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ANALOGUES OF THE DENJOY-YOUNG-SAKS THEOREM
BY

C. L. BELNA, G. T. CARGO, M. J. EVANS AND P. D. HUMKE

Abstract. In this paper, an analogue of the Denjoy-Young-Saks theorem concern-

ing the almost everywhere classification of the Dini dérivâtes of an arbitrary real

function is established in both the case where the exceptional set is of first category

and the case where it is o-porous. Examples are given to indicate the sharpness of

these results.

1. Introduction. Throughout this paper, S denotes an arbitrary subset of the real

line 7?; and/denotes an arbitrary mapping of S into R.

For each x in S, the collection tyXx) of bilateral dérivâtes of / at x consists of all

extended real numbers ß for which there exists a sequence {[sn, ty]} of nondegener-

ate intervals with x E [sn, ty], sn, tn E S, [s„, ty] -> x, and [f(tn) - f(s„)]/[t„ - s„]

-> ß; by requiring further that x = tn [resp., x = sy], we obtain the collection fyj (x)

[resp., tyt (x)] of left [resp., right] dérivâtes of / at x; and, by removing the

requirement that x E[sn, t„], we obtain the collection ^(x) of strong dérivâtes of /

at x.

The symbols DJ(x), D~f(x), D+f(x), D+f(x) denote the Dini dérivâtes of /at x,

where the first two [the last two] are the inf and sup of ^J(x) [of ^(x)]; the

extreme bilateral dérivâtes Df(x) and Df(x) of /at x are the inf and sup of QAx);

and, the extreme strong dérivâtes D^f(x) and 6îi*f(x) of/at x are the inf and sup of

tyHx). (We use the conventions inf 0 = +00 and sup 0 = -00.) It is a simple

exercise to show that

(1)    Df(x) = min{DJ(x),D + f(x)}    and    Df(x) = max{D~f(x), D +f(x)}.

If the four Dini dérivâtes at x are equal, their common value is called the

derivative of / at x and is denoted f'(x); if the extreme strong dérivâtes at x are

equal, their common value is called the strong derivative of / at x and is denoted

/*(*)•
The following remarkable theorem was established in the early part of this century

by A. Denjoy, G. C. Young and S. Saks. (See [1] for a discussion of this theorem and

its consequences.)

Denjoy-Young-Saks Theorem. S = AUBUCUDL)E, where

A = {/' exists and is finite},

B= {-00 = D _/< D~f = D+f< D + f= +00},
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C= {-oo = D + f<D+f= D_f<D-/= +00},

D= {D_f=D+f=-ooandD-f=D + f= +00}, and

E = asetof( Lebesgue ) measure 0.

We shall prove the following analogues, give examples to indicate their sharpness,

and point out some of their immediate consequences.

Theorem l.S = A U BKJ CU E, where

A = [D_f= D+f= DJandD-f= D + f= D*f),

B={-X= Z)_/< £+/ </)-/< D+f= +00},

C= {-00 =£> + /<D_/<7)+/<7)-/= +00}, and

E = a set of first (Baire) category.

Theorem 2.S = AUBUCUE, where

A= {DJ=D+fandDf=D+f},

B= {-00 = />_/< D + f<D~f<D + f= +00},

C= {-00 =D+f<D  f<D + f^D  f= +00}, and

E = a o-porous set.

Each of Theorems 1 and 2 will be shown to be a consequence of a respective

theorem from cluster set theory concerning the angular boundary behavior of a

real-valued function defined on a subset of a half-plane. We begin with a lemma that

will be used in both proofs.

2. Key lemma. Set H = {(x, y): x E R, y > 0} and T = {(x, y) E 77:

x + y, x — y E S}. Then for z = (x, y) define the function F: T -» 7? by

Fiz) = Hx,y) = ñx+y)-/ix-y).

If £2 is a subset of 77 and x is a point of R, the cluster set CQ(F, x) of F at x relative

to Ü is the collection of all extended real numbers ß for which there exists a sequence

z,, z2,... of points in Slnr with zn -» x and F(zn) -» /?. If le is the ray that

emanates from x and makes the angle 6 (0 < 6 < tt) with the positive real axis, then

the symbol C(F, x, 6) is used in place of C, (F, x).

The region between two distinct rays in 77 that emanate from the point x in R is

referred to as a Stolz angle at x. The symbol %(F) is used to denote the set of all

points x in 7? at which the relations CA[(F, x) = CAi(F, x) ¥= 0 hold for each pair of

Stolz angles A,, A2 at x.

If x is a point of S, then every point in T has a representation (x + ah, h) for

some a E R and some h > 0. Furthermore,

(2) F(x + ah,h) = «X + [a+l]h\«X+[«-l]h).

By taking a = 1 and -1 in (2), we see that

C(F, x,tt/4) =^f+ (x)    and    C(F, x,2tt/4) = <%j (x).
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Also, for a ^ 1 or -1, we will find it useful to write (2) in the form

rl    4.    u   u\ - l + a    fix + [a + \]h) - f(x)
F(x + ah,h)-—2-^^-

(3)
,   1-a    f(x + [a - l]h) - f(x)

2 [a-l]h

Lemma 1. Ifx E %(F), then the following statements are valid:

(i)   ^J (x)   or   6^(x)   bounded  implies   D_f(x) = D+f(x)   and   D_f(x) =

D+f(x).

(ii) Df(x) ^ -oo  or Df(x) ^ +oo  implies D_f(x) = D+f(x) and D~f(x) =

D+f(x).

Proof of (i). Suppose that tyfa) is bounded and x E %(F). Let {z„ =

(x + ayhn, «„)} be a sequence of points in the intersection of T and the Stolz angle

Ae={(x + ah,h): h > 0 and 1 <a< 1 + e}        (e > 0)

with A„ -» 0, a„ -> a G [1,1 + e], and F(z„) -» /?. Since D+f(x) and 7>+/(*) are

finite and since an + 1 > 0 and an — 1 > 0 for each «, it follows from (3) that

[-^D+f(x) + iLpl*+f(x) < /i < ̂ T)V(x) + Í^WW.

Since 1 < a < 1 + e and D+f(x) = D+f(x) + 8 for some 8 > 0, it follows that

CA((F, x) c[D+f(x) - Se/2, D+f(x) + Se/2].

Because e is an arbitrary positive number and x E %(F), for each Stolz angle A at a;

we have

Q(F,x)E[D+f(x),D+f(x)].

But D+f(x), D+f(x) E C(F, x, 77/4), and hence

(4) inf Q(F, x) = D + f(x)    and    sup Q(F, x) = D+f(x)

for each Stolz angle A at x.

Now, because of (4) and the equality C(F, x, 3it/4) = ^)f(x), the collection

fyf (x) is bounded, and an argument similar to the one given above with Aé replaced

by its reflection in the vertical at x yields

(5) inf Q(F,x) = D_f(x)    and    sup Q(F, x) = D~f(x)

for each Stolz angle A at x. Then (4) and (5) imply

D_f(x)=D+f(x)    and    D~f(x) = D+f(x);

and, since it follows from our arguments that tyf (x) is bounded if and only if

üD/(x) is bounded (for x E %(F)), the proof of (i) is complete.

Proof of (ii). Assume that x is in %(F) and that Df(x) ¥= +oo. Since Df(x) = -oo

implies f'(x) = -oo, we may assume that Df(x) is finite. Also, by (i) we need only

consider the case when D_f(x) = D+f(x) = -oo.

Suppose that

(6) D-f(x)<D + f(x)-8       (8>0).
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Let {zn = (x + ayhn, hn)] be a sequence of points in the intersection of T and the

Stolz angle

A = {(x + ah, h): h > 0 and -1/2 < a < 1/2}

with h„ -* 0, a„ -» a G [-1/2,1/2], and F(zn) - ß. Since 1 + an > 1/2 and 1 - an

> 1/2 for each index, (3) and (6) yield the inequalities

ß<([\ + a]/2)D+f(x) + ([1 - a]/2)D~f(x) < D+f(x) - 8[l - a]/2.

Hence, as -1/2 < a < 1/2, we have ß < D+f(x) — 8/4; and consequently the

supremum of CA(F, x) is at most D+f(x) — 8/4. But this contradicts x E y¿(F),

since D+f(x) E C(F,x, tt/4). Thus we must have D~f(x)>D+f(x), and a similar

argument will show that D+f(x) > D~f(x). Hence D~f(x) = D+f(x).

We have shown that for x E %(F),

Df(x) # +00    implies D_f(x) = D+f(x)    and   Df(x) = D + f(x).

A similar proof yields the same implication for Df(x) ¥= -oo, and (ii) is established.

From Lemma 1 we easily deduce the next lemma, from which Theorems 1 and 2

will readily follow.

Lemma 2. If x E %(F), then either

(i) D_f(x) = D + f(x) andDfx) = D+f(x),

(ii) -oo = D_f(x) < D+f(x) < D-f(x) « D+f(x) = +oo,

(iii) -oo = D+f(x) < D_f(x) « D+f(x) < D-f(x) = +oo, or

(iv) [D_f(x), D-f(x)] n [D+/(x), D+f(x)] = 0.

In the proofs of Theorems 1 and 2 we shall use the fact that condition (iv) of

Lemma 2 can be satisfied only at a countable set of points in S; this is a simple

exercise, and we omit the proof.

3. Proof of Theorem 1. The following theorem was discovered independently by

E. F. Collingwood [2], E. P. Dolzenko [3], and P. Erdös and G. Piranian [5]. (Their

result for a half-plane was stated for functions defined throughout the half-plane,

but their proofs work as well as for functions defined only on a subset of the

half-plane.)

Theorem A. If S2 C 77 and G: Ü -> 7? is arbitrary, then for all x, except for a set of

first category, Ca(G, x) ¥= 0 implies CA(G, x) = CQ(G, x)for each Stolz angle A at x.

For £2 = T and G = F, Theorem A says that there exists a subset E of 5 of first

category such that for each x E S — E, we have C¿fF, x) = CT(F, x) for each Stolz

angle A at x. If x E S and A0 = {(x + ah, h): h > 0 and -1 < a < 1}, then

Q (F, x) = 6Dy(x); therefore, we deduce that CT(F, x) = ^(x) for each x E S — E.

Since CT(F,x) = sÙf(x) for each x E S, it follows that Df(x) = D^f(x) and

Df(x) = D*f(x) for each x E S — E. Theorem 1 now follows from (1) and Lemma

2.

4. Proof of Theorem 2. The porosity of a set E E R at the point x E Ris the value

,.           l(x,r,E)
hm sup-,

no r
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where l(x, r, E) denotes the length of the largest open interval contained in the set

(x — r, x + r) D (R — E). The set E is porous if it has positive porosity at each of

its points, and it is o-porous if it is a countable union of porous sets. The notion of

porosity is due to E. P. Dolzenko [4], and L. Zajicek [10] has shown that the

a-porous sets form a proper subclass of the class of all sets that are both of first

category and of measure 0.

Dolzenko [4] proved the following result. (Again, his result was stated for

functions defined throughout the half-plane, but his proof can be adapted to this

setting.)

Theorem B. If ß C H and G: Í2 -» R is arbitrary, then far all x, except for a

o-porous set, CA(G, x) =£ 0 for some Stolz angle A at x implies x E %(G).

Since C( F, x, tt/4) =£ 0 for all but countably many points x in S, an application

of Theorem B with Q, = T and G = F yields a subset E of S such that E is a-porous

and S — E E %(F). Theorem 2 now follows from Lemma 2.

5. Examples. We shall now give examples to indicate the sharpness of Theorems 1

and 2. The first example shows that it is not possible to make Theorem 1 or 2 better

resemble the Denjoy-Young-Saks theorem by replacing the set A by the union of the

two sets

Ax = {/' exists and is finite),    and

A2= {D_f= D+f= -oo and D'f = D+f = +oo}.

Example 1. There exists a strictly increasing continuous function f on [0,1] such that

f'(x) = +00 for a residual set of points x in (0, 1).

Proof. See for example [8, pp. 214-215].

It is also not possible to replace the set A in Theorem 1 or 2 by the union of the

three sets

Ax = {/' exists),

A2 = {£>_/ = D+f= -oo and/)7= D + f (finite)},    and

A3= {D_f = D+f (finite) and D~f = D+f = +oo}.

Example 2. There exists a strictly increasing continuous function g on [0, 1] such that

(7) D_g(x) = D+g(x)=D*g(x) = 0    and   D~g(x) = D+ g(x) = D*g(x) = 1

for a residual set of points x in (0,1).

Proof. Let Z be any dense t7Ä-subset of (0,1) that has measure zero. According to

C. Goffman [7, Proof of Theorem 1], there exists a measurable set M E (0,1) such

that the upper and lower densities of M at each x E Z are 1 and 0. (These densities

are the largest and smallest of the numbers d for which there is a sequence {[an, by]}

of nondegenerate intervals with

xE[a„,b„],[a„,b„]^x,   and    meas(Af n [a„, b„])/(b„ - an)^ d.)

Define g(x) to be the measure of M D (0, x). Clearly, Dg(x) = 0 and Dg(x) = 1

for each x G Z. Because of (1) and Theorem 1, there exists a set E of first category

such that (7) is satisfied for each x E Z — E.
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It is also not possible to replace the set A in Theorem 1 or 2 by the union of the

two sets

Ax = {/' exists},    and

A2 = (£»_/= Z>+/(finite) and 7)7= D+f (finite)}.

Example 3. There exists a strictly increasing continuous function h on [0, 1] and a

number t G (0,1) such that

(8) D_h(x) = D+h(x) = t   and   D~h(x) = D+ h(x) = +oo

for a residual set of points x in R.

Proof. Let Z and g be the set and function described in the proof of Example 2,

and define h0 to be the inverse of g. Then h0 maps [0, t] onto [0,1], where

t = g(l) < 1; furthermore, Dh 0(x) = 1 and Dh0(x) = +oo for each x in g(Z),

which is a dense G5-subset of (0, t). Therefore, if we set h(x) = h0(rx), then h is an

automorphism of [0,1] with Dh(x) = t and Dh(x) = +oo for each x in W = {jc: tx

E g(Z)}, which is a dense Gs-subset of (0,1). By (1) and Theorem 1 it follows that

there exists a set E of first category such that (8) is satisfied for each x E W — E.

We shall now show that it is not possible to change some or all of the inequalities

in the definition of the sets B and C in Theorem 1 or 2 to equalities.

Example 4. There exists a bounded Baire one function f on [0,1] such that

(9) -oo = D_f(x) < D+f(x) < D f(x) < D+f(x) = +oo

for a residual set of points x in (0,1).

Proof. Let Z, E and g be as described in the proof of Example 2.

For each positive integer n, choose ô„ G (0, l//i2") such that

\g(a) - g(b)\<2-"-x    for a, bE[0,1] and\a - b\<8„.

Then choose a partition x¿¡, x'f... ,x^   of [0,1] with 0 = jcg < xx" <  • • • < x"m¡ = 1

and Xj'+X - x" < 8n for each y = 0,1.m„ — 1. Define the function gn by g„(x")

= 2'" forj = 0,1,... ,mn and g(x) = 0 otherwise. Then set/= g + S^=, g„, and set

[o, i]* = [o, i] - {jc;u,;0^m„.
If £ = g I [0. !]*>then it follows from the continuity of g that ^)ê(x) = ^g(x) and

6¡)+ (x) = 6D+ (x) for each x E [0,1]*. Consequently, for each x G [0,1]*, the set

^f (x) [resp.,6!)/ (x)] is equal to the union of ^'(x) [resp., <%+ (x)] and the

collection of all left [resp., right] dérivâtes of /at x that correspond to sequences that

converge to x through [0,1] - [0,1]* from the left [resp., right]. It follows that

(10) D~f(x) = l    and   D+f(x) = 0   for each x E (Z - E) n [0,1]*.

Now suppose that x G [0,1]* and N is a positive integer. Let j be such that

XjN <x<xN+x.Then

f(x»+x)-f(x)>2-N   and    x»+x - x <8N < l/N2N;

hence

[/«+,)-/(*)]/[<+.-*]>#,

and it follows that

(11) D+f(x) = +00.
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Also,f(x/) - f(x) > 2-*-1 and 0 > xf - x > -l/N2N. That is,

[f{xy)-f(x)]/[xy-x]<-N/2;

and hence

(12) D_f(x) = -oo.

Finally, from statements (10) to (12), we have

D_f(x) =-oo,       D+f(x) = 0,       Df(x)=l,       D+f(x)=+oo

for each x in (Z — E) n [0,1]*, which is a residual subset of (0,1).

We note that no continuous function can satisfy condition (9) at more than a first

category set of points, as C. J. Neugebauer [9] has shown that a continuous function

/has both D f = D+f and D~f = D+/for all but a first category set of points.

Our final example shows that the inequalities in either set B or set C in Theorem 1

or 2 cannot all be made strict.

Example 5. There exists a bounded Baire one function f on [0,1] such that

-oo = D_/(x) < D+f(x) < D~f(x) = D+f(x) = +00

for a residual set of points x in (0,1).

Proof. This proof is the same as that of Example 4, except that the function h of

Example 3 is used instead of the function g of Example 2.

6. Some consequences of Theorems 1 and 2. We close by listing three results that

follow immediately from Theorems 1 and 2. The first is a recent result of Evans and

Humke [6].

Theorem 3. If f. S -» 7? is monotone, then the set {DJ¥= D+f or D'f ¥= D+/} is

a-porous.

Theorem 4. Iff. S -> R is arbitrary and P denotes the set of points where either the

left or right derivative of f exists and is finite, then {x E P: f'(x) does not exist} is

a-porous and {x E P: f*(x) does not exist) is of first category.

Theorem 5. If f. S -» R is locally Lipschitz, then the set {D^f ¥= D+f or D'f'¥=

D+/} is a-porous.

This last theorem does not remain valid when the words "locally Lipschitz" are

replaced by "absolutely continuous", as Evans and Humke [6] have proved that,

given any set K of first category and measure 0, there exists an absolutely continuous

function/: R -> R with D~f(x) ¥= D+f(x) for all x in K. (With bounded variation

being the property of concern in [6], Evans and Humke showed only that their

function is BV; however, it is easy to see that R can be expressed as a countable

union of sets on each of which their function satisfies Lusin's condition (N), and

consequently that/is AC.)

Added in proof. After this paper was accepted for publication, the proof of

Theorem 2 in the case when S equals the whole real line appeared in L. Zajicek's

paper On the symmetry of Dini dérivâtes of arbitrary functions, Comment. Math.

Univ. Carolinae22(1981).
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