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TANGENT 2-FIELDS ON EVEN-DIMENSIONAL

NONORIENTABLE MANIFOLDS

BY

BENEDICT J. POLLINA

Abstract. This paper uses the Postnikov decomposition of a nonsimple fibration to

describe the obstructions to a tangent 2-field on an even-dimensional nonorientable

manifold.

Our purpose in this article is to prove the following theorem.

Main Theorem. Let M be a closed, nonorientable manifold of dimension m,

where m is even and m > 2. Let %(M) in Hm(M; ZW¡<M)) and sl£m_x(M) in

77"' '(M; Zw (M)) denote the twisted Euler class of M and the (m — 1) Stiefel-Whitney

class of M, respectively. Then M has a 2-field if, and only if, %(M) = 0 and

%m.x(M) = 0.

The vector field problem has a long history, and in the special case of 2-fields a

great deal is already known. In order to put this result in perspective it will be

helpful to give a brief statement of the known results. For details and an extensive

bibliography the reader is referred to the excellent survey paper by Emery Thomas

[10].
Thomas [10], Frank [3], and Atiyah [1] have described completely the necessary

and sufficient conditions for a closed orientable manifold to have a 2-field. Suppose

M is such a manifold of dimension m. Let wm_x(M) in Hm~x(M; Z2) be the

(m — 1) Stiefel-Whitney class, X(M) the Euler class, k(M) the real Kervaire

semicharacteristic, and a(M) the signature of M. Their results may then be sum-

marized as follows.

Dimension Necessary and sufficient conditions

of M mod 4 for a 2-field on M

3 M always has a 2-field

2 X(M) = 0

1 w„,_1(A7) = OandA:(M) = 0

0 wm_x(M) = 0,X(M) = 0,ando(M)=0mod4
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In addition, Atiyah and Dupont [2] have given necessary and sufficient conditions

for a 2-field on a nonorientable 4k + 1 manifold which satisfies w2(M) = 0. Their

result is somewhat complicated, and we will not attempt to state it here.

A summary of nonsimple Postnikov theory. Postnikov theory in the nonsimple case

has been developed extensively by McClendon [5], Siegel [7], and C. A. Robinson [6].

Before proceeding to the proof of the Main Theorem we summarize their results in a

form which will be convenient for our application.
p

Let F -> E -^B be a fibration which is not necessarily simple, that is, -ttx(B) may

act nontrivially on tt^(F). We will assume throughout that F, E, B are all path

connected and that F is simply connected. In this way we get a natural action of

ttx(B) on the homotopy of F. Let G be an abelian group and h: ttx(B) -» Aut(G) a

homomorphism determining up to isomorphism a local coefficient system Gh on B.

Define a map h: ttx(B) -» Aul( Hq(F; G)) in the following way. Given an element b

in ttx(B), b determines an automorphism b: F -» F in the usual way. Let

b*:H"(F; G) - H"(F; G)

be the induced isomorphism in cohomology. The element b also determines an

isomorphism h(b): G — G which induces a coefficient isomorphism

h(b)y. H«(F;  G) - H"(F; G).

Now define h(b) to be the composite h(b)^ °b*. The map h determines a new

local system on B denoted Hq(F; G);;. We now have the following "twisted Serre

spectral sequence".

Theorem 1 (Siegel [7]). There exists a cohomology spectral sequence Ep-q such that

Ej>.« = Hp(B;Hq(F; G)¡¡),       £/•« =» H*(E; p~xGh).

Remarks. p~]Gh denotes the local coefficient system on E induced by the map

p: E -» B. McClendon [5] has given a relative version of this theorem.

From this spectral sequence one obtains the following results.

Corollary 1. Let HP(B; Hq(F; G)h~) = 0 whenever 0 <q < n or 0<p <m.

Then there is an exact sequence

..■->Hk(B;Gh)CHk(E;p^Gh)^[Hk(F;G)Y

^Hk+X(B; Gh) - ••• - Hm+"-](E;p-xGh).

The group

[Hk(F; G)]" = {aEHk(F;G)\h(a) = a for all a in ttX(B)},

that is, the subgroup of elements invariant under the action h.

Corollary 2. Assume HP(B; Hq(F; G)h~) = 0far0<q<n. Then

p*:H'(B;Gh)^H'(E;p-xGh)

is an isomorphism for i < n, and the following sequence is exact.
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0 - 77"(7í; Gh)CH"(E;p-lGh) - [77"(F; G)]"

^H" + x(B;Gh)CH"+\E;p^Gh).

These sequences will be important later on when we construct the Postnikov tower

for the map p.

Next we consider classifying spaces for twisted cohomology. We will confine our

attention to twisted integer cohomology, since this will suffice for our applications.

A much more general treatment, however, is possible. Let h: Z2 ^ Aut(Z) be the

nontrivial action of Z2 on Z, and let Z2 -» K -» K(Z2,1) be the universal cover. A

space of type K(Z, n) can be constructed so that h determines an action h of Z2 on

K(Z, n) by basepoint preserving homeomorphisms. Take the Cartesian product

K X K(Z, n), and let Z2 act by covering transformations on the first factor and by h

on the second. Denote the quotient space of this action by L(Z, n). Clearly, one has

a fibration

K(Z,n)^>L(Z,n)-P*K(Z2,l).

Furthermore, since the action of Z2 on K(Z, n) has a fixed point, the fibration has a

canonical section s: K(Z2,1) -» L(Z, n).

Let A' be a complex and w: X — K(Z2,1) a fixed map. The map w determines a

local system of integers on X, denoted Zw. Let [X, L(Z, n); w] denote the set of

homotopy classes of lifts of w into L(Z, n), where the homotopies are required to go

through lifts of w. Then one has the following result.

Theorem 2. There is an element en in H"(L(Z, n); Z ) with the property that the

mapping

[X,L(Z,n);w] - H"(X; Zw)

f - f*(e„)

is a bijection.

The proof of this theorem can be found in Steenrod [8, 37.5]. It is not difficult to

show that s*(ey) = 0 and i*(en) = i„, where i„ in H"(K(Z, n); Z) is the fundamen-

tal class.

Let k0 E K(Z, n) be the basepoint, and let PK(Z, n) be the space of paths in

K(Z, n) starting at k0. Since the action h of Z2 on K(Z, n) fixes the basepoint, Z2

acts on PK(Z, n)in the obvious way. As before, we can form the space K X PK(Z, n)

and take the quotient of the Z2 action. The resulting space will be denoted PL(Z, n)

and is the total space of a fibration:

PK(Z, n) -> PL(Z, n) ^>K(Z2, 1).

Further, let 1 X e: K X PK(Z, n)-> KX K(Z, n) be defined by (1 X e)(k, a) =

(k, a(l)). This map is a fibration with fibre QK(Z, n), and it is easily checked that

1 X e is Z2 equivariant. Thus 1 X e induces a map ê: PL(Z, n) -» L(Z, n) which is



218 B. J. POLLINA

also a fibration with fibre QK(Z, n). We can summarize the above constructions in

the following commutative diagram.

K(Z,n-l)     -     PK(Z,n)      ^     K(Z,n)

II I I

K(Z, n-1)     -     PL(Z,n)      '-*      L(Z,n)

ï P ï p

K(Z2,T)      =     K(Z2,T)

Note that we have used the fact that TlK(Z, n) has the same homotopy type as

K(Z,n - 1).

There is one last space we will need. Let Z2 act on QK(Z, n) in the manner

analogous to the above and form the space TlL(Z, n). As before this space fibres

over A^(Z2,1) with fibre SIK(Z, n). It is easy to show that TLL(Z, n) has the same

homotopy type as L(Z, n — 1).

Next we consider the analogue of a principal fibration in ordinary Postnikov

theory. Let B be a space with a local system of integers ZK determined by a map

w: B -> K(Z2,1). Let o be an element of H"+>(B; ZK). Consider the diagram

K(Z,n)      ^       E       -»      PL(Z,n+l)

I Pi le

B       ^      L(Z,n + 1).

The fibration/?, is the pullback by o of ë. Thus

E= {(b,u) EB X PL(Z,n)\v(b) =e(u)}.

Observe that E maps to K(Z2, 1) by the composite wpx. This defines an induced

local system of integers on E. Define the space

E®Q,L(Z, n+ l)= {((b,u),s) EEXÜL(Z,n+ l)\w(b) =p(s)),

wherep denotes the fibrationp: ÜL(Z, n + 1) — K(Z2,1). Define a map

(*) p: E®QL(Z,n+ I) ^ E   by p.((b, u),s) = (b, s + u).

This map is the analogue of the principal action map for ordinary principal

fibrations in the following sense. Suppose X is a complex, and q: X -* B is a given

map. Let /, g: X -» E be two lifts of q, so that pxf - pxg - q. Define the space

X® X= {(x,x') E XX X\wq(x) = wq(x')}.

Proposition. There exists a map d: X -> TiL(Z, n + 1) = L(Z, n) such that the

composite

A f®d _ a
X^X® X -< E®tiL(Z, n+ l)^E
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is homotopic to g. Moreover d satisfies the property that pd = wq, that is, the diagram

X t QL(Z,n + 1)

wq\ i/p

K(Z2,l)

commutes. Thus, by the identification

TLL(Z,n + 1) =L(Z,n),

we have d E H"(X; q~xZw).

Corollary. If d represents the zero element of H"(X; q~xZw), then f is homotopic

tog.

The map p: E ® ÜL(Z, n + 1) -» E also has an inverse T defined by T(b, s) =

((b, s), c) where b E B, s E PL(Z, n), and c is the constant path in K(Z, n + 1)

over the point w(b). It is not difficult to see that pT ~ lE.

Having given a cursory description of the construction and properties of the

spaces required for nonsimple Postnikov theory, we are in a position to describe the
p

actual tower for the fibration F -» E -» B. To do this we need the following result.

Theorem 3 (McClendon [5]). Assume F is (n — 1) connected for n s* 2. Let t in

H"(F; ir„(F)) be the fundamental class and h: ttx(B) -* Aut(*7r„(F)) the local system

defined by the fibration. Then i is in [H"(F; irn(F))]h, and, hence, by Corollary 2 to

Theorem 1, it is transgressive.

The Postnikov tower for F -» E — B can now be constructed. Let t in

H"(F; TTn(F)) be the fundamental class of F, and let h: ttx(B) -> Auu>„(F)) be the

local system on B defined by the fibration. By the previous theorem, t(z) = k, is

defined and is an element of H"+](B; TT„(F)h). Construct the diagram

k(Z,n)-—*EX

^^^-^ l p,

£-^—-> B^L(-tt„(F), n + 1)
p k

Ex is the total space of the fibration which is the pullback by k of the fibration

PL(TTn(F), n + 1) -* L(irn(F), n + 1). Since t(i) = k, by exactness we must have

p*(k) = 0. Therefore, there exists a map qs: E -» Ex such that pxqx = p. By a

standard argument, the fibre F, of qx is «-connected and trk(Fx) = tTk(F) for k > n.

The space Ex is the second stage of the Postnikov tower. To construct higher stages

the above construction is iterated on the successive fibrations q¡.

Proof of the Main Theorem. We begin by constructing a Postnikov tower for the

fibration

Vm2 ̂  BO(m - 2) -^BO(m)

where m is even, and Vm 2 is the Stiefel manifold of 2-frames in euclidean m space.

The fibre Vm 2, hereafter denoted simply by V, is (m — 3) connected; irm_2(F) = Z,
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and wm_x(V) = Z ® Z2. The action of TTxBO(n) = Z2 is nontrivial on mm_2(V) and

on the Z-summand of itm_x(V).

Lemma 1. Let i in Hm~2(V; Z) be the fundamental class of V. Then r(i) = GlSm_l in

HmX(BO(m); Zw).

Lemma 2. Let a: Hm(BO(m); Zwf -> Hm~\V; Z) denote the suspension map for

the fibration p. Then o(y) contains a spherical class.

Remark. For the definition and properties of spherical classes the reader is

referred to the article of McClendon [5].

These two lemmas imply that we may use 6liSm_x and x in the first stage of our

Postnikov tower to kill off wm_2(V) and the Z-summand of wm_ X(V). Thus we have

the diagram

k

Ex ->   K(Z2,m)

* y  Pi

'' P *■ (%,-!• X)
BO(m-2) ->BO(m)   -> L(Z, m - 1) ® L(Z, m)

L(Z, m — I)® L(Z, m) denotes the fibre product over K(Z2,1) of L(Z, m) and

L(Z, m — 1). The map p lifts to a map qx: BO(m — 2) -* Ex, since p*(x) and

p*(GllSm_x) are both zero. Convert the lift qx into a fibration with fibre F,. Then F, is

(m — 2) connected, and irm-X(Fx) = Z2. Let u E 77m~'(F1; Z2) be the fundamental

class, and set k = t(u) in Hm(Ex; Z2). The element k is the second Postnikov
Pi

invariant for our fibration p. Let K(Z2, m — 1) -> F2 ->EX be the principal fibration

induced by k. We then have the following diagram.

->K(Z2,m)

y )
-> L(Z, m - 1) ® L(Z, m)

The fibre F2 of q2 is (m — 1) connected, and therefore by a standard argument the

map q2t: [X, BO(m - 2)] -> [X, E2] is a bijection for a complex A" of dimension less

than or equal to m. Thus if we are given a map f:X-* BO(m), f lifts to g:

X -+ BO(m - 2) if, and only if,/lifts to E2. If f*(x) =/*(6Zlim_1) = 0, then/lifts to

a map g: X -» Ex, and it is clear that/lifts to F2 if, and only if, we can choose a lift

g: X^EX for which g*(k) = 0.

BO(m - 2)
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Lemma 3. Define E to be the space Ex ® L(Z, m — 2) ® L(Z, m — 1), the fibre

product over K(Z2,1). Let p: E — Ex be the map defined by (*), and let em_2 G

Hm~2(L(Z, m - 2); Zp) andem_x G H"' X(L(Z, m - 1); Zp) be the twisted funda-

mental classes of Theorem 2. Then we have the following formula.

p*(k) = k® 1 ® 1 + 1 ®Sq'em„, ® 1 + 1 <8> 1

®Sq2em_2 + w2® l®em_2.

The proofs of Lemmas 1-3 will be given later.

Corollary. If gx and g2 are two lifts of f to Ex, then there exist elements ux in

Hm~x(X; Zf,(w¡)) andu2 E Hm  2(X; Zf,(w¡))such that

g*(k) = gf(k) + Sq'M, + Sq2zz2 + f*(w2)u2.

Proof. Use Lemma 3 and the Proposition.

The corollary shows that the elements g*(k) as g runs over lifts of /to Ex form a

coset in Hm(X; Z2) of the subgroup

Sq'Ti"--'^; Zr(W])) + (Sq2 + f*(w2))H"'-2(X; Zr(Wi)).

This immediately gives us the following theorem.

Theorem 4. Let X be a complex of dimension m, where m is even. Suppose f:

X -> BO(m) satisfiesf*(%m_x) = 0 andf*(X) = 0. Then f lifts to f: X -* BO(m - 2)

if, and only if, g*(k) = 0 in

H"'(X; Z2)/sqxHm-x{X; Zf.(w¡)) + (Sq2 + f*(w2))(H"'-2(X; Zf.{^))

where g is any lift of f to Ex.

The Main Theorem is now an easy consequence of the following lemma.

Lemma 4. Let M be a nonorientable manifold of dimension m. The map Sq1:

Hm   \M; ZWi(M)) - Hm(M; Z2) is onto.

Proof. We have the following commutative triangle:

Hm~x(M; ZWi(M)) - Hm(M;Z2)

77m-'(M;Z2)

where p2 is reduction mod 2. It is well known that Sq': 77m~ X(M; Z2) -» H"'(M; Z2)

is onto. But p2 is also onto as can be seen from the following exact sequence:

■ • • - Hm~x{M; Z„,|(W)) ̂ H"'-\M; Z2) -77"'(M; Zw¿M))

where ß is the Bockstein homomorphism associated to the coefficient sequence

0 - ZW| ̂  ZW| - Z2 -* 0. Since Hm(M; ZW¡(M)) is infinite cyclic and HmX(M; Z2)
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has order 2, we immediately see that ß is zero, and hence p2 is onto. Thus Sq1:

Hm~x(M; ZW,M)) -* Hm(M; Z2) is the composition of onto maps and must itself be

onto.

To prove the Main Theorem let/: M -» BO(m) be a map classifying T(M), the

tangent bundle of M. By hypothesis,/*(x) and f*(%m_x) are zero. Choose any lift

of /to the space £,; call it g. Then g*(k) is an element of the quotient group

H"'(M; Z2)/Sq177'"-1(M; ZW,(W)) + (Sq2 + w2(M))H>"-2[M; ZW|(M)).

But this group is zero by Lemma 4, and so by Theorem 4 / lifts to BO(m — 2).

It only remains for us to prove Lemmas 1 through 3.

Proof of Lemma 1. Corollary 2 to Theorem 1 gives us the following exact

sequence.

-^[Hm~2(V; Z)Y^H"'-x(BO(m), ZW¡)CHm   x(ßO(m - 2); Zw) - .

The group on the left is Z, generated by i according to Theorem 3. The kernel of p*

is generated by %„_,, so by exactness t(¿) = eHSm-X.

Proof of Lemma 2. Consider the diagram

Vm2      -     BO(m-2)      '      BO(m)

g I I II

Sm~x      -*     BO(m-l)      P-      BO(m)

Let a be the suspension for p and o' the suspension for /?'. By the Serre and Gysin

sequences for p' it is easy to see that o'(%) - o, where o is a generator of

Hm~l(Sm~x; Z). So o'(x) contains a spherical class, namely o. The map g is a

fibration with fibre Sm~2. Consider the homotopy exact sequence for g:

-^-,(^,2)-^-l(^-,)-^-2(5m-2)-^-2(Fm,2)-^_2(S'"-1).

Since TTm-2(Sm~x) is zero, we must have z'+ onto. But 77m_2(Sm~2) and wm_2(Fm2)

are both infinite cyclic, and consequently z* is also 1-1. By exactness, this makes gy.

irm_x(Vm_2) -» wm-i(5m~') an epimorphism. This implies that g*(v) in a(x) is

spherical.

Proof of Lemma 3. Consider the following diagram:

<7,©1©1 _ u

BO(m - 2) ® L(Z, m - 2) ® L(Z, m - 1) -* F -F,

S  î |W I />,

BO(w - 2) ^ BO(m)

Recall that F = F, © L(Z, m - 2) ® L(Z, m - 1), the fibre product over K(Z2,1).

It is easy to see that the map tt has a section s. Furthermore, if we let o be the
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composite p° (qx ® 1 © 1), then vs ~ qx. By the work of Emery Thomas [9], there

exist a map t, and a short exact sequence in Z2 cohomology

0 -» Hm(Ex)V^Hm(BO(m - 2) © L(Z, m - 2) © L(Z, m - 1))

T^Hm+x(BO(m)).

Moreover, t, commutes with Steenrod squares and is an H*(BO(n); Z2) module

map. As described earlier, there is a map T: Ex -» E such that pT — 1^. Therefore,

p*(k) = k ® 1 ® 1 + 2 Oj ® bj ® Cj
J

where czy is in H*(EX; Z2), bj is in H*(L(Z, m — 2); Z2), and cy is in

H*(L(Z,m- 1); Z2),

with deg üj + deg ¿>- + deg cy = w and deg fy + deg cJ > 0. This last condition im-

plies that 2a ® b: ® Cj is in kers*. The second Postnikov invariant k is in ker^f, so

v*(k) = 2aj ® bj ® Cj is in kers* n ker t, by the short exact sequence above.

Lemma 5. The intersection of kers* with Hm(BO(m - 2) © (L(Z, m - 1); Z2))

consists of the elements 1 ® Sq'e„,_1 ® 1, 1 ® 1 ® Sq2em_2, wx ® 1 ® Sq'cm_2, and

w2®l® em_2.

Proof. Consider the mod 2 Serre spectral sequence for the fibration w (see

previous diagram). Since -n has a section, and since we are taking mod 2 cohomology,

an easy argument shows that the spectral sequence collapses, that is, E2 = Eœ. The

conclusion of the lemma now follows easily.

We now compute the action of the map t, on these elements. Recall that by

construction we have t,(1 ® em_, ® 1) = wm, where wm is the mod 2 reduction of x,

and t,(1 ® 1 ® em_2) = wm_x. Using these formulas and those of Wu [11] we obtain

Tx(l®Sqxem_x®l) = Sqxwm = wxwm,

t,(1 ® 1 ® Sq2em_2) = Sq2wm_, = w2wm_x + wxwm,

t,(w, ® 1 ®Sqxem_2) = w2wm_x,

7x(w2® 1 ®em_2) = w2wm_x.

Therefore, ker t, n ker s* must consist of the single element

1 ® Sq'em_, ® 1 + 1 ® 1 ® Sq2em_2 + w2 ® 1 ® em^2.

By the short exact sequence given earlier, this gives us the required formula for

p*(k).
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