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THE SUMS OF POWERS THEOREM FOR

COMMUTING BLOCK MAPS

BY

FRANK RHODES

Abstract. A block map is a map/: {0,1}" -» {0,1} for some n > 1. A block map/

induces an endomorphism/œ of the full 2-shift ( X, a). Composition of block maps is

defined in such a way that (f ° g)x = /«, ° gx- In this paper some recent results

concerning the set {g | g ° f = / ° g) for certain types of block maps / are extended.

It has been shown [2, Theorem 3.4] that the endomorphisms of the shift dynamical

system over {0,1} can be studied via block maps. An /z-block is a sequence bx...b„

where bl, E {0,1} for 1 < z: < n, and an /z-block map is a function from the set of

/z-blocks to the set {0,1}. Two endomorphisms commute if and only if the

corresponding block maps commute. There is a 1-1 relationship between /z-block

maps and polynomial functions in n variables over Z2 [2, Theorem 19.1]. The

commuting block maps problem has been solved in [1] for linear block maps and for

block maps with polynomials of the form

k

f(x0,...,xk)= x0+ II  (Xi + Ôi),
1=1

k > 2, where 8X.. ,8k is a /c-block which is independent of the variables. It is shown

that if the least period of 5,.. .8k is no greater than {k then the block maps which

commute with / are the powers cf /, while if the least period of 8x...8k exceeds {-k

then a block map commutes with / if and only if it is the sum of an odd number of

powers of /. The first step in the proof of these results is to establish the Sums of

Powers Theorem which states that if g commutes with / then it is the sum of an odd

number of powers off. The Sums of Powers Theorem is proved in [1] for block maps

f(xQ,...,xk) = x0 + <t>(xx,...,xk), k>2, for which the full product xx...xk is a

summand of <p(xx,... ,xk).

It is clear that the Sums of Powers Theorem cannot hold for a block map/which

is itself a power of some other block map. In this paper I isolate a property of block

maps which are linear in the first variable and prove that for each such block map /

no power/", n > 2, has that property, while if/does have that property then a form

of the Sums of Power Theorem holds for / As a corollary, the complete solution of
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the commuting block maps problem obtained in [1] is generalized to block maps

with polynomials of the form

k

f(x0,...,xmk) = x0+ u (xmi + 8t),       k>2,m>l.
i=\

The formal definition of the property will be given later in terms of operators on

block maps of the type introduced in [1]. Here the property will be illustrated in the

more familiar polynomial notation. Given a polynomial which is linear in the first

variable one can write it in a form which shows the initial linear terms, the first

nonlinear variable with its quotient, and the remainder. For example,

■^0 3 4 5\    7 12 9    10        "^9*^11 "^9*^10*^13/        "^6        X-~]X,q "T" X^a

has x5 as its first nonlinear variable with quotient x1 + xX2 + x9xx0 + xgxxx +

x9xxoxX3 and remainder x6 + x7xs + xX4. This quotient can be written as

Xj + X9(XX0 + Xxx + XX0X]3)    '   x\2

to show its first nonlinear variable x9 with quotient xxo + xxx + xxoxx3 and remainder

xX2. Again this quotient can be written as

xx0(l + xX3) + xxx

to show its first nonlinear variable xx0 with quotient 1 + xX3 and remainder xxx. In

this case x5x9xXQ is a product with the following properties. It starts with the first

nonlinear variable of the function. Each subsequent variable is the first nonlinear

variable in the quotient of the product of the previous variables. Finally, the

quotient of the whole product is linear. Such a sequence xs xs... xs is defined

uniquely for each function. The property used in this paper is that s¡ — s¡_x < sx for

all i such that 2 =£ z =£ /z. In the example, 9 — 5 < 5 and 10 — 9 < 5. We conclude

from the theorems to be proved that this block map is not a power of any other

block map and that each block map which commutes with it differs by at most a

constant from a sum of an odd number of its powers.

1. Preliminaries. The results of [1] will be referred to by their two place reference

numbers. Some small changes in terminology will be noted later. The notation of [1]

will be used throughout. For the convenience of readers some of the definitions and

results of that paper will be repeated here. Those marked with an asterisk are simple

generalizations of the results presented in [1]. On many occasions in this paper there

will occur pairs of block maps which differ only by a constant. To ease the

presentation of some of the results and proofs I introduce the notation / =* g to mean

The set ^ is the set of all /z-block maps, i.e., maps from the set of sequences of

length n (with entries in Z2) to Z2. The map 7" E f, is defined by I(xx) = xx. If

/ G fm, g E % then / + g E %, f ■ g E <%N where N = max(m, n), and

/ogefm+„_,.Wehave

(g+h)of=(gof)+(hof), (g-h)°f=(gof).(h°f).

If /EÍ, then Tf E %+x, QfE$n_x, RfE$n_x are defined by

7/(05) = Tf(lB)=f(B), Qf(B) = f(0B) + f(lB), Rf(B) = f(0B). The left extent
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of /  is   X(f) = max{n\f= T"   xg   for   some   g).   The   right   extent   of /  is

p(f) = min{/z |/ E $rn). A block map such that X(f) = p(f) is said to be trivial.

[l](l.l)(a)T(f+g)=Tf+Tg.

(b)T(f-g) = Tf-Tg.
(é)T(gof)=Tgof=goTf.

(f) f = g if and only if Tf = Tg.
[1] (1.3) Suppose/is not constant and/ E ®in. Then

(a) X(Tf) = X(f)+ 1, p(7/) = p(f) + 1.
(b)l«£A(/)<p(/)<n.
(c)/= FX('>   '/z for some/z with A(/z) = 1.

(e) P(f + g) < max{p(/), p(g)}. Equality holds if p(/) ¥> p(g).

[1] (2.1) (a) Q(f+ g) = Qf + Qg. R(f+ g) = Rf+ Rg.
(b)QT=0.

(c) RTf = f for all /.

[1] (2.2) If/is not constant, then p(xQf) < p(/) - 1.

[1] (2.3)/ = I • TQf + TRf and the expression is unique.

[1] (2.9)* If Qg E Z2 then ß(/° g) = Qg ■ (Qf o g).
The set £, is the set of block maps /such that Qf= I, i.e.,/ = I + TRf.

If / e £, then R(g ° f) = Rf ■ (Qg ° f) + Rg ° /(see proof of [1] (2.9)).
[1] (2.10) If/E £, and g is not constant then p(g° f) = p(g) + p(f) - 1.

[1] (2.11)* If/ E £, is nontrivial and g ° f~ g, then g is constant.

The quotient and remainder operators Q and R will be generalized as follows.

If/ E % define ß,/ E %_t and *,/ E $,_„ 1 < / < n, by

Ô,/(^+,,..-^J=/(0,",,0,x,+ 1,...,x„)+7(0'-|,l,x,+1,...,x„)

and

Ä,/(x,+,,...,xn)=/(0,,xI+1,...,xn).

Here 0' stands for a block of 0's of length i.
The properties of Q¡ and R, listed below follow easily from the definitions.

(1.1) Lemma, (a) Qx = Q, Rx = R andR¡ = Rl.

(b)    ß,    and   R,    are    additive,    i.e.,    Qi(f+g)=QJ+Qlg    and

Ri(f+g) = R,f+R,g.
(c)QsR,f=Qs+lf.
(d) lfi-k>0 andj - k > 0 then Q¡TJf= Q^kTj~kf.

(e)

Q¡TJf=\Q-^    J<Í>[0, j>t.

A block map ct> will be said to be linear in the first s — 1 variables if and only if

(2,cJ> E Z2 whenever 1 < i < s — 1. The condition can be written also as p(Q¡<t>) = 0

whenever 1 < i < s — 1. Note that some modification of the terminology of [1] is

involved here. In this paper / will be said to be linear in the first variable if
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ß,cf> E Z2. Nevertheless, the notation £, introduced in §2 of that paper will still

denote the set of block maps / for which Qf= I, i.e., block maps of the form

/ = I + TRf. It follows from [1] (2.3) that if cf> is linear in the first s - 1 variables

then

c> = axI + ■ ■ ■ +as^xTs-2I + TS~XRS_X4,

= axI+ ■■■ +as^xTs~2I + Ts   XI ■ TSQS<¡> + T'RJ,

and given s these expressions are unique.

A block map is said to be linear if it is linear in all its variables. With the

operations of addition and composition, the set of all block maps § satisfies all the

axioms for a ring except the right distributive law. An example is given in [1] for

which h°(f+g)¥zh°f+h°g. However, the following is true.

(1.2) Lemma. // h is linear, i.e., h = a0 + 2"=, a,T'-xI, then h°(f+g)

= h°f+h°g+a0.

(1.3) Lemma. If h is linear and not constant then h ° f — h ° g implies f—g.

Proof. Let h°f+h°gEZ2. Then by (1.2), h ° (/+ g) E Z2 so that

p[h o (/ + g)] = 0. If p(f + g) > 0, the conditions on h ensure that

p[h ° (/ + g)] = p(h) + p(f + g) — 1 > 0.   The   contradiction   proves   that

/+gez2.

( 1.4) Lemma. Let cf> be linear in the first r — 1 variables and xp be linear in the first

s — 1 variables with r > 2 and s > 1. // r > s then <j> ° xp and xp ° cf> are linear in the

first s — 1 variables. If r > s then

Qs(<t> ° *) =-■ ÔW> • QA,     QÂ4* ° *) =-■ QMQst ° <f>)-
If r = s then

ß (<f> ° *) - 0,4» • QA + QMQS4> ° *).

Proof. Let

cf) = a,/ + • ■ ■ +ar_xTr~2I + Tr-xRr_x<?

and

xp = bxi+---+bs_xr-2i+r-xRs_xxp.

Then

cf. ° ¡p = a,t// + - - - +ar_,rr"2t// + Tr'xRr_x<p o ^.

Thus

e,-(* ° *) = «,0,* + • ■ ■ +ûr-,Ô,:r'-2i/< + ßl.(7"-1Är_1^. "))ez2

if /'<j- 1 «Cr— 1. If s = r

Qs(4> ° *) = 0,0,* + «2*.-1  + • • • +0,-1*2 + ôli*,-!* ° *)•

By [1] (2.9)* we have

QX(RS-X<t> ° >P) = QMQiRs-i* ° *)■
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Thus if s = r, Qs(<p ° *) =* ß,<f> • ß,* + ßi*(ß,* ° *)• If s < r then

Qs(Tr  xRr_x<p oxp) = 0 and ß,(* ° xP) - ß,cf> • Qsxp. Also

XP o cf. =  /3,<f> +   * * *   +t\_|FS-2cf. +   TS~XRs_xxP ° tf,,

and

ß,(* » *) = 6,ß,* + • • • +6J-iß,7,i-2<f. + ßi(r,-IÄ,-i* » cf.) e z2

if j < s - 1 < r - 1. If s < r then

ßsU ° *) - Qs(Ts lRs-iï ° <f>) - ß^ißW* ° *)•

(1.5) Lemma. Suppose f E £, a«c7 7?/ w nonconstant and is linear in the first s — 1

variables. 7/cf. + cf. ° fis linear in the first t — 1 variables, and t *£ s, then cf. is linear in

the first t — 1 variables.

Proof. If cf. + cf. ° / is linear in one variable then ß,cf> + ß,(cf> ° f) = ß,cf> +

ß,cf> o / E Z2. Thus by [1] (2.11)* ß,<j> E Z2. Suppose cf. is linear in the first r - 1

variables with r < t, i.e., <f> = bxl + • • • +br_xTr~2I + TrXRr_x<p. Then

Qr<t> + Qr(* °f)^Qr'l>+Qr<t>af£ ^2

Hence ßrcf> E Z2. It follows that cf. is linear in the first t — 1 variables.

(1.6) Lemma. Suppose f, g E £,, and Rf and Rg are nonconstant and linear in the

first s — 1 variables. If<j> is linear in the first t — 1 variables, and t < s, and

<f. + cf)Og + ^ + ^o/GZ2

then xp is linear in the first t — 1 variables and

Q,<t> +Q,<t>°g+ ß,* tÖ^/EZ,

If also cf> is not linear in the first t variables then xp is not linear in the first t variables.

Proof. By [1] (2.9)* we have

ß,<i> + Ol</>°g+ßW'+e1>r'°/ez2.

Then ß,cf> E Z2 implies ß,<f> + ß,cf> ° g = 0 so that Qxxp + Qxxp ° f E Z2 and

Qxxp E Z2. Suppose t — 1 > 1 and xp is linear in the first r — 1 variables where r < t.

Then

Qr<t> + Q/¡> ° g + Qr4> + Qr* ° f <¿ Z2.

Since ßrcf> + Qr<p » g E Z2, it follows again that Qrxp E Z2. Thus xp is linear in the

first / — 1 variables and

Qt4> + Q,4> ° g + Q,*l< + Q,* ° f <E Z2.

Again ß,cf> E Z2 if and only if Q,xp E Z2.

(1.7) Lemma. Suppose /, g Etx, and Rf and Rg are linear in the first s — 1

variables, and that p(QsRg) > p(QsRf) > 0. 7/<f> is linear in the first r - Ivariables

but not the first r variables for some r > s and

cf. + cf,og + ^ + ^o/GZ2

then xp is linear in the first t — 1 but not the first t variables for some t such that

s < t =S r.
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Proof. Since cf. is certainly linear in the first s — 1 variables, it follows from (1.6)

that xp is also linear in the first s — 1 variables and

Qs* + Q,4> ° g + Q,* + Q,* ° / g 22.

Now Qs<p is also constant, so Qsxp + Qsxp ° f E Z2 and ß^ E Z2. Thus, by Lemma

(1.4)

ßi+i* + Qs+Á<t> » g) + ß,+.* + Qs+M ° /)

= Öi+.<i>+ßJ+i</>0g+ß.<i>-ßJ+,g

+ ß,+ .* + Qs+A ° /+ ß.* • ß,+i/e z2.

Two cases are easily dealt with. If ß,cf> = 1 and p(Qs+ x4>) = 0, then

p(ßi+1* + ßi+1* ° f+ ß,* • ßJ+1/) = p(Qs+ig) > 0.

The assumption that p(Qs+xxp) = 0 leads to the contradiction p(Qxxp ■ Qs+if) =

PiQs+^g) > P(ß,+ i/). If P(ßi+.*) > 0, then

p(ßJ+i* + ßi+1* °/ + ß,* • ß,+ ,/) = P(ß,+ ,*) + P(g) - I-

The assumption that pißj+i'i') — 0 leads to the contradiction

p(ßi* • Qs+J) = p(Qs+rf) + p(g) - i > p(ßi+ig) > p(ßi+,/)-

Thus in both these cases xp is linear in the first s variables but not the first i + 1

variables.

In the remaining case ß,<f> = 0 and p(ßi+,<f>) = 0, so that

ß,+i*+ß.+i+°/+ßi*-ß,+i/ez2.

Ifp(ßi+,*)>0then

p(ßJ+1* °f) = P(ßj+1*) + p(/) - 1 = P(QS+A + Qd ■ Qs+Xf)

<max{p(ßJ+1^),p(ßv+,/)}.

The contradiction shows that p(Qs+xxp) = 0 and consequently ß,i^ = 0. It follows

that <f> = F7?<f> and xp = TRxp, and that

Tvct. + 7i<f> o g + Rxp + Rxp o / e Z2.

Since 7?cf. and Rxp are linear in the first s variables,

ßi+1Ä* + ßJ+1(7vcf> o g) + Qs+lRip + Qs+x(Rxp of) e Z2.

We may now apply the three cases to 7?cf. and Rxp. If ß,7v<#> = 1 and p(Qs+ ,7?cf.) = 0,

or if p(ßJ+,7?<f>) > 0, then p(Qs+xRxp) = p(Qs+2*p) > 0, so that xp is linear in the

first s + 1 variables but not the first 5 + 2 variables. If ß,7\cf> = 0 and

p(ßj+17\cf.) = 0, then p(ßJ+17\if') = 0 so that <f> and xp are linear in the first s + 2

variables, and the argument can be repeated. The assumption that p(ßrcf>) > 0 for

some r > s guarantees that for some t for which s < t < r one of the first two cases

applies to ßi+|7v,_J_,cf> = ß,<f> and that xp is linear in the first t — 1 but not the first

t variables.

2. A property of powers of block maps. A block map cf> will be said to be linear

relative to rx, r2, ...,rn if cf. is linear in the first r, — 1 but not in the first /*, variables,

and for each z for which 1 < i < n the quotient Qr... Qr Qr<p is linear in the first

/",+, — 1 but not the first ri+, variables. Note that r¡ > 1 for 1 < i < n.
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For each nonlinear block map cf. there is a unique sequence rx,r2,...,rn such that cf.

is linear relative to that sequence and Qr... Qr2Qr<t> is a nonconstant linear block

map. In this paper I study the property that r¡ =£ /*, for all i such that 2 < i < n (or

/z = l).If/E£„letC*(/)={gE£,|g°/ = /°g}.

(2.1) Proposition. Suppose / E £,, and Rf is linear relative to rx, r2,...,rn where

r¡ < r, for 2 < i < n (or n = 1). If g E C*f and Rg is nonconstant, then Rg is linear

relative to rx,r2,...,rn. Moreover, for 1 «s p < n,

ßv..ßr2ßri7vg + ßv..ßr2ßrÄg°/

+ Qr...QriQrRf + Qr...Qr2QrRf o g E Z2.

Proof. Certainly g E £,, and

7vg + 7cg°/+7v/+7?/°g = 0.

Now 7?/is linear in the first variable if and only if QxRf E Z2 which occurs if and

only if ß,7?g E Z2. Suppose Rg is linear in the first i — 1 variables with z < /-,. Then

Rf ° g is linear in the first i variables. So by ( 1.5) Rg is linear in the first i variables.

Hence 7?g is linear in the first rx — 1 variables and

ßr,7?g + ßr|7vg o /+ QrRf+ QrRfo g G Z2.

Since p(QrRf) > 0 and p(g) > 2 we have p(QrRg) > 0. Thus Rg is linear relative

to rx. Suppose that 7?g is linear relative to /*,, r2,... ,rß, where p < n, and suppose

that

ßr„ ...Qr2QrRg+Qr^...Qr2QrRgof

+ Qr,- ■ ■ Qr2QrRf + Q^ ■ • Q,2Qr,Rf ° g G *2 ■

By (1.6), Qr...QrQrRg is linear in the first r/l+x — 1 but not the first r)i+, variables

and p can be replaced by it + 1 in the inductive assumptions. Thus Rg is linear

relative to /*,, r2,...,rn.

(2.2) Proposition. Suppose / E £,, and Rf is linear relative to /*,, r2,...,rn where

r¡ *£ r, for 2 < z ^ n — 1 and rn> rx (or n = 2 and r2 > /-, ). Then for each v > 2, Rf

is linear relative to rx,r2,... ,/*„_,, sn with rx < sn*¿ rn.

Proof. Since /" E C*(f), it follows from (2.1) that Rf is linear relative to

r,, r2,. ..,/•„_,. Putting p = 1 and p = n — 1 in the final conclusion of (2.1) we

obtain

QrRf + QrRf of+ QrRf+ QrRfo f e Z2

and

Qrnx...QriQrRf + Qrn_y...QriQrRf » /

+ ßV|...orißrÄ/+ßr,.,..Or2o„Ä/6/'EZ2*

The first of these gives

p(QrRf + or,«/" ° /) = p(QrRf+ QrRf° f)
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and so

P(QrRf) + p(f) - 1 = p(QrRf) + p(/") - 1.

Thus

P(QrRf) + p(Rf) = p(QrRf) + vp(Rf)

and

p(QrRF) = p(QrRf) + (v - i)p(Rf) > p(QrRf) > 0.

The result then follows from (1.7) with

Qr^...Qr2QrRf=<P   and   Qr^ __.. .QriQrRf = xp.

(2.3) Notation. For the rest of this section and the next/E £, is a function with

p(Rf)=p and 7?/ is linear relative to rx,r2,...,rn with rx > 1 and r¡,< r, for

1 < / < n (or « = 1). The operator ß   .. ßr2ßr will be abbreviated to a.

It is assumed also that QRf= TIXI + T'O, 1>1, where 6 is linear and

p(&Rf) = m>l.
Given such a block map /, we define an operator L on the set of block maps as

follows:

Lt// = a»f/ + a>//o/+ T'xp.

The operator L is additive.

(2.4) Proposition. 7/g E C*(f) and Rg is nonconstant then Rg is linear relative to

rx,r2,...,rnandLRg+ Tl+X6 ° Rg E Z2.

Proof. By (2.1) we have

S7?g + QRg o /+ 2.Ä/+ Sä/» g E Z2.

Also by (1.2)

ST?/ + âTv/ » g » Sä/ » TRg = T'Rg + F'+ '0 ° Äg.

(2.5) Proposition. Suppose Lxp + r'+10 ° xp E Z2 and xp is linear relative to

r,, r2,...,rn. Then âtf- = aT'~xI + T'xP' (with a E Z2 and xp' = R'QxP) and xp' is

linear in the first rx — 1 variables. Also

Qrf + Qrf ° /+ aQrRf+ Qr¡xp E Z2.

Moreover, xp' is linear in the first rx variables if and only if a = 1 and Qr Rf — Qr xp.

Proof. Since

Qßxp + ß,a^ ° / + QxT'xp + ß,r/+,t9 o $ = Qfixp + Qßxp o f e Z2,

we have QflxP E Z2. Thus â<|< = c07 + TRQxP for some c0 E Z2, and

c07+ F7va^ + c0(7+ 77?/) + TR&xP ° f + T'xp + r/+l0 ° >//E Z2.

If  7=1,   then  with  c0 = cz  and  -|' = Râif-  we  have  ^'+ tf-'°/+>// +cz7v/ +

TO ° xp E Z2. Since ^ + a7</ + F0 o ^ is linear in the first rx — 1 variables, so also is
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xp' + xp' o f. Thus by (1.5), xp' is linear in the first rx — 1 variables. Hence Qr(xp' ° f)

= Q xP' o /. Since also Qr(T6 ° <//) E Z2 we have

ßty'  +  ßty' ° f+  Ôr,* + oQrRf G Z2.

If/> 1, then

RQxp + RQxp o f + C(jRf + T'~xxp+ T'6°xpEZ2.

Since c0Rf+ Tl~xxp + F'f? ° xp is hnear in the first rx — 1 variables, so also is RÇLxp

and

QrRZxP + ßri7?a^ ° /+ cQQrRfEZ2.

Now the assumption p(ßr|7?St/') > 0 leads to the contradiction

p(ßr|7ck^) + p(Rf) = P(c0QrRf) < p(Rf).

Thus p(QrR%xP) = 0, and so c0 = 0. Hence 2^ = TRQxP and

7?S^ + R&xp o /+ T'~xxp + F't9 o ^ e Z2.

We prove inductively that if s < I then Sty = TsRs&xp. Suppose Sty = Fs" 'Tc5- 'a^.

Then Rs~x^xp + Ri_1St// ° /+ T'~s+Xxp + t'~s + 26 ° xP E Z2. Hence

ß^-'Sty + ß,/r_1a»/< ° / E Z2 and so ß,7?i_1at/< E Z2. Thus

7vJ"'a^ = cs_,7+ TRsQ,xp for some cs_x E Z2 and

Cí_,7 + TRs%xp + c,_,(/ + FT*/) + TR'3,xp ° /

+ 7'"s+ty + T'-s+20 oxPEZ2.

Since cJ_,7î/+ T'~sxp + T'~s+X6 ° xp is hnear in the first r, — 1 variables, so also is

Ä'Sty and

ßriic^ + QrRs%xP ° /+ cs_xQrRfEZ2.

Now p(ßr RslíLxp) > 0 leads to a contradiction on spans, while p(ßr RsQxp) = 0

implies c^| = 0 and Aî_1S<// = TRs%xp, so that a»f/ = TsRs%xp. It follows that

a^ = T'~xR'~x2,xp. As before we have R'~l^lxp = c,_xI + FÄ'a^ for some

c¡_x E Z2, and

Ä'Sty + Ä'a^ « /+ c,_xRf+ xp + TO ° ¡p g Z2.

Thus with C/_, = a and R'&xp = xP',

Qrf + ßty' ° /+ aßr,Ä/+ ßty E Z2.

Finally, ßty' E Z2 imphes p(aQrRf + ßty) = 0. Since p(ßty) > 0, it then follows

that a = l'andßri7v/-ßty.

(2.6) Theorem. Suppose g E £,, and Rg is nonlinear. Then for each v~>2, Rg" is

linear relative to sx, s2,... ,sn+x with sn+x > sx for some n.

Proof. Proposition (2.2) deals with the case when Rg is linear relative to

sx,s2,...,sm with ím>í, for some m. All other block maps /e£,, with Rf

nonconstant, are of the type studied in (2.4) and (2.5). For such maps

%Rf = aT'~xI + T'xP'
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with xp' linear in the first r, — 1 variables, and

ßty' + ßty' of+aQrRf+ QrRf E Z2.

By the same arguments as those used in the proof of (2.1)

p(QrRf) + p(7?/) = P(QrRf) + p(Rf) = P(QrRf) + vp(Rf).

Thus p(aQrRf+ QrRf)>0 and so p(ßty') > 0. Since xp' is linear in the first

/-, — 1 but not the first rx variables, a 7?/" is linear in the first r, + / — 1 but not the

first rx + I variables. Thus Rf is linear relative torx, r2,...,rn, rx + I with r, +/>/*,.

3. The sums of powers theorem. In view of Theorem (2.6), a block map/for which

Rf is linear relative to rx,r2,...,rn with /*, < r, for 2 < z < « (or n = 1) is not a power

of any other block map. We now show that such a block map commutes at most

with sums of odd numbers of its powers.

(3.1) Proposition. Suppose Lxp + bT'O + cT'+x6 ° xp E Z2, b, c E Z2, and xp is

linear relative to rx,r2,...,rn. Then Qxp = aTl XI + T'xp' (with a E Z2 and

xp' = R'Qxp). Moreover, xp' is linear relative to rx, r2,... ,r„ and Lxp' + aT'6 E Z2. If

p(atfv') = 0 and p(%xP) > 0 then a = 1 and Qxp - %Rf. If p(QxP') > 0 then

p(ZxP') = P(2ty) - P-

Proof. The proof of Proposition (2.5) needs little modification to show that in

this case also

ßty' + ßty' o /+ aQ,Rf+ ßty E Z2.

Now aQr Rf + Qrxp is linear relative to r2,...,rn (if n > 1). Thus so also is

ßr*' + ßr,*'°/> an(I °y repeated application of Lemma (1.5) Q xp' is linear

relative to r2,r3,...,rn. Thus

2.1/V + a<f/ o /+ a%Rf+ %xp

= a^/' + at//' o /+ a(T'~xi + T'e) + or'-1/ + r*y

= Tty' + aT'O E Z2.

If p(a^') = 0 then aa7<:/+ %xp E Z2. Thus if also p(a^) > 0 then a = 1 and

a*^ - Q,Rf. On the other hand, if p(^xp') > 0 then

p(a^' + a^'o/+aa7i/) = p(a^o +p = P(^).

(3.2) Notation. Let ^ be a block map which is linear relative to rx,r2,..., rn and for

which Lxp + r'+1f? ° xp E Z2. Associate with xp a sequence of constants a0, ax, a2,...

by repeated application of Proposition (3.1). Let xp = xp0 and for z>0 let

a*i = a,7"-1/+7"*f+1.

Note that for large enough i both a, = 0 and xpi = 0. Note also that if Lxp +

T'+Xe °xpEZ2 and Lcf> + Tl+X6 ° <f, E Z2 then L(^ + <f>) + F/+1t? ° (*| + <f>) E Z2

and cz,(* + <f>) = «,(*) + a/i*) for a11 ' > °-

(3.3) Proposition. Suppose Lxp + Tl+X0 ° xp E Z2 and xp is linear relative to rx,

rz,...,/*„. If p(xp) > 0 then p(xp) = tp for some t>l.Ift=l then xp - Rf. If t > 1

then at_x(xp) = 1.
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Proof. If p(S^) = 0 then rty + T,+ x0 ° xp E Z2 so that pty) = 0. Hence

p(S*) > 0 and

p(f'^ + Tl+Xe o vp) = P(a^ + %xp o /)

so that m + pty) = p(a*¿) + p. Moreover, if p(^lxpx) = 0 then Proposition (3.1)

ensures that a0 = 1 and Qxp - QRf. Then

7ty+ F'+l0o^ = a7?/+a7?/o/+ 7"> + Tl+x6oxpEZ2,

i.e.,

(F'-'7+ F'0) o (/+/) + (F/-'7+ T'6)°TxpEZ2.

Thus from Lemma (1.3) we have Rf-xp and pty) = p.

However, if p(<Hxpx) > 0 then there exists t>2 such that p(Q,xp,_x) > 0 and

p(a^,) = 0. Then a,_x = 1 and p(a^,_,) = p(a7?/) = m. But Proposition (3.1)

also ensures that p(Q,xp,_x) = p(2.\p,_2) - p = pCHxp0) - (t - l)p. Thus

p(a^_,) = p(xp) + m-p-(t- l)p and pty) = tp.

(3.4) Proposition. If Lxp + 7,/+10 ° xp E Z2, andxp is linear relative to rx, r2,.. .,/•„,

then xp differs from a sum of remainders of powers off by at most a constant.

Proof. Proposition (3.3) ensures that p(xp) = tp and if / = 1 then xp - Rf. Now let

/ > 1. Then by Proposition (2.4) LRf + Tl+X0 ° Rf E Z2 and Lty + Rf) +

T'+x6 ° (xp + Rf) EZ2. Since pty + Rf) =s max{pty), p(7?/')} = tp we have

pty + Rf) = sp with 5 =s t. But cz,_,ty + Rf) = a,_,^/ + a(_,Ä/' =1 + 1=0,

so that p(xp + 7Î/') =£ tp. If we assume inductively that the result holds for xp with

p(xp) = sp, s < t, then we obtain the result for xp with pty) = tp.

(3.5) Theorem. Suppose / E £, ö/zc7 7?/ is linear relative to rx,r2,...,rn with r, » 1

anci /*, =s r, /or 1 < / < n (or « = 1), a/zc7 ßr... ßr2ßr /?/ is a nonconstant linear map.

Then every member of C*(f) differs from the sum of an odd number of powers of f by

at most a constant.

Proof. Suppose g E C*(f). Then g = /° + TRg, and Propositions (2.4) and (3.4)

ensure that Rg differs from a sum of remainders of powers of / by at most a

constant. Since TRf =/° +/", if Rg is the sum of m remainders of powers of/

then g is the sum of 2m + 1 powers of/.

4. The small and large period theorems. The commuting block maps problem was

solved completely in [1] for block maps of the form f(x0,...,xk) = x0 +

nf= i (x¡ + 8¡) where k > 2. If the least period of the sequence of constants 8x...8k is

p then p < jk implies that C*(f) is the set of powers of / while p > jk implies

C*( / ) is the set of all sums of an odd number of powers of / As a corollary to

Theorem (3.5) the same result will now be proved to hold for block maps of the form

f=x0 + ïlk=x(xmi + 8i),k>2,m>l.

Let f*„+x denote the set of block maps f(x0,.. .,xmn) E c5mn+x which depend

only on the variables xJm, 0 <j < n. Strictly,/ E W*n+, if and only if

f(xQ, xx,... ,x¡^x,0, xi+x,... ,xmn) +f(x0, xx,... ,xt-x, 1, xi+x,... ,xmn) ¥= 0
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for some block (x0, xx,... ,*,_,, ■*,+,,• ■ ■ ,xm„) implies that i =jm for some/ Thus

if /e^*„+i and (x0,...,xmn), (y0,...,ym„) are two blocks with xjm=yJm for

0<y'<«   then  f(x0,... ,xmn) = f(y0,... ,ymn).   It   follows   that   the   map   p:
67* _> 67
°mn+\        Jn+1'

P f\x0> -"^m' X2m>- ■ ■ >Xmn) ~ f\x0> x\> x2>- ■ ■ <xn)

is well defined.

The map p has the following properties.

(4.1) Lemma. If f, gEfm*„+l, then f = g if and only if p/=pg. Also

f(/+g) = f/+fg-

(4.2) Lemma. .// fE<S*p+x and gE<S*q+x, then f ° g E <3*(p+q)+x and

P(/°g) = P/° fg-

Proof. Certainly/° g E 9m(p+q)+x. If <f>(*„. • .,x,^m) = x,¡mxiim. ..x^m then<f> ° g

depends only on the variables x{i +A)m, 0 <X*Z q, 1 <v< p. Since Rf is a sum of

such functions cf. and composition distributes on the left, / ° g depends only on the

variables xjm, 0 <j <^p + q. Moreover, p(<f>°g) = pcf>°pg and consequently

P(/°g) = P/° Pg-

(4.3) Lemma. Letf=x0 + Vik=x(xim + «,.) = I + Wk=x T'm(I + «,.), fc > 2, m > 1.

If g E C*(f) then g E (S*n+x for some n. Moreover, g E C*(f) if and only if

¡pgEC*(bf).

Proof. The block map Rf is linear relative to rx,r2,...,rk_x with r¡ = m,

1 < i « Jfc - 1, and Q,k x. ..QrfQrRf = TmI + Ô,, Thus by Theorem (3.5), g differs
from a sum of an odd number of powers of / by at most a constant. Hence, by

Lemma (4.2), g depends only on the variables xjm, 0 <j. Then g°/ = /°g if and

only if p(g ° /) = P(/° g) which occurs if and only if p g ° p/ = p/° Pg.

(4.4) Theorem. Suppose f = x0 + IIf=,(xm( + Í,-), k s* 2, m > 1, and suppose the

least period of the sequence of constants 8X.. .8k is p. Then p < {k implies that C*(f)

is the set of powers of f while p > 2k implies that C*(f) is the set of all sums of an odd

number of powers off.

Proof. From Lemma (4.3) and Theorems [1] (5.3), [1] (6.11), if p < \k and

gEC*(/) then p g = (p/)" = p (/") for some n. Thus g=f. Conversely,

/" E C*(f). On the other hand, if p > \k and g E C*(f) then

2X+1 2X+1

pg=  2 (*>/)"' = *> 2 /"'•
1=1 1=1

Thus g = 2^1' /"'. Conversely, 2jttl f' 6 C*(/).
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