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GROWTH OF SOLUTIONS OF

LINEAR DIFFERENTIAL EQUATIONS AT

A LOGARITHMIC SINGULARITY

BY

A. ADOLPHSON, B. DWORK AND S. SPERBER

Abstract. We consider differential equations Y' = A Y with a regular singular point

at the origin, where A is an n X n matrix whose entries are p-adic meromorphic

functions. If the solution matrix at the origin is of the form Y = Pexp(0 log x),

where P is an n X n matrix of meromorphic functions and 6 is an n X n constant

matrix whose Jordan normal form consists of a single block, then we prove that the

entries of P have logarithmic growth of order n — \.

Let ß be an algebraically closed field of characteristic zero complete under a

nonarchimedean valuation with residue classfield of characteristic p. Let A be the

ring of functions u = f/g meromorphic on the open disk D(0,1') where /and g both

converge on D(0,1") but g is bounded on the disk. Let A0 be a subring of A which

satisfies conditions (3.1)—(3.5) below. The standard example would be the ring A( K )

of functions defined over a discrete valuation subfield K of Q which lie in A. In this

standard example the elements of A(7C) have only a finite number of poles in

D(0,1").

Let

(0.1) dy/dx = Ay

be a system of linear differential equations where A is an n X n matrix with

coefficients in A0. Suppose that the origin is a regular singular point and that the

solution matrix at the origin is of the form

(0.2) Y= Pexp(Ologx)

where P is an n X n matrix with entries in A0 and 6 is an n X n constant matrix.

Suppose furthermore that the determinant of 7^ is bounded as an element of A0.

Generalizing a conjecture of Dwork [3], we ask whether the entries of P have

logarithmic growth of order n-1 (for definitions see §1). The present work provides

an affirmative answer provided the matrix 6 has Jordan normal form consisting of a

single block, i.e. log"-1 x appears in the formal solution of (0.1).

This problem can be resolved in cases arising from geometry along the lines

outlined in [2, Theorem 6]. In the present work we make no hypothesis concerning

the existence of Frobenius structure.
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This question is related to the work of Dwork-Robba [4] which will be used here.

Their work gave information only in disks free of singularities and so cannot be

applied directly.

We thank E. Bombieri for stimulating renewed interest in this question.

1. Definitions.

1.1. fi is an algebraically closed field of characteristic zero complete under a

nonarchimedean valuation with residue classfield of characteristic//.

1.2. For each a E S2 and each positive real number r, let D(a, r~) = {x E Í2 |

\x-a\<r). For /£ ß[[x - a]], f= 2?=0b,(x - a)", analytic on D(a, r~), we

define for 0 < p < r,

|/|a(p) = Sup|6,|pr=    sup   \f(x)\.
v \x-a\ = p

This is extended to functions u = f/g meromorphic on D(a, r~) by writing | u \a(p)

= \fl(p)/\g\ÂP)-
1.3. 9Í0 is the ring of elements of ß[[.x]] which converge on 7)(0,1").

91 ó is the field of quotients of 310.

93 0 is the ring of all u E 310 which are bounded as functions on 7)(0,1").

A is the ring of all u E 31 ó of the form u = f/g where/ G 9t0, g E 930.

1.4. We say that u E A has logarithmic growth a (> 0) if

|zz|0(r) = o((log))a)    asr-1-.

An element u = f/g of A is said to be bounded if /, g lie in 330. This is the same as

saying that u is of zero logarithmic growth.

2. Generalities for scalar equations with a logarithmic singularity. Let L be an n th

order ordinary linear differential operator with coefficients in A0 and with regular

singularity at the origin. We assume the solution space at the origin is spanned by n

functions [yx,... ,yn) having the following form:

(2.0) Y=(yx,...,y„) = (/„..., /n)exp(/71ogx)

where each/ E A0 and 77 is the constant matrix H¡¡ = 8¡j-\-

Lemma.

(2.1) There exists a sequence {L,}"=o of elements of 31 '0[D] such that

(2.1.1) LQ = L,        order L, = n — i.

(2.1.2) A basis of the solution space of L, at the origin is given by the n — i functions

{y,.\T- ■ >y¡,n-i} having the following form

Yl = (y,J,...,y,_„_i) = F,expH"logx

where F, = (/.,,...,/,„-,) E 31'0""' andH(i) is the (n - i) X (n - i) matrix

H}:¡ = 8j,k_x,        Kj,k<n-i,

(2.1.3) y-¡oLloylX=Lt+xoD       (t = 0,l,...,n-2).
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(2.2) For k = 0,l,...,n — 1 we construct a Frobenius decomposition [5, p. 120] of

Lk by setting

yk.\ =»*.!'

yk,2 = vk,\D~]Vk.2,

yk,n-k       =Vk,\D~l»k,2---D~lVk,n-k-

Then

(2.2.1) v0J = vkJ_k,       0<k<n-l,k<j<n.

(2.2.2) vkJE%'0,       0<k<n-l,Kj<n-k.

(2.2.3) voj+2 has residue 1 at x = 0        (0 <y =£ n — 2).

(2.3) Let wk be the wronskian of Yk = (yk „... JV,,,-*). 77ze/z wA = wk+xy£7k.

(2.4) 77ze wronskian w of {yx,...,yn_x}, the first n — 1 functions of YQ, lies in A0.

77ze wronskian w = w0 of Y0 lies in A0.

Proof. We set L0 = L, y~0 = Y, F0 = F and observe that property (2.1.2) holds

for i = 0.

We now use induction and suppose L¡, Y¡, Fi defined for 0 < z < í and that (2.1.2)

is valid in this range.

We define Ll+X by property (2.1.3), the factorization on the right side being

justified since the left side annihilates constants. It follows from (2.1.3) that a basis

Y,+\ ~ (yt+i. i-.-.^+i.n-r-i) of solutions of L,+ 1 is given by

(2-5) y,+ x,j = D(y,,j+x/yt,x),       l<j<n-t-\.

We know that

(l/ytX)Y, = (l/f,x)F,exr>(H^logx)

and hence by (2.5)

(0, Yl+X) = (D(fy<Ft) + x-,/i;I1F,i/<'>)exp(/f('>logx).

We now define

(2.5.1) f,+ Uk = D(fl;l%k+l)+x-xfl;xfk,       Kk<n-t-\

and set Fl+X = (f,+ xx,... ,/+,„_,„,) and conclude that (2.1.3) is verified for i = t +

1. This concludes the verification of (2.1 ).

To prove (2.2.1) we show

(2.2.1.1) vkJ = vk+XJ_x,       0<k<n-2,    2<j<n~k.

By definition (2.2),

(2.6) ykj = vkAD-xvk2 ■ ■ ■ D-lvkJ,

(2-7) yk+ij-i = vk+i,\D~\+i¿ ■ ■ ■ D~lvk+i,j-\-

By (2.5),

(2-8) yk+lJ_x = D(ykJ/yk,x),
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and by definition, j>¿, , = vk ,. Substituting (2.6) in (2.8) gives

(2-9) yk+i,J-i=vk,2D-,vk,3---D-]vk,J-

Comparing (2.7) with (2.9) for j' = 2 demonstrates (2.2.1.1) for j = 2 and the

assertion follows by induction on j by means of the same comparison. This

completes the verification of (2.2.1). To verify (2.2.2) we use (2.2.1) to write

Vk.j — Vk+j-\.\  = yk+j-\,\  =/*+/-!,1

which completes the proof of (2.2.2).

Assertion (2.2.3) is central for our application. By (2.2.1) and the definitions, for

0 *Sy >s « — 2 we have

y¡,\ =fj,u yJ.2=fJA^gx+fJ_2,

vo,j+2 = vj,2 = D(yj2/v]X) = D(yJ2/yjX),

and hence

(2.10) »O.J+2 = l + *>(fj.2/fj,l)-

This completes the proof of (2.2.3).

To verify (2.3) we note that by a classical formula [5, p. 120; 4, §3.10.1]

(2.11) ** = »Z>Zï*-1 ■••»*.»-*•

Relation (2.3) now follows by application of (2.2.1) and use of (2.11) for wk and

Wk+V

To verify (2.4) we observe that by truncation of (2.0)

(y.,y„-i) = (/i,---,/„-i)exp(iïlogjc),

77 being obtained from 77 by discarding the last row and the last column. Letting É

denote the operation

(/,./„-.) - />(/,,--.,/„_,) + *-'(/,,-■•>/„-,)#,

we compute the wronskian matrix of(yx,...,yn_x)to be

F

ËF
exp(771ogx).

\E«-\

The assertion is now clear since the entries of F lie in A0. A similar argument shows

that w (= u>0) lies in A0.

3. Generalities for meromorphic functions. See §1.3 for the definition of A.

Lemma. (3.1) If i andr¡ lie in A, t/ bounded, then £/rj lies in A.

(3.2) 7/1 and r/ lie in A and if £i) is bounded, then i and r/ are each bounded.

(3.3) 7/1 e Si;,, 7)£ E A, then | G A.

(3.4) 7/1 E A, i has log growth a, then D£, E A and has log growth a.

We do not know whether A satisfies the following condition.



GROWTH OF SOLUTIONS 249

(3.5) 7/1 G A, De, has logarithmic growth a, then £ has logarithmic growth a + 1.

Proof. If £ and t/ lie in A then £ = fx/gx, y = f2/g2, with g, and g2 in 230. If 17 is

bounded then/2 G 23 0 and so £/t\ =fxg2/gxf2 G A. If with the same notation, we

do not know that tj is bounded but do know that ¿17 is bounded, then we conclude

that fxf2 is bounded as an analytic function on D(0,\). As |/-|0('') increases

monotonically with r as r -» 1", and since \fxf2\0(r) =|/i lo(r) I/2 lo(r)' '* ls clear

that 1/ \0(r) is bounded as r — 1".

To demonstrate (3.3), we write £ = u/v, 7)£ = f/g, f,u,v E 310, g G 230. For

each r E (0,1) let Nv(r) (resp, Ng(r)) denote the number of zeroes (counting

multiplicity) of v (resp, g) in D(0, r~). If z is a zero of v of order í > 1 then it is a

pole of 7)£ of order s + 1 and hence a zero of g of that order. Thus Ng(r)> Nv(r).

We fix e G (0,1) and compute for t G (e, 1),

logMo(0/(f)o(e) = /X('-)¿(log>-)

<rAg(r)¿(iog/o = .og|gio(o/igio(<o
•'e

(we do not set e = 0 since 0 might be a zero of v or of g). Since g G 23 0, we see that

the same holds for v. This completes the proof.

Corollary. Let K be a subfield of ß with discrete valuation ring. Let A(K) be the

set of all elements f/g E A with f and g in K[[x\], f E 310, g G 23 0. Then A(K)

satisfies conditions (3.1)—(3.5).

Proof. It is enough to verify (3.5). It follows from the theory of the Newton

polygon [1] that each g G 230 n K[[x]] is a product of a polynomial g, with an

element g2 of 3i0 having no zero in D(0,1"). Hence each element £ of A(K) is an

analytic function on some annulus {x\a <|x|< 1}. (This annulus will in general

depend upon the element £.) The Laurent expansion £ = 2f=.xb^xs in this annulus

has the property that for r E (a, 1), and as r -* 1",

\Ç\0(r) = o(sup\bs\r°).
J3=0

If £>£ has logarithmic growth a then

\bss\= 0(sa),        s>0,

and hence \bs\= 0(sa+[). This completes the proof.

4. p-adic estimates for a scalar equation with logarithmic singularity. We formulate

our main result in terms of scalar equations.

Theorem. Let L be an ordinary nth order linear differential equation with coeffi-

cients in A0 whose solution space at the origin is spanned by

(Ji.•••>>'„) = (/1. ••-,/„ )exp(7i log x)

where H is the n X n matrix 77, • = 8¡ ¡_x andfx,...,/, are elements of A0. We assume

that the wronskian w of yx,... ,yn is a bounded element of A(). The conclusion is that /

has logarithmic growth i — 1 (1 «S i < n).
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Proof. The equation L satisfies the hypothesis of §2. We will use the results and

notation of that section without further explanation. The main point in the proof is

to show that

4.1. / , is a bounded element of A0 (0 < z' < n — 1). We give two proofs of this

assertion.

Proof I. Let {x | | x |= r (< 1)} define a set in ß (r ¥= 0) on which v0J has no

pole. Equation (2.10) shows that in the Laurent series representation of v0J on this

set, the term l/x appears if j > 2. This shows that

(4.1.1) \v0,j\o(r)>l/r       (j>2).

Equation (2.11) with k = 0 now shows that

(4.1.2) (K.1|o(0)V<^|w|0(/-).

Letting r -» 1   and recalling that vox = /, G A0, we obtain

(4.1.3) K.loOHOHoO))'7"
which shows that/, is a bounded element of A0.

We now use (2.3) to deduce that wx = w0/Vq_x is a ratio of bounded elements of A0

and hence again a bounded element of A0. We conclude from (2.5.1) and (3.1) and

(3.4) (with / = 0) that the entries of Fx lie in A0. We now conclude that Lx satisfies

the conditions of the present theorem and hence deduce relation 4.1 by induction on

n.

Proof II. Let a E D(0,1"), a ¥= 0 be such that

(4.2.1) L has no singularities in the disk D(a, | a \~),

(4.2.2)/,,...,/, have no poles in this disk.

Let w be the wronskian of ( yx, y2,... ,y„-, ). Let log x/a denote the solution of the

equation dz/dx = l/x analytic on the disk of (4.2.1) and taking the value 0 at

x — a.

Let uu be the solution of L at x = a which satisfies the initial conditions:

0, 0<y <n - 1,

'(«-!)!,    J = n-1.

Clearly ua is a linear combination with constant coefficients of the entries of

( /i»■••>/,) exP( H log x/a) and by an explicit calculation

(4.2.4) ua(x)=f(x)ß(a)[log-a)n   ' + Ha(x)

with ß(a) = w(a)/w(a) and where 77a is  a linear combination with constant

coefficients (depending upon a) of products of the form/(log x/a)" with v < n — 2.

Since w is bounded and by (2.4) w E A0 we know that ß E A0.

For s^Owe write

(4.2.5) ±D*="2GSJ~DJmodL
s- j=o      J-

where the Gs ¡ lie in the differential ring generated over Q by the coefficients of L.

Thus the G    lie in A0 and have poles only at the singularities of L.
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By Taylor's theorem and our choice of initial conditions for the solution uu,

00

(4-2.6) ua(x)=2Gs,n-x(a)(x-a)s.
5 = 0

The main point is that

, n-l

(4.2.7) ".(*)/(l°«f) (r)-0

as r -* | a | . On the other hand it follows from [4, (5.1)] that

(4.2.8) \asGs^x(a)\<Cs"-]

where C is a constant independent of a. This may be used together with (4.2.6) to

show that

(4.2.9) lim sup «,(*)/(log f)
n-l

(r)<C

with C independent of a. Substituting (4.2.4) in this relation and applying (4.2.7)

shows that

(4.2.10) \ß(a)fx(a)\<C

for all a satisfying (4.2.1), (4.2.2). This shows that ß and/, are elements of A0 whose

product is bounded and hence, by §3, /, is a bounded element of A0. The second

proof of (4.2) is now completed by induction precisely as in the first proof.

Proof of theorem. Assume that/ k is an element of A0 with log growth k — 1

for fixed k and 0 < z < n — 1. This has been verified for k = 1. Equation (2.5.1)

shows that/¿ +, may be computed fromfl+Xk,flk, and/ , by integration. Thus in

particular f k/xf , has by (3.1) log growth k — 1 and lies in A0. The same holds for

/,+ !.*• °n the other hand/,.*+i//,i lies in %'o- Hence by (2.5.1) and (3.3),/,*+,//,,,

lies in A0 and by (3.5) has log growth k. Hence/ k+, lies in A0 and has log growth k

for 0 < / < n — 1. This completes the proof of the theorem.

Corollary. Under the hypothesis of the theorem, suppose that at x = 0 the vector

( /i »•••»/„ ) specializes to (/,,... ,/„ )(0) = ( 1,0,..., 0). If we write

00

/(*) = 2 a,.jxj
7=0

then

a,J<   sup   1/1*1'-'.

This is demonstrated by showing that each/ , in (2.1.2) is of the form

/,,=><!+ le,,,*')

with Xi E N, |c,   |^ 1. The corollary then follows from (2.5.1) by an inductive

argument precisely as in the proof of the theorem.
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Note that the three functions 1, log*, dilog = zZ(xs/s2) satisfy a third order

differential equation not covered by the hypothesis of this corollary but having

growth of the type predicted by the conclusion of the corollary.
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