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ABSTRACT. It is proved that Fourier series with asymptotically even coefficients and
satisfying lim,_lim sup,_, 2% j7~'[Af(j) P =0, for some 1 <p <2, con-
verge in L'-norm if and only if || f(n)E, + f(—n)E_,|l = o(1), where E, (1) =

7_o e’ Recent results of Stanojevi¢ [1], Bojanic and Stanojevi¢ [2], and Goldberg

and Stanojevic [3] are special cases of some corollaries to the main theorem.

1. Introduction. The space L'(T) of complex functions integrable on 7= R/27Z
does not admit convergence in norm. Consequently, convergence in norm of the
partial sums S,(f) = S,(f, 1) = )<, f(j)e"" to f € L'(T) cannot be characterized
in terms of Fourier coefficients without additional assumptions about the sequence
(fm). o

In the case of even coefficients ( f(n) = f(—n) for all integers n) satisfying certain
regularity and /or speed conditions, it is well known that

(1.1) IS,(/) =fl=0o(1), n- o,
is equivalent with
(1.2) f(n)ign=0(1), n- .

(A survey of classical and recent results of this kind can be found in [1, 2 and 3].)
Most recent results concerning the equivalence between (1.1) and (1.2) are due to
Stanojevi¢ [1], Bojanic and Stanojevi¢ [2] and Goldberg and Stanojevi¢ [3].
In [1] it is proved that if { f( n)} is even and satisfies

(13) » S Haf0]= o). n
and
(1.4) nAf(n)=0(1), n- o,

then (1.1) is equivalent with (1.2).
Goldberg and Stanojevic [3] proved that if

(1.5)  {(A(n) —f(—n))lgn} isa null-sequence of bounded variation,
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238 C. V. STANOJEVIC

and if forsome 1 <p <2
2n

(16) 2 AN = o), e,

then (1.1) if and only if (1.2). An earlier result of Bojanic and Stanojevi¢ [2] is a
corollary to the Goldberg-Stanojevic theorem.
In this paper I shall extend and generalize the Goldberg-Stanojevi¢ theorem in
two ways. Instead of (1.5), a weaker condition will be assumed, i.e.,
1 @ (7. a )
w2 ) = /(=g j=0(1), n- oo,
j=1
(AE) [An]
lim Timsup 3 [A(/()) = /(=/)g j =0,
n— oo j:n
and (1.6) will be relaxed as follows:
[An]
im limsup > j”_'lAf(j)rp =0,

1
A1 oo jon

(HK)

forsome 1 <p < 2.

A sequence of complex numbers satisfying (AE) is called asymprotically even.
Clearly, every even sequence satisfies (AE).

The condition (HK) is a Tauberian condition of Hardy-Karamata [4] kind. Plainly
(1.6) implies (HK).

As a consequence of the main theorem it will follow that the condition (1.3) is
superfluous, and that (1.4) can be weakened if a certain speed of |lg,(f) — fI is
assumed, where o,( f) is the Fefér sum of S,( ).

2. Main theorem. Fourier series considered throughout this section are the series

with asymptotically even coefficients. That is
n

(211) LS ) = A=Dlgj=o1),  n o,
j=1
[An] A R
(2.1.2) lim timsup 3 [A(/(j) = /(=)ltg j = 0.
n—oo Jj=n

MAIN THEOREM. Let S[ f] ~ 2|n|<oof(n)e’"’ be the Fourier series of f € L\(T) with
asymptotically even coefficients.

If for some 1 <p <2
[An]

im limsup > jp_'lAf(j)|p:0’

1

A=l pew j=n

then I|S,(f) — fll = o(1), n = oo, if and only if

(2.2) ||f(n)E"+f(—n)E_"||=o(l), n- o0,

where E, (1) = 2 _o e'*".

(HK)
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PRrOOF. It suffices to show that

)E, + f(—n)E_,|||=

(2.3) lim sup | |IS,(f) — Al

nh— 00

Let A > 1 and n > 1. Then the following identity can be established:

S,(f,1) = f(2) = (f(n)E (1) + f(=n)E_,(1))

{;\\Z}+l[ om(£>1) = f(2)] = [Ann;—*ln[o”(f’t)_f(t)]
| (An] 1 [An] R )
ey Dwen, 2 SO0 3 SO0
[An]—1
. [L[';l]‘—‘—f-[Af(f)]Em
[An]—1
-3 D[”T]]L‘—J[Af(—f)]E-,(t)

The Dirichlet kernel can be written as
Di(t)=Ej(t)+ E_ (1) — 1.

Thus the third and the fourth terms on the right-hand side of (2.4) can be grouped in
the following way:

(An]
Iln [}\n] Ef(./)D(t)
(2.5)
| B (An)
vy E— 2 (f(j) — f( J))E_,(t)+[ 2 70

and the fifth and the sixth terms as

[An]—1

=3 B8 j)p0)
(An]—1
26) -3 BRI a0 - e
[An]—1

[An] +1 1
C A TDwa MO
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Taking the norm of both sides of (2.5) we obtain

1 [An]
I = =] 2 70240
[An]
o [M 2 1F(j) = A(=i)lig
(2 M

An)
[;\[,,)\]n] ([}\1] 2 If(J)—f(—J)|1gJ)

=J,+

[An]
+ o ([f P

Applying first the Holder inequality and then the Hausdorff-Young equality to J,,
we have

nl/ [M] 1p " (An] 1/p
JnSAP[[}\}\]] ( ) :AP[}\[n)\] ] ([}\ln] 2 |f(])| ) )

=n

where 4, is an absolute constant depending on p, and 1/p + 1/q = 1. The last term
in (2.7) is majorized by

[An]

[xn] 1 v

Hence

[An] 1/p
I = 6t ([A‘n] S 170 )

[An]
R ([A‘] S 17() - f(—j)llgj),

where C, and C, are absolute constants.
In a similar manner we obtain

[)\n]
ILl< €5 2 1A(f() = f(=i)ig j + €

Jj=n

()\n]

j=n

\/p
> 'IAf(J)I) :

where C, and C, are absolute constants.
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Combining estimates for both || 1,1l and || 1,, || we get

1.0 = A=W E, + f=mE_ ] |= 5 o 1) - A
ntl [An] ] )'/”
e MUY o (e
(2.8)
(] [ 1 @
+C2[M] ([A ] 2 2 17(5) — A J)llgf)
[An] ) R [An] o 1/p
*G 2 MAD - IEDhe s+ G| 2 j""IAf(j)l) :

Since for A > 1 we have An/([An] — n) ~A /(A — 1), n - o0, it follows that

. [An]
lim sup ———C :O,
n—'oop [}‘n] -n"

for any null-sequence {C,}.
After taking the limit superior of both sides of (2.8) we get

lim sup | I5.(£) = ft=F(n)E, + f(=n)E_,|

[An]
(2.9) < Glimsup X |A(f(j) = f(=)))|g j

n-— o0 '—n

J=n

[An]—1 o 1/p
+C4limsup( > j”"|Af(J')|) .
For llo,(f)—fIl = o(1), n — oo, f(n) = o(1), n - 0, and

[An]

[)\ ] 2 If(]) f(_j)|lgj:0(1), - oo,

because of (2.1.1).
Taking the limit as A — 1 of both sides of (2.9) we obtain

lim lim sup | [15,(f) = /] )E, + f(=n)E_,|

(An]
< Glim limsup 3 |ACF(7) = F(=)g j

n-— oo j:n

[An] 17p
+C, lm} lim sup ( > j’—IIAf(j)|p) .
J

n—oo
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Because of (2.1.2) and (HK) we finally have (2.3), i.e.
limsup | |S,(f) = Al = |/(n)E, + /(=n)E_,||=

n-— o0

This completes the proof of the main theorem.

3. Corollaries and additional results. By strengthening either (2.1.2) or (HK), or
both, one can obtain a number of corollaries that, as a special case, contain the
results of Stanojevic [1], Bojanic and Stanojevic [2], and Goldberg and Stanojevi¢ [3].

The class of complex null-sequences {c,} satisfying

1 n
(3.1) — 3 klAc]=0(1), n- oo,
n =
includes as a proper subclass null-sequences of bounded variation.

COROLLARY 3.1. Let S[f] ~ 2|nl<mf(n)e”" be the Fourier series of f € L\(T), and
let {( f(n) — f(—n))lg n} satisfy (3.1). If (HK) holds then

IS.(f) = Al=0(1), n- oo
if and only if

f(n)lgn=0(1), n- .

ProoOF. The condition (2.1.1) is satisfied. It remains to show that (2.1.2) holds.
Since for A > 1

[An] [)\n]

2 IACF(7) = f(=))) |lgj<— E J|A ) = F(=/)g j

=n
[An]

[)\A] 2 /() —f(=))g j

[)\n] [An]

[;\ ZJIA[ f(J)—f(—J))ng]|+ A EIf(J)—f(—J)Ilg(l +1/) 7,

it follows that if {(f(n) - f( —n))lg n} satisfies (3.1) then (2.1.2) holds.
A special case of Corollary 3.1 is the Goldberg-Stanojevic theorem. Indeed, let
1 <A <2 Then

[An]

Z A fG) <— Z J"IAf(J)|

COROLLARY 3.2. Let S[f] ~ Elnl<wf(n)ei"’ be the Fourier series of f € L\(T), and
let (2.1.1) hold. If (HK) holds and if

(3.2) n[A( f(n) —f(—-n))]lgn = 0(1), n— oo,
then (1.1) is equivalent with (1.2).
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PrOOF. Due to (3.2) we have S| A(f(j) — f(—j)) |1g j < Clg A, where C is an
absolute constant. Hence { f(n)} is an asymptotically even sequence.

Since (3.2) is a summability condition in the sense of Hardy [6], from (2.1.1) it
follows that

(3.3) (f(n) = f(=n))ign=0(1), n-oo.
But (3.3) implies that (2.2) is equivalent with (1.2), for || D, |l = (4/7?)lgn + O(1),
n - 0.

COROLLARY 3.3. Let S[f] ~ 2|n|<wf(n)ei”’ be the Fourier series of f € L'(T) with
even coefficients. If (HK) holds then (1.1) is equivalent with (1.2).

A special case of this corollary is the main theorem of Bojanic and Stanojevic [2].
PRrOOF. Every even sequence is asymptotically even.

COROLLARY 3.4. Let S[f] 2|,,|<wf(n)e'”’ be the Fourier series of f € L'(T) with
even coefficients. If nA f(n) = O(1), n - oo, then
IS.(f) =Al=0(1), n—oo
if and only if
f(n)lgn=0(1), n- .

PrOOE. The condition nA f(n) = O(1), n — oo implies (HK), for
[>\n]

3 oA < clgh,
Jj=n
where C is an absolute constant.
A special case of Corollary 3.4 is the Stanojevi¢ theorem.
In what follows it will be assumed that, for simplicity’s sake, { f(n)} are even
sequences.
All classical conditions as well as (HK) imply that

(34) nAf(n) = o(1), n — oo, forsome 0 < a < 1.
It seems unlikely that (3.4) would imply that (1.1) < (1.2). But a slightly stronger
form of (3.4) such as ,

(3.5) n[lgn]™"?  max |Af(j)]=0(1), n-— oo,
n<j<n+(n/lgn]

for some 1 <p<2and 1/p+ 1/q =1, and certain conditions on the speed with
which lle,(f) — f |l goes to zero as n — oo could imply that (1.1) < (1.2).

ProposITION 3.1. Let S[f]~ 2|nl<wf(n)e'”' be the Fourier series of f € L'(T)
with even coefficients. If, for some 1 <p <2,1/p + 1/q = 1,(3.5) holds and

g nflo,(f) = fl=0(1), n- oo,

(3'6) ln+[n/]gn] » 1/p
lgn(; 2 ) =o(l), n- oo,

Jj=n

then (1.1) if and only if (1.2).



244 C. V. STANOJEVIC

PROOF. Let m > n > 1. Then using the same technique as in the proof of the main
theorem one can obtain the inequality

1,00 = A== 2o 1) = A+ 25 Lo (1)~ 1

m 1/p 1/q

(3.7) +Cn(§ f"“lAf(j)I’) (%)
1/p m 1/q
ralsts S| ()"

where C| and C, are absolute constants.
Let m = n + [n/lg n). Then (3.7) becomes

|s,(f) = Al—|f [lg(” +[ ])]" O itnsigm(f) — 1]

n+[n/lgn] » 1/p
2 j"“IAf(j)l)

J=n

+B,[lgn]llo,(f) — Al + B,

1/p

1 n+[n/lgn)
lgn

D)

+ B, P
Jj=n

where B, ..., B, are absolute constants.
Due to (3.5) and (3.6), for sufficiently large n we have

[1.07) = A=l n|= 0(nllgn) 7 max —af(j)]) + o(1).

n<j<n+[n/lgn]
This completes the proof of Proposition 3.1.

If instead of {[n/1g n]} we take a sequence of integers {[n/L(n)]} where L(n)is a
slowly varying function in the sense of Karamata [5], such that L(n + [n/L(n)]) =
L(n) for all n greater than some n,, we can obtain a generalization of Proposition
3.1
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