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TAUBERIAN CONDITIONS FOR Ü -CONVERGENCE

OF FOURIER SERIES

BY

CASLAV V. STANOJEVIC

Dedicated to Jovan Karamata

Abstract. It is proved that Fourier series with asymptotically even coefficients and

satisfying limx^|lim sup„-0O lff"\ jp~' | A/(y) \p = 0, for some 1 < p =! 2, con-

verge in ¿'-norm if and only if \\f(n)E„ +/( — n)£_„ll = o(\), where En(t) =

2*=o e'k'. Recent results of Stanojevic [1], Bojanic and Stanojevic [2], and Goldberg

and Stanojevic [3] are special cases of some corollaries to the main theorem.

1. Introduction. The space LX(T) of complex functions integrable on T = R/2ttZ

does not admit convergence in norm. Consequently, convergence in norm of the

partial sums S„(f) = S„(f, t) = 2m«,, f(j)e'Jt to/E LX(T) cannot be characterized

in terms of Fourier coefficients without additional assumptions about the sequence

{•ft"»'
In the case of even coefficients (/(/z) =/( — «) for all integers n) satisfying certain

regularity and/or speed conditions, it is well known that

(1.1) \\Sn(f)-A\=o(l),       «-oo,

is equivalent with

(1.2) f(n)lgn = o(l),       n^oo.

(A survey of classical and recent results of this kind can be found in [1, 2 and 3].)

Most recent results concerning the equivalence between (1.1) and (1.2) are due to

Stanojevic [1], Bojanic and Stanojevic [2] and Goldberg and Stanojevic [3].

In [1] it is proved that if {/(«)} is even and satisfies

(1.3) ]- i k\Af(k)\= o(l),       «-oo,
' k=\

and

(1.4) nAf(n) = O(l),        »-co,

then (1.1) is equivalent with (1.2).

Goldberg and Stanojevic [3] proved that if

(1.5) {(/(«) —/(~«))lg «}    is a null-sequence of bounded variation,
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238 C.V. STANOJEVIC

and if for some 1 < p < 2

(1.6) \l Jp\M(j)\P = o(l),       «-oo,
/=«

then (1.1) if and only if (1.2). An earlier result of Bojanic and Stanojevic [2] is a

corollary to the Goldberg-Stanojevic theorem.

In this paper I shall extend and generalize the Goldberg-Stanojevic theorem in

two ways. Instead of (1.5), a weaker condition will be assumed, i.e.,

J_
n

2   \f(j)-f(-j)hJ = o(l),        »-00,

(AE) [Xb]

lim lim sup   S  |A(/(y)-/(-7))|lgy = 0,
""*'      n-»oo      j = n

and (1.6) will be relaxed as follows:
[An]

(HK) lim Um sup   2 Jp~W(j)f = 0,
A~"'      n-»oo      j = n

for some 1 < p *£ 2.

A sequence of complex numbers satisfying (AE) is called asymptotically even.

Clearly, every even sequence satisfies (AE).

The condition (HK) is a Tauberian condition of Hardy-Karamata [4] kind. Plainly

(1.6) implies (HK).

As a consequence of the main theorem it will follow that the condition (1.3) is

superfluous, and that (1.4) can be weakened if a certain speed of \\on(f) —/II is

assumed, where an( / ) is the Fefér sum of S„( f ).

2. Main theorem. Fourier series considered throughout this section are the series

with asymptotically even coefficients. That is

(2.1.1) l £   \f(j)-f(~j)\lgj = o(l),       »-oo,
7=1

[\n]

(2.1.2) limlimsup   2   \Hf(J) ~ f(-J))h J = 0-
A-*l      rt-*oo      j—n

Main Theorem. Let S[f] ~ 2w<00/(«y" be the Fourier series off E LX(T) with

asymptotically even coefficients.

If for some 1 < p < 2
[An]

(HK) lim lim sup   2 Jp~W(j)\   =0,
A~" '      n->oo     y —«

i/ze/z IIS„(/) -/II = o(l), « — oo, if and only if

(2.2) |/(«)£n+/(-«)F_„||=0(l),        «-oo,

M*er*£,,(0 = 2Z=o«'*'-
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Proof. It suffices to show that

(2.3) limsup|||S„(/)-/Í|-||/(/z)F„+/(-«)F-J| = 0.
«-♦00

Let X > 1 and n > 1. Then the following identity can be established:

S„(f, 0-/(0 - (f(n)En(t) +f(-n)E^„(t))

-M±lL     ,r ^_//,M-    n+l

(2.4)

{^[W/.O-AOl-îSffïW/.O-AO]
. [An] , [An]

rH—  2  /(M(<)-tt7t—:  2  K-J)E-j(t)
[Xn]-nJ=n_x [Xn\-nJ = n_x

[\n]-\

- [H + i-y[A/0-)]£(/)
[A/z] — «

j = n

[\n]-\

lh=l±lziWH)]E_Al).
j = n

The Dirichlet kernel can be written as

DJ(t) = Ej(t) + E_j(t)-l.

Thus the third and the fourth terms on the right-hand side of (2.4) can be grouped in

the following way:

j [A"l

7- = ïx^2/'W
(2.5)

[A«] [An]

rH— 2 (/(/) -f(-j))E-j(t) + t^— 2 /Ü
[A/z]-/z7=„ [Xn]-»y=„

and the fifth and the sixth terms as

[An]-1    r,     -,

'„= 2 lx¡l^yJ[Mü)]DA,)

(2-6)    ~ir ixM-»jwu)-A-mE-A,)

[a«]-i  ri   i _l. i+  2   lX$HV-J*KJ).
j=n        [Xn\-n

);
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Taking the norm of both sides of (2.5) we obtain

M-       M        - 1

(2.7)

"'"     [À/z]-/z

1

[M-«A

[An]

2   f(j)Dj(t)
j=n

l2\f(j)-f(-j)hj

+ i [An]

[a«]-«A2 1/0)1

[An]

•/« + TTTiJ- TTT^ l/0)-/(-;)|ig;
[Xn]-n\[Xn] j=x

+
[Xn] 1

[An]

[Xn] - n \ [Xn] yf,
2   1/(7)1   •

Applying first the Holder inequality and then the Hausdorff-Young equality to /„,

we have

t\„V/<t   /[x"l '/> [An]

7v¥- 7^2 i/oor
[X/z] -/z \ [\/z] j=x

'//>

where /4p is an absolute constant depending on p, and l/p + l/c7 = 1. The last term

in (2.7) is majorized by

rx  i    /    i    Ia"1 oxX/p

y^-   tttS  |/0)f
[X/z] - /z \ [X/z] 7=l

Hence

II r    II <- r-       1A"J 1        v    I //  -\\P7i» <ci w  i TTT 2   /u)
\/zJ-n\   X/z        ,

+ C
1

[An]

v^\w\l)Ki)-~i(-m,\
where C, and C2 are absolute constants.

In a similar manner we obtain

[An] /[An] \VP

IIU<c32 |A(/(7)-/(-y))|igy + Q   2 7^'|A/(y)|      ,
7 = "

where C3 and C4 are absolute constants.
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Combining estimates for both l|7ln|| and l|72J| we get

¡Sn(f) -A\-\\f(»)E„+f(-n)E.H\\\< [A[^| n \\o[Xn](f) ~/i|

-^^Lk(/)-/ii+cl7-^(^21i/o)r|'/í
[X/z]-/z""w/     Jn        ' [X/z] - n \ [Xn] ß,

[An] / [An] \ '//"

+ c32 |A(/(;)-/(-y))|igy + Q   2^'|A/(;)r      -
7=1 \j=n I

Since for X > 1 we have Xn/([Xn] — «) ~ X/(X — 1), n — oo, it follows that

, [Xw]
hm sup     L      —C„ = 0,

«-oo     IXnJ-n

for any null-sequence {Cy}.

After taking the limit superior of both sides of (2.8) we get

lim sup | \\Sn(f) -f\\-\\f(n)E„+f(-n)E_„\\ \
n-* oo

(2.9) <C3limsup   2  \Hf(j)-f(-J))hj
n-oo      j = n

/[An]-1 \l/P

+ Qlimsup       2    Jp~W(j)f\     ■
n — oo       \    j = n I

For lla„(/) —/II = o(l),n — co,f(n) = o(l), n — oo, and

[An]

p^y 2 l/(y')-/(-/)|ig/ = o(i),     «-oo,

because of (2.1.1).

Taking the limit as X — 1 of both sides of (2.9) we obtain

lim lim sup | \\S„(f) -j\\-\\f(n)E„ +f(-n)E_n\\
A-l

[An]

;C3Iim lim sup   2  K/(/)-/(-/))|lgy
A^1      n-œ      j = „

/[An] y/P

+ Qlim lim sup     2 /'_l|A/(y)f       .
A-I      n-oo      \j=„ j
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Because of (2.1.2) and (HK) we finally have (2.3), i.e.

lim sup | \\S„(f) -/1H|/(«)F„ +/(-«)£_J |= 0.
n-> oo

This completes the proof of the main theorem.

3. Corollaries and additional results. By strengthening either (2.1.2) or (HK), or

both, one can obtain a number of corollaries that, as a special case, contain the

results of Stanojevic [1], Bojanic and Stanojevic [2], and Goldberg and Stanojevic [3].

The class of complex null-sequences {cy] satisfying

(3.1) - 2 *|AcJ = o(l),       «-oo,
k=\

includes as a proper subclass null-sequences of bounded variation.

Corollary 3.1. Let S[f] ~ lH<00f(n)e"" be the Fourier series off E V(T), and

let {(/(«) - /(-«))lg «} satisfy (3.1). 7/(HK) holds then

\\S„(f)-ñ=o(l),       «-oo,

if and only if

/(«)lg« = o(l),       n - oo.

Proof. The condition (2.1.1) is satisfied. It remains to show that (2.1.2) holds.

Since for X > 1

2 |A(/(y)-/(-y))|igy^ ÎM(f(j)-f(-j))hf
j=" j=n

<jrilljWU)-K-j))hj
lA«J ,=,

*-jTt12 jWVU) -/(-/))ig/]| +nrT 2 I/O) -/(-7)|ig(i + x/j)~j\
Ia«Jj=\ Ia«J j=\

it follows that if {(/(«) - /(-«))lg «} satisfies (3.1) then (2.1.2) holds.

A special case of Corollary 3.1 is the Goldberg-Stanojevic theorem. Indeed, let

1 < X s= 2. Then

[An] ,    2n
\P        2    v,      .,,   j,  ..if

2y^,|A/0-)í^2/|A/(y)í.n
j=n j-n

Corollary 3.2. Let S[f] ~ 2|„¡<00/(/z)e"" be the Fourier series off E LX(T), and

let (2.1.1) hold. If (HK) holds and if

(3.2) »[A(/(n)-/(-«))]lg« = 0(l),       »-oo,

then (1.1) is equivalent with (1.2).
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Proof. Due to (3.2) we have 2A11 A(/(y) - /(-/)) | lg /" < Clg X, where C is an

absolute constant. Hence {/(«)} is an asymptotically even sequence.

Since (3.2) is a summability condition in the sense of Hardy [6], from (2.1.1) it

follows that

(3.3) (/(«)-/(-«))lg« = o(l),       «-oo.

But (3.3) implies that (2.2) is equivalent with (1.2), for \\D„\\ = (4/<n2)lgn + 0(1),

n — oo.

Corollary 3.3. Let S[f] ~ 2|„|<00/(« )<?''"' be the Fourier series off E LX(T) with

even coefficients. If (HK) holds then (1.1) is equivalent with (1.2).

A special case of this corollary is the main theorem of Bojanic and Stanojevic [2].

Proof. Every even sequence is asymptotically even.

Corollary 3.4. Let S[f] ~ 2N<00/(«)e"" be the Fourier series off E LX(T) with

even coefficients. 7//zA/(/z) = 0(1), n — oo, then

\\S„(f)-A\ = o(l),       «-oo

if and only if

f(n)lgn = o(l),       n — oo.

Proof. The condition /zA/(/z) = 0(1), n — oo implies (HK), for
[An]

2 j'-lMJ)\ ^ClgX,
j = n

where C is an absolute constant.

A special case of Corollary 3.4 is the Stanojevic theorem.

In what follows it will be assumed that, for simplicity's sake, {/(«)} are even

sequences.

All classical conditions as well as (HK) imply that

(3.4) naAf(n) = o(l),        n - oo, for some 0 < a < 1.

It seems unlikely that (3.4) would imply that (1.1) <=> (1.2). But a slightly stronger

form of (3.4) such as

(3.5) «[lg/z]"17'        max |A/(/)| = o(l),       « - oo,
n«ysn + [n/Tg n]

for some 1 < p < 2 and l/p + l/q = 1, and certain conditions on the speed with

which \\o„(f) — f\\ goes to zero as n — oo could imply that (1.1) <=> (1.2).

Proposition 3.1. Let S[f] ~ 2¡„|<00/(«)e"" be the Fourier series of f E LX(T)

with even coefficients. If, for some l<p<^2,l/p+ l/q = 1, (3.5) holds and

Ig«k(/)-/|| = o(l),        «-00,

'        ) /       n + ln/lgn] \ l/P

lg«   ¿       2       \f(j)\P\      =o(l),       «-oo,
\ 7=n /

then (I.I) if and only if ( 1.2).
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Proof. Let m > n > 1. Then using the same technique as in the proof of the main

theorem one can obtain the inequality

I \\sn(f) -/1-|A»)I UAj||<^lk(/) -/II + ~hO) -/II

(3-7) +C1(2/-'|A/0-)f        (f)

+c^hmf(yyr,
where C, and C2 are absolute constants.

Let m = n + [/z/lg «]. Then (3.7) becomes

|||5n(/)-7l|-|/(«)|||Djkfi, lg « +
lg« |an + [n/lgn](/)

/n + [n/lgn] \ Vp

+52[ig«]|k(/)^/1l + 53     2    j'-WU)f\
J-n

n + [n/lgn]

\ J=n

where Bx,...,BAare absolute constants.

Due to (3.5) and (3.6), for sufficiently large n we have

|||5„(/)-/1|-|/(«)|lg«|=0(/z[lg/z]-^       max        \Af(j)\) + o(l).
\ n«y£n + [n/lg n] /

This completes the proof of Proposition 3.1.

If instead of {[/z/lg n]} we take a sequence of integers {[n/L(n)]} where L(n) is a

slowly varying function in the sense of Karamata [5], such that L(n + [n/L(n)]) >

L(n) for all n greater than some n0, we can obtain a generalization of Proposition

3.1.
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