, unit element denoted e, which is surpris-

ingly the most difficult to analyze. For an admissible data set (d, ß, V, S, F), we

may take6?1/2 = R", identify dx/2 ®RC = C and for r E dx/2 take e ° r= {r. We

may take Vx = C, and for x E dx, v E Vx, S(x)v = xv. If w E Vx, we may assume

F(o, w) = (v, w)e, where (o, w) is a positive Hermitian form on Vx.

Let r/ be any linear form in the (interior of) dual cone to ß0, and put Q(r, s) =

f\(r ° s) = T)(P(r, s)) for r, s E dx/2 ® C. g is a positive Hermitian form.

For arbitrary v,w E Vx define a linear mapping L(v, w) of dx/2® C to itself by

L(o, w)r = F(S(r)v, w). Then,

Lemma. The adjoint of L(v,w) with respect to Q is L(w, v), and the following

identities hold:

(I) L(v,w)L(v, z) = (v,z)L(v,w),

(II) L(z,v)L(w,v) = (z,v)L(w,v).

Firstly,

(L(v, w)r) o s = s o F(S(r)v, w) = {F(S(r)v, S(s)w)

= r o F(v, S(s)w) = r ° F(S(s)w, v)  =r° L(w,v)s,

which gives adjointness statement.
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Also,

L(v,w)L(v, z)r = L(v,w)F(S(r)v, z)^ F(S(F(S(r)v, z))v,w)

= F(S(F(S(r)v, z))v, w) + F(S(F(v, S(f)z))v, w)

(because of strange identity) = F(2S(r ° F(v, z))v, w) = (v, z)F(S(r)v, w) =

(o, z)L(v, w)r, which is identity (I). (II) follows from (I) by taking adjoints.

The action of the family of operators L(v,w) in the space éE1/2 ® C = Cq is

obviously fully reducible, since the adjoint of each operator is present in the family.

Moreover, the identities (I) and (II) continue to hold when the operators are

restricted to any invariant subspace. Accordingly, we will let l(v,w) be a family

acting irreducibly on a complex vector space U, with the identities (I) and (II)

satisfied, and with l(v, w) being linear in the first variable, conjugate linear in the

second, for o and w E Vx= C. Our L(v, w) will then be equivalent to a direct sum,

with multiplicities, of the various l(v, w) we find by this process.

Define Uv = A"VX, v = 0,1,2,... ,p. (U0 = C, Ux = Vx, U2 = Vx A Vx, etc.) There

is an irreducible representation p„ of the Lie algebra gl(Vx) on U„ defined by:

p„(g)(o A o' A v" A • • • ) = go A v' A v" A • • •

+ o A gv' A v" A • • • +o A v' A gv" A ••• + •■• ,

where g E gl(Vx). p0 is the trivial representation.

Pick, once and for all, an orthonormal basis, a,, <x2,... ,ap of Vx with respect to

(•,•>. Let b be the conjugation in Vx with respect to this choice of basis. Define

t(o, w) E gl(Vx) by t(o, w)z = (v, bz)bw. Then it is easy to verify that for any

v = 0,1,2,.. .,p, l(v, w) = p„(t(o, w)) satisfies (I) and (II) and is obviously linear in

the first variable, conjugate linear in the second.

Theorem. The only possibilities for l(v,w) are, up to equivalence (similarity), the

P„(t(o, w)), v = 0,1,2,... ,p, described above.

For the proof, we take the first identity l(v, w)l(v, z) = (v, z)l(v, w), and

polarize on o to obtain l(x, w)l(y, z) + l(y, w)l(x, z) = (x, z)l(y, w) +

(y, z)l(x, w). Similarly polarizing the second identity, we get l(z, x)l(w, y) +

l(z, y)l(w, x) = (z, x)l(w, y) + (z, y)l(w, x). In the second polarization, inter-

change x and z, y and w, and subtract from the first to obtain l(y, w)l(x, z) —

l(x, z)l(y, w) = (y, z)l(x, w) - (x, w)l(y, z).

Define T¡¡ = l(<Xj, a¡), and let AtJ be that elementary matrix in gl(C) which has a

one in the (/', j) position, zeroes elsewhere. Then our last identity may be rewritten:

TijTkl — TklTjJ = 8jkTu — 8hTkj.

Accordingly, the map p: Atj -» Ttj is a Lie algebra representation of gl(C) in End U,

and by hypothesis, the representation is irreducible. Moreover, the representation

restricted to sl(C) is irreducible; indeed the most general irreducible representation

of gl(C) arises by taking one for sf(Cp) and extending it to gl(C) by defining the

image of Axx + ^422 + • • • +Ap which must be in the center of the representation,

as 0 X identity, for any fixed choice of complex scalar 6.

We will identify the representation p by restricting it to sl(C) and looking for a

weight vector u belonging to a dominant integral weight. In doing so, and also to
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effect the extension to gl(Cp), it is important to note that T¡¡ is idempotent for all z,

as follows readily from (I) or (II).

If p restricted to sl(Cp) is the trivial representation, then

Tu = P(A\\)

= p{Axx - lr(Axx + A22 + App)) +Tp(Axx+A22+--- +App)

= 6/p X identity,

so Tx | will be idempotent if and only if 6/p = 0 or 1. These two choices correspond

to the choices of p0 on U0 or pp on U as described above.

So we may suppose that p restricted to sl(Cp) is nontrivial. A¡ = Atl — A¡+x ¡+x,

i = 1,2,...,p — 1 form a basis for a Cartan subalgebra, see [3], and we let u be a

weight vector for the dominant integral weight of the representation. Put T¡ = T¡¡ —

Ti+Xi+X = p(A¡). Since u is an eigenvector for all 7), it is an eigenvector for

Tx + 2F2 + •••+(/> - l)Tp_x = Txx + T22 + • • • +Tpp - PTpp. Since Tu + F22

+ • • • + Tpp = 6 X identity, u is an eigenvector for T hence for all Tu. Since T¡¡ is

idempotent, Tuu = e,u where e, = 0 or 1. Hence T¡u = (e¡ — ei+x)u = 8¡u, so

(2f_1 XiT^u = 2f_1 à,ô,m. 5, = 0, 1, or -1. Since our weight is dominant integral,

Ô, = Oor 1. But

(r, + T2 + ■ ■ • +T,_,)« = (S, + S2 + • ■ ■ +«,_,)« = (r„ - Tpp)u;

since (F,, — 7^,)« = 0, u, or -«, the only possibilities are that one 8, is one, the

remaining are zeros. Consequently, up to equivalence, Uis UX,U2,..., or U x and p

is p,, p2,..., or p ,, respectively. We have only identified p restricted to sl(Cp). But

it is readily seen that in each case there is one and only one extension to gl(Cp) such

that Tx | is idempotent, and it is the one described by the theorem, completing the

proof.

Consequently, L(v, w) is equivalent to a direct sum of the p„(t(o, w)). Put another

way, we will identify dx/2 ®RC with t&vUv ® R"' in such a way that for x = u ® a

E U„® R"' =: rV„ L(v, w)x = pp(t(v, w))u ® a.

L(v,w) depends only on t(o, w). We will write L(o,iv) = L(t(v,w)), and the

new definition of L may be linearly extended unambiguously to all of gl(Vx) by

defining L(g)x = pv(g)u ® a.

For any g G gl( Vx ) we define its adjoint g* with respect to <•,->. It is easy to see

that t*(o, w) = t(w, v), and that trr(o, w) = (v, w).

Let h be the conjugation in dx/2 ®RC.

Lemma, trg - L(g) = hL(g*)h.

We know r ° F(v, w) = {{v, w)r = ^F(S(r)o, w) + F(o, S(hr)w) for r E dx/2

®C, or

(v,w)r = L(v,w)r + hL(w, v)hr

= L(t(v, w))r + hL(r(w, v))hr

since tr-r(o, w) = (o, w), and since every g E gl(Vx) may be written as a sum of

t(o, w) for appropriate choices of o and w, the statement of the lemma follows.
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Lemma, h is a semilinear bijection of Wv to W    , v = 0,1,... ,p.

For w EWV, pv(T)w = vw. The statement now follows trivially from the last

lemma.

Corollary. nv = np_v.

(In case p is even, then h is a conjugation of Wp/2 satisfying trg— L(g) =

hL(g*)h. Such conjugations do not always exist, for example if p = 2, nx = 1; we do

not explore the phenomenon.)

Lemma. P(L(g)r, s) = P(r, hL(g*)hs) = (tr g)P(r, s) - P(r, L(g)s). Put

P(r, s) = P(r, hs). Then P(L(g)r, s) = P(r, L(g*)s).

We know

P(L(r(v,w))r,s) = P(L(v,w)r,s) = s ° F(S(r)v,w) = ^F(S(r)v, S(hs)w)

= r ° hF(S(hs)w, v) = r ° hL(r(w, v)hs).

Since t*(o, w) = r(w, v), the first statement follows. The remaining statements are

now obvious.

Form a positive Hermitian form g on dx/2 ® C as before; g(-, •) = t/F(-, ■).

With respect to g, form the adjoint L*(g) of L(g). By virtue of the last lemma we

see that L* is independent of r;. Indeed,

Corollary. L*(g) = L(g*).

Corollary. If r E Wv, s E Wß, then P(r, s) = 0 unless v = p. Equivalently,

P(r, s) = 0 unless v + p = p.

For the statement Q(L(g)v,w) = Q(v, L(g*)w), when restricted to WyX W^

says the two representations p„ and pM are equivalent, which holds only for v = p.

We are now almost ready to identify VQ, but we need a few more facts. Let r E {/„.

r may be regarded as a skew multilinear form on v vectors drawn from the dual

space of Vx, which we may identify with Vx using the symmetric nondegenerate

bilinear form (o, w) = (o, bw). With these conventions,

(Py(g)r)(ui< "2.- •■>«,) = r(bg*bux,u2,...,uv) + r(ux,bg*bu2,...,uv) + •••

+ /•(«,, u2,...,bg*buv).

In particular,

(pv(r(v,w))r)(ux, u2,... ,up) = (ux,w)r(v, u2,...,u„) + (u2,w)r(ux, v,...,«„)

+ ■-• +(u„,w>r(«1,M2,...,o).

For any r G {/„, and o G Vx, we define r[v] E [/„_, by /-[ü](i/2, w3,...,«„) =

r(o, u2, «3,. ..,m„). (If r£ U0, r[v] = 0.) The definition of r[v] is extended by

linearity to any s E dx/2 ®RC (thus, (r ® a)[o] = r[v] ® a) to give a map of

(6?1/2 ®C)XVX into ©í°l/_, ® R"*'.

Lemma. Let Sj E dx/2 ® C, oy G F,. Then 'ZjS(sJ)vJ = 0 if and only ï/2sy[oy] = 0.
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2jS(Sj)Vj = 0 if and only if 2,F(S(s/)o/, w) = 0 for all w E Vx, i.e. if and only if

2jL(Vj, w)sj = 0 for all w. For each v, let a'„, /' = 1,2,... ,/i„ be an independent basis

for R'\ and write s}■ = 2y<i(rriJ ® <), where r'J E Ur. Then 2,7.(0,, h>)s7 =

2„,,,y(p,(r(oJ, w))/^ ® <) = 0 if and only if 2,p„(t(o/, w))/-^ = 0 for all />, z, and h>.

Let r E Uv. Then

(p„(r(v,w))r)(ux,u2,...,ur) = (ux,w)r(v, u2,...,u„) + ■ ■ ■

+ (u„,w)r(ux, u2,...,!/,_,, o).

Thus

2 P,(T(0y,Vv)/-^)(Ml,t/2,...,«„) =  (lZ,,w)2'-;7(oy,M2,...,Mj

./ j

+ ■•• + (w,,w) 2 ry(ux,u2,. -.,«„_,, Ü,.).

Pick w a nonzero vector orthogonal to u2, u3,...,u¡, and put ux = w to see that

1jS(Sj)Vj = 0 implies 2yS/[o/] = 0. The implication in the other direction is

straightforward.

The last lemma clearly tells us what V0 must be.

Theorem. Vq may be identified with ©f U„_x ® R"- in such a fashion that for

s E dx/2 ® C, o G Vx, S(s)v = s[v}.

It is only necessary to remark that our definition of V0 is not too large. But if

r E c/_|, it is easy to see that there exist r, G U„ such that 2f ^-[«/] — r.

Theorem. Let(d,Tl,V,S, F) be an incomplete data set with d x = R. Let U„ = A" Vx,

and let h be the conjugation in dx/2 ®rC. Let P(r, s) = P(r, hs), for r, s E dx,2

® R C The data set may be completed to an admissible one if and only if:

(1) dx/2 ® C may be identified with ®p U„ ® R"\ and V0 may be identified with

©f t7„_, ® R"- in such a fashion that S(s)v = s[v]fors E dx/2 ® C, o G Vx,

(2) if L(g) has for all g E gl(Vx) the usual action on dx,2 ® C, then tr g — L(g) =

hL(g*)h, where g* is the adjoint of g with respect to the Hermitian form F(-, ■) on Vx;

and

(3) P(L(g)r, s) = P(r, L(g*)s) far r, s E dx/2 ® C

The necessity has already been proved.

Before the proof of sufficiency, a word or two about the hypotheses is in order.

The reader must remember that the definition of r[v] depended on an identification

of the dual space of Vx with Vx itself via the conjugation b arising from a choice

a,, a2,...,a of orthonormal basis in Vx. Bearing this in mind, we define for

o, w E Vx, t(v, w) E gl(Vx) by t(o, w)z = (v, bz)bw.

Next we define for r E dx/2 ® C, o, w E Vx, F(S(r)v, w) = L(t(v, w))r, which

extends unambiguously to a definition of F on V0 X Vx by virtue of hypothesis (1).

F is now defined on Vx X V0 using the conjugation h. The hypothesis (2) now

leads immediately to the conclusion that r o F(v, w) = \-F(S(r)v, w)

+ {F(v, S(hr)w).
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The last conclusion, coupled with the observations that (i) L(t(o, w))L(t(v, z))

= (v, z)L(t(v, w)) and (ii) L(x(o, w))r = 0 for all w implies S(r)v = 0, gives us

the statement S(F(v, S(r)w))v = 0, so Fwill satisfy the strange identity.

■ F is now defined on V0 X V0 by setting F(S(r)v, S(s)w) = 2(hs) ° F(S(r)v, w)

= 2P(hs, L(r(v,w))r). We must verify that F satisfies the appropriate conjugacy

relation on K0 X F0. It suffices to show that F(S(r)v, S(s)w) = F(S(s)w, S(r)v),

where the conjugation is in d0 ®RC This requires P(hs, L(r(v,w))r) =

P(hr, L(t(w, v))s) = P(r, hL(i(w, v))s), which is immediate by (3).

It remains to show that the F we have defined is ß-Hermitian. A few observations

are needed first. From the polarized form of (I) we obtain readily

(I')    (w,w)L(x, y) - L(w, y)L(x,w) = L(x, y)L(w,w) - (x,w)L(w,y)

where we are defining L(v, w) as L(t(v, w)). Put w = ak, and sum on k to obtain

p

^L(ak, y)L(x, ak) = (p+ l)L(x, y) - L(x, y)L(l).
i

Now we select u E V0 of form u = 2, S(r¡)v¡, and we must show F(u, u) E ß and

is   zero   if   and   only   if   u = 0.    But   F(u, u) = 2(J;F(S(r¡)v¡, S(rj)Vj) =

22,,,/z/-,. o F(S(r,)v„ o,) = 22,,,F(L(o„ „,)/-,, ry).

The hypothesis (3) of our theorem clearly implies that P(r, s), for r E Wv, s E W^

is zero unless v = p. So in order to establish our claim, it suffices to assume that

r, G Wr for all i. But then

^P(L(vi,vJ)rl,rJ)= \_v   1 P{L(ak,t>j)L(t>„ak)rt, r,)
i   / *

1

,j.k

2 P(L(v„ ak)r„ L(o7, «,)/•)
i.j.k

p+l

=     + ; _p1lP(sk^k)    wheresk= ^L(v„ak)ri.

Hence F(u, u) E ß and is zero if and only if sk = OVL But the last is equivalent to

2, 7.(o,, w)rt = OVw; which is equivalent to 2, r,[o(] = 0, i.e. 2, S(rj)v¡ = 0.

Finally, we take u E Vx © V0 of form u = w + 2, S(/•,)©,, with w ¥= 0, and must

show F(u, u) E ß. Now F(u, u) = (w, w)e + 2, 7.(o;, w)r¡ + 2, hL(Vj, w)ri +

22uP(L(vi,vJ)r„rJ) = x + r + k, x = (w,w)e Etix, rEdx/2, kE@0, which

G ß if and only if k s* P(r, r)/(w, w).

For the case at hand, this reduces to showing that

(w,w)^P(L(v„ Vj)r„ /•) s* 2F(L(o„ w)r„ L(Vj, w)ry)

= ^P(L(w,vJ)L(v„w)r„rJ).

'■./

Using (T), we have the equivalent inequality:

2f(L(o„ Vj)L(w, w)r„ rj) ^ 2(^,w) P(L(w, 0j)rt, /}).
'.J i.J
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In the last, replace each o, by a multiple of w plus a vector v'¡ orthogonal to w to

obtain

2P(L(v'„v;)L(w,w)r,,rJ)^0.
i.j

But the construction of the v'¡ implies that L(o,', o') commutes with L(w, w). Hence:

^p(L(v'i,v'j)L(w,w)ri,rJ) = -r^-^P(L(v'i,v'j)L(w,w)ri,L(w,w)rJ)
ij \W,W)   ¡j

and assuming, as we may without losing generality, that all r, G Wv, the last is equal

to

7-w——,-v   2 P(¡-(ak,v'j)L(v',,ak)L(w,w)ri,L(w,w)r)
(w,w)(p + 1 - v) ijk

which is obviously nonnegative. This completes the proof of the theorem.

It is probably worth noting that the proof that F is ß-Hermitian can also be

reduced to a more concrete and conventional computation by the following device.

There is only one (up to complex multiple) sesquilinear form ( •, ■ ) on U„ X Uv which

satisfies (L(g)r, s) = (r, L(g*)s); in fact just the extension to Uv of the scalar

product (• , •) in Vx. Once this observation is made P can be determined more or

less explicitly, and the proof reduces to standard, but long, calculations in multilin-

ear algebra.

Finally

Theorem. The completion of the last theorem is unique.

We have to show that there is only one extension of F. This will follow from the

following.

Lemma. For each v, let a'v, i= 1,2,...,n„,be independent basis for R"'. Let

s = 2,,„ /•; ® «;, G dx/2 ® C and let v i 0 E Vx. Then S(hs)v = 0 if and only if each

r'v (considered as skew multilinear form) vanishes when all of its arguments are

orthogonal to v.

S(hs)v = 0 « F(S(hs)v,w) = OVw G Vx

» L(v, w)hs = 0Viv G Vx <=> pv(r(w, v))rv' = (w, v)rv'

for all z, v and w E Vx, the last implication using the fact that trg — L(g) = hL(g*)h.

Fix z and v for the moment and call r'v = r. Then

(pw(t(w, v))r)(ux, u2,... ,u„) = {ux,v)r(w,u2,...,u„)

+ ■■ • +(m„, v)r(ux, m2,...,k„_,,h<) = (w,v)r.

Pick u2,u3,...,up orthogonal to o, ux = v, and w orthogonal to o to obtain

r(w, u2,...,»„) = 0. So r vanishes when its arguments are orthogonal to o. But if r

vanishes when its arguments are orthogonal to o, write each u, and w as a multiple

of  o plus a vector orthogonal  to  o   to see that

(p„(t(w, v))r)(ux,u2,...,uv) = (w,v)r(ux,u2,...,u„),

completing the proof.



REPRESENTATIONS OF JORDAN ALGEBRAS 213

Lemma. Given any r E d ,/2 ® C and any v ^ 0 in Vx, there is a unique s E d x ,2 ®

C such that S(s)v = 0 and S(hs)v = S(hr)v.

Write r = 1ivr[v ® a'v and s = 1Uvs\, ® a'„. But then S(s)v = 0 tells us, as we

know from a previous lemma, that each s'v vanishes when its first argument is set

equal to o, while S(hs — hr)v = 0 says each s'„ takes the same values as r'v when all

the arguments are orthogonal to o. These requirements fix s'v uniquely and complete

the proof of the lemma.

To see the proof of the theorem, suppose r E d 1/2 ® C and o ¥= 0 in K, are given.

Find thesof the last lemma. Then F(S(r)v, v) = 2(r — s) ° F(v, v) = (o, v)(r — s)

is uniquely determined. Similarly F(S(r)w, w), F(S(r)(v + iw), (v + iw)) and

F(S(r)(v — iw)) are uniquely determined. But an appropriate linear combination of

these four gives F(S(r)v, w).

My thanks go to the referee for correcting several mistakes in the first draft of this

manuscript.
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